Associate Professor Lingqiao Liu
Senior Lecturer
School of Computer and Mathematical Sciences
Faculty of Sciences, Engineering and Technology
Eligible to supervise Masters and PhD - email supervisor to discuss availability.
Dr. Lingqiao Liu is an Associate Professor and was an ARC DECRA Fellow in School of Computer Science, University of Adelaide, Australia. He obtained his P.h.D. from the Australian National University in 2014. He is a recipient of ARC DECRA (Discovery Early Career Researcher Award) award in 2016 and the University of Adelaide Research Fellowship award in 2016. He has a broad research interest in machine learning, computer vision and natural language processing. More information about me can be found in my home page
-
Journals
Year Citation 2025 Li, Y., Pang, G., Suo, W., Jing, C., Xi, Y., Liu, L., . . . Wang, P. (2025). CoLeCLIP: Open-Domain Continual Learning via Joint Task Prompt and Vocabulary Learning. IEEE Transactions on Neural Networks and Learning Systems, 36(8), 1-15.
2025 Shu, Y., Liu, Y., Cao, X., Chen, Q., Zhang, B., Zhou, Z., . . . Liu, L. (2025). Seeing Beyond Labels: Source-Free Domain Adaptation via Hypothesis Consolidation of Prediction Rationale. Transactions on Machine Learning Research, 2025-June. 2025 Jiao, B., Liu, L., Gao, L., Oliver Wu, D., Lin, G., Wang, P., & Zhang, Y. (2025). Generalizable Person Re-Identification From a 3D Perspective: Addressing Unpredictable Viewpoint Changes. IEEE Transactions on Information Forensics and Security, 20, 6576-6591.
Scopus1 WoS12025 Zhang, Y., Chang, R., Mao, W., Zuo, J., Zhanga, W. E., & Liu, L. (2025). Low-Cost iOS-Based Automated Detection of Under-Construction Interior Drywalls: An Exploratory Study. Journal of Construction Engineering and Management, 151(10), 18 pages.
2025 Wang, Q., Liu, L., Jing, C., Wang, P., Zhang, Y., & Shen, C. (2025). Learning Dual-Stream Conditional Concepts in Compositional Zero-Shot Learning. IEEE Transactions on Pattern Analysis and Machine Intelligence, 47(11), 1-18.
2024 Lin, W. D., Deng, Y. Y., Gao, Y., Wang, N., Liu, L. Q., Zhang, L., & Wang, P. (2024). CAT: A Simple yet Effective Cross-Attention Transformer for One-Shot Object Detection. Journal of Computer Science and Technology, 39(2), 460-471.
2024 Zhang, Y., Chang, R., Mao, W., Zuo, J., Liu, L., & Han, Y. (2024). Challenges of Automating Interior Construction Progress Monitoring. Journal of Construction Engineering and Management, 150(9), 16 pages.
Scopus2 WoS12024 Liu, Y., Li, Y., Wang, Z., Liang, X., Liu, L., Wang, L., . . . Zhou, L. (2024). A systematic evaluation of GPT-4V's multimodal capability for chest X-ray image analysis. Meta-Radiology, 2(4), 100099.
Scopus9 WoS92024 Xie, Y., Zhang, J., Liu, L., Wang, H., Ye, Y., Johan, V., & Xia, Y. (2024). ReFs: A hybrid pre-training paradigm for 3D medical image segmentation. Medical Image Analysis, 91, 103023.
Scopus8 WoS6 Europe PMC22024 Chen, L., Zhang, Y., Song, Y., Zhang, