Dr Lingqiao Liu
Senior Lecturer
School of Computer and Mathematical Sciences
Faculty of Sciences, Engineering and Technology
Eligible to supervise Masters and PhD - email supervisor to discuss availability.
Dr. Lingqiao Liu is an Associate Professor and was an ARC DECRA Fellow in School of Computer Science, University of Adelaide, Australia. He obtained his P.h.D. from the Australian National University in 2014. He is a recipient of ARC DECRA (Discovery Early Career Researcher Award) award in 2016 and the University of Adelaide Research Fellowship award in 2016. He has a broad research interest in machine learning, computer vision and natural language processing. More information about me can be found in my home page
-
Journals
Year Citation 2024 Lin, W. D., Deng, Y. Y., Gao, Y., Wang, N., Liu, L. Q., Zhang, L., & Wang, P. (2024). CAT: A Simple yet Effective Cross-Attention Transformer for One-Shot Object Detection. Journal of Computer Science and Technology, 39(2), 460-471.
2024 Zhang, Y., Chang, R., Mao, W., Zuo, J., Liu, L., & Han, Y. (2024). Challenges of Automating Interior Construction Progress Monitoring. Journal of Construction Engineering and Management, 150(9), 16 pages.
2024 Liu, Y., Li, Y., Wang, Z., Liang, X., Liu, L., Wang, L., . . . Zhou, L. (2024). A systematic evaluation of GPT-4V's multimodal capability for chest X-ray image analysis. Meta-Radiology, 2(4), 100099.
Scopus42024 Xie, Y., Zhang, J., Liu, L., Wang, H., Ye, Y., Johan, V., & Xia, Y. (2024). ReFs: A hybrid pre-training paradigm for 3D medical image segmentation. Medical Image Analysis, 91, 10 pages.
Scopus32024 Chen, L., Zhang, Y., Song, Y., Zhang, Z., & Liu, L. (2024). A Causal Inspired Early-Branching Structure for Domain Generalization. International Journal of Computer Vision, 132(9), 4052-4072.
Scopus12024 Phan, V. M. H., Xie, Y., Qi, Y., Liu, L., Liu, L., Zhang, B., . . . Verjans, J. W. (2024). Decomposing Disease Descriptions for Enhanced Pathology Detection: A Multi-Aspect Vision-Language Pre-Training Framework. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, abs/2403.07636, 11492-11501.
Scopus12023 Wu, L. Y., Liu, L., Wang, Y., Zhang, Z., Boussaid, F., Bennamoun, M., & Xie, X. (2023). Learning Resolution-Adaptive Representations for Cross-Resolution Person Re-Identification. IEEE Transactions on Image Processing, 32, 4800-4811.
Scopus19 Europe PMC12023 Shi, X., Qiao, Y., Wu, Q., Liu, L., & Dayoub, F. (2023). Improving Online Source-free Domain Adaptation for Object Detection by
Unsupervised Data Acquisition.2023 Ding, Y., Liu, L., Tian, C., Zhang, X., & Tian, X. (2023). Balanced image captioning with task-aware decoupled learning and fusion. Neurocomputing, 538, 12 pages.
Scopus22023 Wang, Z., Liu, L., Wang, L., & Zhou, L. (2023). R2GenGPT: Radiology Report Generation with frozen LLMs. Meta-Radiology, 1(3), 100033.
Scopus192022 Liu, D., Wu, L., Zheng, F., Liu, L., & Wang, M. (2022). Verbal-Person Nets: Pose-Guided Multi-Granularity Language-to-Person Generation. IEEE Transactions on Neural Networks and Learning Systems, PP(11), 1-13.
Scopus20 WoS112022 Wang, X., Liu, L., & Shi, J. Q. (2022). Computationally Efficient Dilated Convolutional Model for Melody Extraction. IEEE Signal Processing Letters, 29, 1599-1603.
Scopus12022 Shu, Y., Li, Q., Liu, L., & Xu, G. (2022). Privileged multi-task learning for attribute-aware aesthetic assessment. Pattern Recognition, 132, 1-11.
Scopus8 WoS22022 Yang, L., Wang, Y., Liu, L., Wang, P., & Zhang, Y. (2022). Center Prediction Loss for Re-identification. Pattern Recognition, 132, 1-11.
Scopus42022 Wei, X. S., Cui, Q., Yang, L., Wang, P., Liu, L., & Yang, J. (2022). RPC: a large-scale and fine-grained retail product checkout dataset. Science China Information Sciences, 65(9), 2 pages.
Scopus20 WoS52022 Zhou, Y., Song, X., Zhang, Y., Liu, F., Zhu, C., & Liu, L. (2022). Feature Encoding With Autoencoders for Weakly Supervised Anomaly Detection. IEEE Transactions on Neural Networks and Learning Systems, 33(6), 2454-2465.
Scopus76 Europe PMC62022 Zhuang, B., Shen, C., Tan, M., Chen, P., Liu, L., & Reid, I. (2022). Structured Binary Neural Networks for Image Recognition. INTERNATIONAL JOURNAL OF COMPUTER VISION, 130(9), 22 pages.
Scopus8 WoS32021 Zhuang, B., Tan, M., Liu, J., Liu, L., Reid, I., & Shen, C. (2021). Effective Training of Convolutional Neural Networks with Low-bitwidth Weights and Activations. IEEE Transactions on Pattern Analysis and Machine Intelligence, 44(10), 6140-6152.
Scopus20 WoS82021 Peng, D., Lei, Y., Liu, L., Zhang, P., & Liu, J. (2021). Global and Local Texture Randomization for Synthetic-to-Real Semantic Segmentation. IEEE Transactions on Image Processing, 30, 6594-6608.
Scopus57 WoS102021 Su, H., Wang, P., Liu, L., Li, H., Li, Z., & Zhang, Y. (2021). Where to Look and How to Describe: Fashion Image Retrieval with an Attentional Heterogeneous Bilinear Network. IEEE Transactions on Circuits and Systems for Video Technology, 31(8), 3254-3265.
Scopus18 WoS102021 Lu, W., Gong, D., Fu, K., Sun, X., Diao, W., & Liu, L. (2021). Boundarymix: Generating pseudo-training images for improving segmentation with scribble annotations. Pattern Recognition, 117, 107924.
Scopus7 WoS42021 Zhang, J., Liu, L., Wang, P., & Zhang, J. (2021). Exploring the auxiliary learning for long-tailed visual recognition. Neurocomputing, 449, 303-314.
Scopus7 WoS52021 Kang, L., Liu, J., Liu, L., Zhou, Z., & Ye, D. (2021). Semi-supervised emotion recognition in textual conversation via a context-augmented auxiliary training task. Information Processing and Management, 58(6), 1-13.
Scopus8 WoS22021 Shu, Y., Li, Q., Liu, L., & Xu, G. (2021). Semi-supervised Adversarial Learning for Attribute-Aware Photo Aesthetic Assessment. IEEE Transactions on Multimedia, 26, 1-11.
Scopus72021 Lei, Y., Liu, Y., Zhang, P., & Liu, L. (2021). Towards using count-level weak supervision for crowd counting. Pattern Recognition, 109, 1-13.
Scopus80 WoS462020 Zhang, L., Wang, P., Liu, L., Shen, C., Wei, W., Zhang, Y., & van den Hengel, A. (2020). Towards Effective Deep Embedding for Zero-Shot Learning. IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 30(9), 2843-2852.
Scopus60 WoS282020 Abbasnejad, M. E., Shi, Q., van den Hengel, A., & Liu, L. (2020). GADE: A Generative Adversarial Approach to Density Estimation and its Applications. International Journal of Computer Vision, 128(10-11), 2731-2743.
Scopus2 WoS22020 Jiang, S., Lu, X., Lei, Y., & Liu, L. (2020). Mask-Aware Networks for Crowd Counting. IEEE Transactions on Circuits and Systems for Video Technology, 30(9), 3119-3129.
Scopus302020 Gou, Y., Lei, Y., Liu, L., Zhang, P., & Peng, X. (2020). A Dynamic Parameter Enhanced Network for distant supervised relation extraction. Knowledge-Based Systems, 197, 1-12.
Scopus142020 Chen, Y., Shen, C., Chen, H., Wei, X. S., Liu, L., & Yang, J. (2020). Adversarial learning of structure-aware fully convolutional networks for landmark localization. IEEE Transactions on Pattern Analysis and Machine Intelligence, 42(7), 1654-1669.
Scopus20 WoS10 Europe PMC12020 Zhang, L., Wang, P., Shen, C., Liu, L., Wei, W., Zhang, Y., & van den Hengel, A. (2020). Adaptive importance learning for improving lightweight image super-resolution network. International Journal of Computer Vision, 128(2), 479-499.
Scopus26 WoS252020 Zhuang, B., Liu, L., Tan, M., Shen, C., & Reid, I. (2020). Training quantized neural networks with a full-precision auxiliary module. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 1485-1494.
Scopus54 WoS272019 Teney, D., Wang, P., Cao, J., Liu, L., Shen, C., & Hengel, A. V. D. (2019). V-PROM: A Benchmark for Visual Reasoning Using Visual Progressive Matrices.. CoRR, abs/1907.12271, 12071-12078.
WoS42019 Wei, X. S., Wang, P., Liu, L., Shen, C., & Wu, J. (2019). Piecewise Classifier Mappings: Learning Fine-Grained Learners for Novel Categories with Few Examples. IEEE Transactions on Image Processing, 28(12), 6116-6125.
Scopus115 WoS56 Europe PMC32019 Wang, P., Liu, L., Shen, C., & Shen, H. T. (2019). Order-aware convolutional pooling for video based action recognition. Pattern Recognition, 91, 357-365.
Scopus25 WoS212019 Lei, Y., Zhou, Z., Zhang, P., Guo, Y., Ma, Z., & Liu, L. (2019). Deep point-to-subspace metric learning for sketch-based 3D shape retrieval. Pattern Recognition, 96, 106981-1-106981-13.
Scopus38 WoS252018 Chen, Z., Liu, L., Sa, I., Ge, Z., & Chli, M. (2018). Learning Context Flexible Attention Model for Long-Term Visual Place Recognition. IEEE Robotics and Automation Letters, 3(4), 4015-4022.
Scopus882017 Li, Y., Liu, L., Shen, C., & Hengel, A. (2017). Mining Mid-level Visual Patterns with Deep CNN Activations. International Journal of Computer Vision, 121(3), 344-364.
Scopus37 WoS242017 Liu, L., Wang, P., Shen, C., Wang, L., Van Den Hengel, A., Wang, C., & Shen, H. T. (2017). Compositional model based Fisher vector coding for image classification. IEEE Transactions on Pattern Analysis and Machine Intelligence, 39(12), 2335-2348.
Scopus56 WoS37 Europe PMC42017 Wang, L., Liu, L., & Zhou, L. (2017). A graph-embedding approach to hierarchical visual word mergence. IEEE Transactions on Neural Networks and Learning Systems, 28(2), 308-320.
Scopus5 WoS62017 Qiao, R., Liu, L., Shen, C., & van den Hengel, A. (2017). Learning discriminative trajectorylet detector sets for accurate skeleton-based action recognition. Pattern Recognition, 66, 202-212.
Scopus51 WoS432016 Liu, L., Shen, C., & van den Hengel, A. (2016). Cross-convolutional-layer pooling for image recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence, 39(11), 2305-2313.
Scopus72 WoS54 Europe PMC62016 Zhou, L., Wang, L., Liu, L., Ogunbona, P., & Shen, D. (2016). Learning discriminative Bayesian networks from high-dimensional continuous neuroimaging data. IEEE Transactions on Pattern Analysis and Machine Intelligence, 38(11), 2269-2283.
Scopus272016 Wang, P., Cao, Y., Shen, C., Liu, L., & Shen, H. T. (2016). Temporal pyramid pooling based convolutional neural network for action recognition. IEEE Transactions on Circuits and Systems for Video Technology, 27(99), 1-8.
Scopus111 WoS882016 Liu, L., Wang, L., & Shen, C. (2016). A generalized probabilistic framework for compact codebook creation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 38(2), 224-237.
Scopus3 WoS22015 Wang, C., Wang, L., & Liu, L. (2015). Density maximization for improving graph matching with its applications. IEEE Transactions on Image Processing, 24(7), 2110-2123.
Scopus12 WoS8 Europe PMC12014 Wang, L., Zhou, L., Shen, C., Liu, L., & Liu, H. (2014). A hierarchical word-merging algorithm with class separability measure. IEEE Transactions on Pattern Analysis and Machine Intelligence, 36(3), 417-435.
Scopus13 WoS9 Europe PMC12013 Liu, X., Yin, J., Wang, L., Liu, L., Liu, J., Hou, C., & Zhang, J. (2013). An adaptive approach to learning optimal neighborhood kernels. IEEE Transactions on Cybernetics, 43(1), 371-384.
Scopus232012 Liu, X., Wang, L., Yin, J., & Liu, L. (2012). Incorporation of radius-info can be simple with SimpleMKL. Neurocomputing, 89, 30-38.
Scopus202008 Liu, L. Q., Fu, Z. Z., Qian, W., Deng, Z. Q., & Xie, W. (2008). Small target detection based on small target isolation degree. Guangdian Gongcheng/Opto-Electronic Engineering, 35(12). 2008 Qian, W., Fu, Z. Z., Liu, L. Q., Deng, Z. Q., & Xie, W. (2008). Voting-strategy-based approach to image registration. Guangdian Gongcheng/Opto-Electronic Engineering, 35(10), 86-91.
Scopus3- Qiao, R., Liu, L., Shen, C., & Hengel, A. V. D. (n.d.). Visually Aligned Word Embeddings for Improving Zero-shot Learning. -
Book Chapters
Year Citation 2014 Wang, L., Liu, L., Zhou, L., & Chan, K. L. (2014). Application of SVMs to the bag-of-features model: A kernel perspective. In Support Vector Machines Applications (Vol. 9783319023007, pp. 155-189). Springer International Publishing.
DOI Scopus32014 Zhou, L., Wang, L., Liu, L., Ogunbona, P., & Shen, D. (2014). Support vector machines for neuroimage analysis: Interpretation from discrimination. In Support Vector Machines Applications (Vol. 9783319023007, pp. 191-220). Springer International Publishing.
DOI Scopus10 -
Conference Papers
Year Citation 2025 Wang, Z., Liu, L., Weston, S. R. F., Tian, S., & Li, P. (2025). On Learning Discriminative Features from Synthesized Data for Self-supervised Fine-Grained Visual Recognition. In Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) Vol. 15147 LNCS (pp. 101-117). Milan, Italy: Springer Nature Switzerland.
DOI2024 Zhou, Z., Xu, H. -M., Shu, Y., & Liu, L. (2024). Unlocking the Potential of Pre-Trained Vision Transformers for Few-Shot Semantic Segmentation through Relationship Descriptors. In 2024 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) Vol. 33 (pp. 3817-3827). Seattle, WA, USA: IEEE.
DOI2024 Phan, V. M. H., Xie, Y., Qi, Y., Liu, L., Liu, L., Zhang, B., . . . Verjans, J. W. (2024). Decomposing Disease Descriptions for Enhanced Pathology Detection: A Multi-Aspect Vision-Language Pre-Training Framework.. In CVPR (pp. 11492-11501). Seattle, WA, USA: IEEE. 2024 Li, Y., Wang, Z., Liu, Y., Wang, L., Liu, L., & Zhou, L. (2024). KARGEN: Knowledge-Enhanced Automated Radiology Report Generation Using Large Language Models. In Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) Vol. 15005 LNCS (pp. 382-392). Marrakesh: Springer Science and Business Media Deutschland GmbH.
DOI Scopus12024 Zou, J., Guo, M., Tian, Y., Lin, Y., Cao, H., Liu, L., . . . Shi, J. Q. (2024). Semantic Role Labeling Guided Out-of-distribution Detection. In 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation, LREC-COLING 2024 - Main Conference Proceedings (pp. 14641-14651). Online: European Language Resources Association (ELRA). 2024 Lin, Y., Xu, H., Liu, L., Zou, J., & Shi, J. (2024). Revisiting Image Reconstruction for Semi-supervised Semantic Segmentation. In 2023 International Conference on Digital Image Computing: Techniques and Applications, DICTA 2023 (pp. 32-40). Online: IEEE.
DOI Scopus12024 Chen, L., Zhang, Y., Song, Y., Van Den Hengel, A., & Liu, L. (2024). Domain Generalization via Rationale Invariance. In Proceedings of the IEEE International Conference on Computer Vision (pp. 1751-1760). Paris, France: IEEE.
DOI Scopus92023 Jiao, B., Liu, L., Gao, L., Wu, R., Lin, G., Wang, P., & Zhang, Y. (2023). Toward Re-Identifying Any Animal. In Advances in Neural Information Processing Systems Vol. 36 (pp. 12 pages). Online: Neural information processing systems foundation.
Scopus62023 Xue, X., Yu, D., Liu, L., Liu, Y., Tsutsui, S., Li, Y., . . . Shou, M. Z. (2023). Transformer-based Open-world Instance Segmentation with Cross-task Consistency Regularization. In Proceedings of the 31st ACM International Conference on Multimedia (pp. 2507-2515). Online: ACM.
DOI2023 Zou, J., Liu, Y., Qi, Y., Cao, H., Liu, L., & Shi, J. Q. (2023). A Generative Approach for Comprehensive Financial Event Extraction at the Document Level. In ICAIF 2023 - 4th ACM International Conference on AI in Finance (pp. 323-330). Online: Association for Computing Machinery, Inc.
DOI Scopus12023 Xu, H. M., Liu, L., Chen, H., Abbasnejad, E., & Felix, R. (2023). Progressive Feature Adjustment for Semi-supervised Learning from Pretrained Models. In Proceedings - 2023 IEEE/CVF International Conference on Computer Vision Workshops, ICCVW 2023 (pp. 3284-3294). Online: IEEE.
DOI2023 Yang, L., Song, Y., Ren, X., Lyu, C., Wang, Y., Zhuo, J., . . . Zhang, Y. (2023). Out-of-Distribution Generalization in Natural Language Processing: Past, Present, and Future. In EMNLP 2023 - 2023 Conference on Empirical Methods in Natural Language Processing, Proceedings (pp. 4533-4559).
Scopus52023 Zhou, Z., Lei, Y., Zhang, B., Liu, L., & Liu, Y. (2023). ZegCLIP: Towards Adapting CLIP for Zero-shot Semantic Segmentation. In Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition Vol. 2023-June (pp. 11175-11185). Vancouver, BC, Canada: IEEE.
DOI Scopus882023 Chen, L., Zhang, Y., Song, Y., Shan, Y., & Liu, L. (2023). Improved Test-Time Adaptation for Domain Generalization. In Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition Vol. 2023-June (pp. 24172-24182). Online: IEEE.
DOI Scopus282023 Pang, T. Y., Ding, B., Liu, L., & Sergiienko, N. (2023). SHORT-TERM SEA SURFACE ELEVATION PREDICTION USING DEEP LEARNING METHODS. In Proceedings of the International Conference on Offshore Mechanics and Arctic Engineering - OMAE Vol. 5 (pp. 10 pages). Melbourne, Australia: American Society of Mechanical Engineers.
DOI2023 Shu, Y., Van Den Hengel, A., & Liu, L. (2023). Learning Common Rationale to Improve Self-Supervised Representation for Fine-Grained Visual Recognition Problems. In Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition Vol. 2023-June (pp. 11392-11401). Online: IEEE.
DOI Scopus62023 Wang, Q., Liu, L., Jing, C., Chen, H., Liang, G., Wang, P., & Shen, C. (2023). Learning Conditional Attributes for Compositional Zero-Shot Learning. In Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition Vol. 2023-June (pp. 11197-11206). Online: IEEE.
DOI Scopus302023 Wang, Z., Liu, L., Wang, L., & Zhou, L. (2023). METransformer: Radiology Report Generation by Transformer with Multiple Learnable Expert Tokens. In Proceedings / CVPR, IEEE Computer Society Conference on Computer Vision and Pattern Recognition. IEEE Computer Society Conference on Computer Vision and Pattern Recognition Vol. 2023-June (pp. 11558-11567). Vancouver, BC, Canada: IEEE.
DOI Scopus39 WoS22023 Luo, Q., & Liu, L. (2023). Zero-Shot Slot Filling with Slot-Prefix Prompting and Attention Relationship Descriptor. In Proceedings of the AAAI Conference on Artificial Intelligence, AAAI 2023 Vol. 37 (pp. 13344-13352). Washington, DC, USA: PKP/PS. Part of PKP Publsihing Sewrvices Nework.
DOI Scopus22023 Ding, Y., Tian, C., Ding, H., & Liu, L. (2023). The CLIP Model is Secretly an Image-to-Prompt Converter. In A. Oh, T. Neumann, A. Globerson, K. Saenko, M. Hardt, & S. Levine (Eds.), ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 36 (NEURIPS 2023) Vol. 36 (pp. 12 pages). Online: NEURAL INFORMATION PROCESSING SYSTEMS (NIPS). 2022 Xu, H. -M., Liu, L., Bian, Q., & Yang, Z. (2022). Semi-supervised Semantic Segmentation with Prototype-based Consistency Regularization. In S. Koyejo, S. Mohamed, A. Agarwal, D. Belgrave, K. Cho, & A. Oh (Eds.), ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 35 (NEURIPS 2022) (pp. 14 pages). Online: NEURAL INFORMATION PROCESSING SYSTEMS (NIPS). 2022 Xu, H. M., Liu, L., & Abbasnejad, E. (2022). Progressive Class Semantic Matching for Semi-supervised Text Classification. In M. Carpuat, M. -C. De Marneffe, & I. V. Meza Ruiz (Eds.), NAACL 2022 - 2022 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Proceedings of the Conference (pp. 3003-3013). Seattle, Washington & Online: Association for Computational Linguistics.
DOI Scopus92022 Xu, H. M., Chen, H., Liu, L., & Yin, Y. (2022). Dual Decision Improves Open-Set Panoptic Segmentation. In BMVC 2022 - 33rd British Machine Vision Conference Proceedings (pp. 1-13). London, UK: The British Machine Vision Association..
Scopus32022 Yang, L., Liu, H., Liu, L., Zhou, J., Zhang, L., Wang, P., & Zhang, Y. (2022). Pluggable Weakly-Supervised Cross-View Learning for Accurate Vehicle Re-Identification. In ICMR 2022 - Proceedings of the 2022 International Conference on Multimedia Retrieval (pp. 81-89). Online: ACM.
DOI Scopus32022 Xu, H. M., Liu, L., Bian, Q., & Yang, Z. (2022). Semi-supervised Semantic Segmentation with Prototype-based Consistency Regularization. In S. Koyejo, S. Mohamed, A. Agarwal, D. Belgrave, & A. Oh (Eds.), Advances in Neural Information Processing Systems Vol. 35 (pp. 1-18). New Orleans, LA, USA: Curran Associates.
Scopus502022 Chen, L., Zhang, Y., Song, Y., Liu, L., & Wang, J. (2022). Self-supervised Learning of Adversarial Example: Towards Good Generalizations for Deepfake Detection. In Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition Vol. 2022-June (pp. 18689-18698). Online: IEEE.
DOI Scopus122 WoS32022 Jiao, B., Liu, L., Gao, L., Lin, G., Yang, L., Zhang, S., . . . Zhang, Y. (2022). Dynamically Transformed Instance Normalization Network for Generalizable Person Re-Identification. In Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) Vol. 13674 LNCS (pp. 285-301). Online: Springer Nature Switzerland.
DOI Scopus37 WoS62022 Shu, Y., Yu, B., Xu, H., & Liu, L. (2022). Improving Fine-Grained Visual Recognition in Low Data Regimes via Self-boosting Attention Mechanism. In Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) Vol. 13685 LNCS (pp. 449-465). Online: Springer Nature Switzerland.
DOI Scopus20 WoS42022 Zou, J., Cao, H., Liu, Y., Liu, L., Abbasnejad, E., & Shi, J. Q. (2022). UOA at the FinNLP-2022 ERAI Task: Leveraging the Class Label Description for Financial Opinion Mining. In FinNLP 2022 - 4th Workshop on Financial Technology and Natural Language Processing, Proceedings of the Workshop (pp. 122-126). Online: Association for Computational Linguistics (ACL).
Scopus12022 Zou, J., Cao, H., Liu, L., Lin, Y., Abbasnejad, E., & Shi, J. Q. (2022). Astock: A New Dataset and Automated Stock Trading based on Stock-specific News Analyzing Model. In FinNLP 2022 - 4th Workshop on Financial Technology and Natural Language Processing, Proceedings of the Workshop (pp. 178-186). Online: Association for Computational Linguistics (ACL).
Scopus32022 Chen, L., Zhang, Y., Song, Y., Wang, J., & Liu, L. (2022). OST: Improving Generalization of DeepFake Detection via One-Shot Test-Time Training. In Advances in Neural Information Processing Systems Vol. 35 (pp. 14 pages). Online: Neural information processing systems foundation.
Scopus272021 Luo, Q., Liu, L., Lin, Y., & Zhang, W. (2021). Don't Miss the Labels: Label-semantic Augmented Meta-Learner for Few-Shot Text Classification. In C. Zong, F. Xia, W. Li, & R. Navigli (Eds.), Findings of the Association for Computational Linguistics: ACL-IJCNLP 2021 (pp. 2773-2782). Stroudsburg, PA, USA: Association for Computational Linguistics.
DOI Scopus492021 Gou, Y., Lei, Y., Liu, L., Dai, Y., & Shen, C. (2021). Contextualize Knowledge Bases with Transformer for End-to-end Task-Oriented Dialogue Systems. In Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing (pp. 4300-4310). online: Association for Computational Linguistics.
Scopus112021 Kang, L., Liu, J., Liu, L., & Ye, D. (2021). Label definitions augmented interaction model for legal charge prediction. In Proceedings of the 43rd European Conference on Information Retrieval (ECIR 2021), as published in Lecture Notes in Computer Science Vol. 12656 (pp. 270-283). Cham, Switzerland: Springer.
DOI Scopus52021 Xu, H. M., Liu, L., & Gong, D. (2021). Semi-supervised Learning via Conditional Rotation Angle Estimation. In DICTA 2021 - 2021 International Conference on Digital Image Computing: Techniques and Applications (pp. 1-8). online: IEEE.
DOI Scopus42020 Liu, Y., Liu, L., Zhang, H., Rezatofighi, H., Yan, Q., & Reid, I. D. (2020). Meta Learning with Differentiable Closed-form Solver for Fast Video Object Segmentation.. In IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (pp. 8439-8446). Las Vegas, NV, USA (Virtual): IEEE.
DOI Scopus72020 Liao, Z., Liu, L., Wu, Q., Teney, D., Shen, C., Van Den Hengel, A., & Verjans, J. (2020). Medical data inquiry using a question answering model. In Proceedings: 2020 IEEE 17th International Symposium on Biomedical Imaging (ISBI 2020) Vol. 2020-April (pp. 1490-1493). online: IEEE.
DOI Scopus8 WoS32020 Teney, D., Wang, P., Cao, J., Liu, L., Shen, C., & Van Den Hengel, A. (2020). V-PROM: A benchmark for visual reasoning using visual progressive matrices. In Proceedings of the Thirty-Fourth AAAI Conference on Artificial Intelligence (AAAI-20) Vol. 34 (pp. 12071-12078). Palo Alto, CA: Association for the Advancement of Artificial Intelligence.
DOI Scopus182020 Liu, Y., Liu, L., Wang, P., Zhang, P., & Lei, Y. (2020). Semi-supervised Crowd Counting via Self-training on Surrogate Tasks. In Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) Vol. 12360 LNCS (pp. 242-259). Switzerland: Springer International Publishing.
DOI Scopus502020 Wang, X., Liu, L., & Shi, Q. (2020). Harmonic Structure-Based Neural Network Model for Music Pitch Detection. In Proceedings - 19th IEEE International Conference on Machine Learning and Applications, ICMLA 2020 (pp. 87-92). online: IEEE.
DOI Scopus52020 Wang, X., Liu, L., & Shi, Q. (2020). Enhancing Piano Transcription by Dilated Convolution. In Proceedings - 19th IEEE International Conference on Machine Learning and Applications, ICMLA 2020 (pp. 1446-1453). online: IEEE.
DOI Scopus42019 Abbasnejad, M. E., Shi, Q., Van Den Hengel, A., & Liu, L. (2019). A generative adversarial density estimator. In Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition Vol. 2019-June (pp. 10774-10783). online: IEEE.
DOI Scopus15 WoS62019 Wang, X., Liu, L., & Shi, Q. (2019). Exploiting stereo sound channels to boost performance of neural network-based music transcription. In Proceedings - 18th IEEE International Conference on Machine Learning and Applications, ICMLA 2019 (pp. 1353-1358). online: IEEE.
DOI Scopus32019 Gong, D., Liu, L., Le, V., Saha, B., Mansour, M. R., Venkatesh, S., & Van Den Hengel, A. (2019). Memorizing normality to detect anomaly: Memory-augmented deep autoencoder for unsupervised anomaly detection. In Proceedings of the IEEE International Conference on Computer Vision Vol. 2019-October (pp. 1705-1714). online: IEEE.
DOI Scopus1279 WoS6832019 Zhuang, B., Shen, C., Tan, M., Liu, L., & Reid, I. (2019). Structured binary neural networks for accurate image classification and semantic segmentation. In Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition Vol. 2019-June (pp. 413-422). online: IEEE.
DOI Scopus124 WoS812019 Wei, X. S., Zhang, C. L., Liu, L., Shen, C., & Wu, J. (2019). Coarse-to-fine: A RNN-based hierarchical attention model for vehicle re-identification. In Proceedings of the 14th Asian Conference on Computer Vision (ACCV 2018), as published in Lecture Notes in Computer Science Vol. 11362 (pp. 575-591). Switzerland: Springer.
DOI Scopus30 WoS212018 Yang, J., Gong, D., Liu, L., & Shi, Q. (2018). Seeing Deeply and Bidirectionally: A Deep Learning Approach for Single Image Reflection Removal. In Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) Vol. 11207 LNCS (pp. 675-691). Switzerland: Springer Nature.
DOI Scopus18 WoS332018 Zhuang, B., Shen, C., Tan, M., Liu, L., & Reid, I. (2018). Towards effective low-bitwidth convolutional neural networks. In Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR 2018) (pp. 7920-7928). Piscataway, NJ.: IEEE.
DOI Scopus195 WoS1092018 Milan, A., Pham, T., Vijay, K., Morrison, D., Tow, A. W., Liu, L., . . . Leitner, J. (2018). Semantic segmentation from limited training data. In 2018 IEEE International Conference on Robotics and Automation (ICRA) Vol. abs/1709.07665 (pp. 1908-1915). online: IEEE.
DOI Scopus29 WoS192017 Wang, P., Liu, L., Shen, C., Huang, Z., van den Hengel, A., & Shen, H. (2017). Multi-attention network for one shot learning. In Proceedings of the 30th IEEE Conference on Computer Vision and Pattern Recognition (CVPR 2017) Vol. 2017-January (pp. 6212-6220). Online: IEEE.
DOI Scopus79 WoS442017 Li, Y., Lin, G., Zhuang, B., Liu, L., Shen, C., & van den Hengel, A. (2017). Sequential person recognition in photo albums with a recurrent network. In Proceedings: 30th IEEE Conference on Computer Vision and Pattern Recognition Vol. 2017-January (pp. 5660-5668). online: IEEE.
DOI Scopus24 WoS82017 Chen, Y., Shen, C., Wei, X., Liu, L., & Yang, J. (2017). Adversarial PoseNet: a structure-aware convolutional network for human pose estimation. In Proceedings of the IEEE International Conference on Computer Vision (ICCV 2017) Vol. 2017 (pp. 1221-1230). Piscataway, NJ: IEEE.
DOI Scopus277 WoS922017 Zhuang, B., Liu, L., Shen, C., & Reid, I. (2017). Towards context-aware interaction recognition for visual relationship detection. In Proceedings 2017 IEEE International Conference on Computer Vision ICCV 2017 Vol. 2017-October (pp. 589-598). Venice, Italy: IEEE.
DOI Scopus129 WoS932017 Zhuang, B., Liu, L., Li, Y., Shen, C., & Reid, I. (2017). Attend in groups: a weakly-supervised deep learning framework for learning from web data. In Proceedings of the 30th IEEE Conference on Computer Vision and Pattern Recognition (CVPR 2017) Vol. 2017-January (pp. 2915-2924). Online: IEEE.
DOI Scopus49 WoS732017 Gong, D., Yang, J., Liu, L., Zhang, Y., Reid, I., Shen, C., . . . Shi, Q. (2017). From motion blur to motion flow: a deep learning solution for removing heterogeneous motion blur. In Proceedings of the 30th IEEE Conference on Computer Vision and Pattern Recognition (CVPR 2017) Vol. 2017-January (pp. 3806-3815). Online: IEEE.
DOI Scopus320 WoS1672017 Chen, Z., Jacobson, A., Sunderhauf, N., Upcroft, B., Liu, L., Shen, C., . . . Milford, M. (2017). Deep Learning Features at Scale for Visual Place Recognition. In Proceedings - IEEE International Conference on Robotics and Automation (pp. 3223-3230). Online: IEEE.
DOI Scopus2822017 Teney, D., Liu, L., & van den Hengel, A. (2017). Graph-structured representations for visual question answering. In Proceedings of the 30th IEEE Conference on Computer Vision and Pattern Recognition (CVPR 2017) Vol. 2017-January (pp. 3233-3241). Online: IEEE.
DOI Scopus274 WoS1802017 Shen, T., Lin, G., Liu, L., Shen, C., & Reid, I. (2017). Weakly supervised semantic segmentation based on web image co-segmentation. In British Machine Vision Conference 2017, BMVC 2017 (pp. 1-12). online: BMVC.
Scopus272016 Li, Y., Liu, L., Shen, C., & van den Hengel, A. (2016). Image co-localization by mimicking a good detector’s confidence score distribution. In B. Leibe, J. Matas, N. Sebe, & M. Welling (Eds.), Proceedings of the 14th European Conference on Computer Vision, Part II Vol. 9906 LNCS (pp. 19-34). Amsterdam, Netherlands: Springer International Publishing.
DOI Scopus37 WoS252016 Wang, P., Liu, L., Shen, C., Huang, Z., Van Den Hengel, A., & Shen, H. (2016). What's wrong with that object? Identifying images of unusual objects by modelling the detection score distribution. In Proceedings of the 29th IEEE Computer Society Conference on Computer Vision and Pattern Recognition Vol. 2016-December (pp. 1573-1581). Las Vegas, NV: IEEE.
DOI Scopus10 WoS72016 Qiao, R., Liu, L., Shen, C., & van den Hengel, A. (2016). Less is more: zero-shot learning from online textual documents with noise suppression. In Proceedings of the 29th IEEE Computer Society Conference on Computer Vision and Pattern Recognition Vol. 2016-December (pp. 2249-2257). Las Vegas, NV: IEEE.
DOI Scopus152 WoS1032016 Wu, Q., Shen, C., Liu, L., Dick, A., & Van Den Hengel, A. (2016). What value do explicit high level concepts have in vision to language problems?. In Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition Vol. 2016-December (pp. 203-212). Las Vegas, NV: IEEE.
DOI Scopus413 WoS2782016 Ge, Z., McCool, C., Sanderson, C., Wang, P., Liu, L., Reid, I., & Corke, P. (2016). Exploiting temporal information for DCNN-based fine-grained object classification. In A. Liew, B. Lovell, C. Fookes, J. Zhou, Y. Gao, M. Blumenstein, & Z. Wang (Eds.), Proceedings of the 2016 International Conference on Digital Image Computing: Techniques and Applications (DICTA 2016) (pp. 442-447). Gold Coast, AUSTRALIA: IEEE.
DOI Scopus13 WoS52015 Li, Y., Liu, L., Shen, C., & Van Den Hengel, A. (2015). Mid-level deep pattern mining. In Proceedings of the 2015 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Vol. 07-12-June-2015 (pp. 971-980). Boston, MA: IEEE.
DOI Scopus77 WoS482015 Liu, L., Shen, C., & van den Hengel, A. (2015). The treasure beneath convolutional layers: cross-convolutional-layer pooling for image classification. In Proceedings of the 2015 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Vol. 07-12-June-2015 (pp. 4749-4757). Boston, MA: IEEE.
DOI Scopus163 WoS1012014 Liu, L., Shen, C., Wang, L., Van Den Hengel, A., & Wang, C. (2014). Encoding high dimensional local features by sparse coding based fisher vectors. In Proceedings of the 27th International Conference on Neural Information Processing Systems Vol. 2 (pp. 1143-1151). Online: MIT Press.
Scopus68 WoS12014 Wang, C., Wang, L., & Liu, L. (2014). Progressive mode-seeking on graphs for sparse feature matching. In Proceedings of the 13th European Conference on Computer Vision Vol. 8690 LNCS (pp. 788-802). Zurich, Switzerland: Springer.
DOI Scopus462014 Zhou, L., Wang, L., Liu, L., Ogunbona, P., & Shen, D. (2014). Max-margin based learning for discriminative Bayesian network from neuroimaging data. In Proceedings of the 17th International Conference on Medical Image Computing and Computer-Assisted Intervention Vol. 17 (pp. 321-328). Boston, MA, USA: Springer.
DOI Scopus22014 Liu, L., & Wang, L. (2014). HEp-2 cell image classification with multiple linear descriptors. In Pattern Recognition Vol. 47 (pp. 2400-2408). Elsevier BV.
DOI Scopus222013 Wang, C., Wang, L., & Liu, L. (2013). Improving graph matching via density maximization. In 2013 IEEE International Conference on Computer Vision (ICCV) (pp. 3424-3431). USA: IEEE.
DOI Scopus102013 Liu, L., & Wang, L. (2013). A scalable unsupervised feature merging approach to efficient dimensionality reduction of high-dimensional visual data. In 2013 IEEE International Conference on Computer Vision (ICCV) (pp. 3008-3015). USA: IEEE.
DOI Scopus102013 Zhang, J., Wang, L., Liu, L., Zhou, L., & Li, W. (2013). Accelerating the divisive information-theoretic clustering of visual words. In 2013 International Conference on Digital Image Computing: Techniques and Applications (DICTA) (pp. 1-8). USA: IEEE.
DOI2013 Zhou, L., Wang, L., Liu, L., Ogunbona, P., & Shen, D. (2013). Discriminative brain effective connectivity analysis for Alzheimer's disease: a kernel learning approach upon sparse Gaussian Bayesian network. In 2013 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (pp. 2243-2250). USA: IEEE.
DOI Scopus182012 Liu, L., & Wang, L. (2012). What has my classifier learned? Visualizing the classification rules of bag-of-feature model by support region detection. In 2012 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (pp. 3586-3593). USA: IEEE.
DOI Scopus182011 Liu, L., & Wang, L. (2011). Exploring latent class information for image retrieval using the Bag-of-Feature model. In Proceedings of the 19th ACM international conference on Multimedia (pp. 1405-1408). New York; USA: ACM.
DOI2011 Liu, L., Wang, L., & Liu, X. (2011). In defense of soft-assignment coding. In 2011 IEEE International Conference on Computer Vision (ICCV) (pp. 2486-2493). USA: IEEE.
DOI Scopus4532011 Liu, L., Wang, L., & Shen, C. (2011). A generalized probabilistic framework for compact codebook creation. In Proceedings IEEE Conference on Computer Vision and Pattern Recognition (pp. 1537-1544). USA: IEEE.
DOI Scopus9 WoS62010 Zhizhong, F., Lingqiao, L., Haiying, X., & Jin, X. (2010). Human computer interaction research and realization based on leg movement analysis. In 2010 International Conference on Apperceiving Computing and Intelligence Analysis, ICACIA 2010 - Proceeding (pp. 421-426). IEEE.
DOI Scopus52008 Lingqiao, L., Zhizhong, F., Jingjing, X., & Wei, Q. (2008). Edge mapping: A new motion estimation method for video stabilization. In Proceedings - International Symposium on Computer Science and Computational Technology, ISCSCT 2008 Vol. 2 (pp. 440-444). IEEE.
DOI Scopus92008 Qian, W., Fu, Z., Liu, L., & Deng, Z. (2008). Image registration based on feature extraction and voting strategy. In 2008 International Conference on Communications, Circuits and Systems Proceedings, ICCCAS 2008 (pp. 706-709). IEEE.
DOI Scopus2
DE170101259 (ARC Discovery Early Career Researcher Award 17): Zero-shot
and few-shot learning with deep knowledge transfer
DP160103710 (ARC Discovery Project 16) : Whole image understanding by
convolutions on graphs
Introduction to Statistic Machine Learning, Puzzle based Learning, Big Data Analysis and Project, Artificial Intelligence
-
Current Higher Degree by Research Supervision (University of Adelaide)
Date Role Research Topic Program Degree Type Student Load Student Name 2024 Principal Supervisor Long-tailed visual recognition in an open world Doctor of Philosophy Doctorate Full Time Mr Qing Zhong 2024 Principal Supervisor Novel View Synthesis in Real-World Scenarios Doctor of Philosophy Doctorate Full Time Mr Jiatong Xia 2024 Co-Supervisor Data-driven physically plausible dexterous manipulation Doctor of Philosophy Doctorate Full Time Mr King Hang Wong 2023 Principal Supervisor 3D indoor Scene Reconstruction Doctor of Philosophy Doctorate Full Time Mr Wenbo Zhang 2023 Co-Supervisor Implement a scalable, automated workflow for transposon annotation as part of the Ruminant T2T genome sequencing consortium Doctor of Philosophy Doctorate Full Time Miss Luan Zhong 2023 Principal Supervisor Low-supervision Learning via Knowledge Transfer from Pretrained Models Doctor of Philosophy Doctorate Full Time Mr Zicheng Duan 2023 Principal Supervisor Generative AI: Video Generation from text Doctor of Philosophy Doctorate Full Time Mr Ankit Yadav 2022 Principal Supervisor Improving the Few-Shot Generalization of Data-to-Text Generation Models Doctor of Philosophy Doctorate Full Time Mr Xuan Ren 2021 Co-Supervisor Data efficient learning Doctor of Philosophy Doctorate Full Time Mr Yuhao Lin -
Past Higher Degree by Research Supervision (University of Adelaide)
Date Role Research Topic Program Degree Type Student Load Student Name 2023 - 2024 Principal Supervisor Neural Radiance Fields in Real-World Scenarios Master of Philosophy Master Full Time Mr Jiatong Xia 2021 - 2024 Principal Supervisor Low-Shot Learning based on Pre-trained Model Doctor of Philosophy Doctorate Full Time Dr Ziqin Zhou 2021 - 2024 Principal Supervisor Domain Generalization and its Application in Deepfake Detection Doctor of Philosophy Doctorate Full Time Mr Liang Chen 2020 - 2024 Principal Supervisor Enhancing Model Generalization in Weakly Supervised and Low-Shot Transfer Learning Scenarios Master of Philosophy Master Part Time Mr Avraham Nisel Chapman 2020 - 2023 Co-Supervisor Deep Learning for Multipitch Detection and Melody Extraction Doctor of Philosophy Doctorate Part Time Mr Xian Wang 2020 - 2024 Co-Supervisor Convolutional Neural Network for Analysing Gravitational Wave Signals Master of Philosophy Master Full Time Miss Kendall Louise Jenner 2019 - 2023 Co-Supervisor Machine Learning and Natural Language Processing in Stock Prediction Doctor of Philosophy Doctorate Full Time Mr Jinan Zou 2018 - 2019 Co-Supervisor High-performance Object Detection and Tracking using Deep Learning Master of Philosophy Master Full Time Mr Xinyu Wang 2018 - 2022 Principal Supervisor Deep Semi-Supervised Learning Methodologies and Applications Doctor of Philosophy Doctorate Full Time Mr Hai-Ming Xu 2018 - 2021 Co-Supervisor Deep Learning for 2D and 3D Scene Understanding Doctor of Philosophy Doctorate Full Time Mr Yu Liu 2017 - 2019 Co-Supervisor Context Learning and Weakly Supervised Learning for Semantic Segmentation Doctor of Philosophy Doctorate Full Time Mr Tong Shen 2017 - 2020 Co-Supervisor Efficient Scene Parsing with Imagery and Point Cloud Data Doctor of Philosophy Doctorate Full Time Mr Tong He 2017 - 2021 Co-Supervisor Deep Learning for Image Deblurring and Reflection Removal Doctor of Philosophy Doctorate Full Time Mr Jie Yang 2014 - 2018 Co-Supervisor Mid-level Representations for Action Recognition and Zero-shot Learning Doctor of Philosophy Doctorate Full Time Mr Ruizhi Qiao 2014 - 2018 Co-Supervisor Deep Learning Based RGB-D Vision Tasks Doctor of Philosophy Doctorate Full Time Mr Yuanzhouhan Cao
Connect With Me
External Profiles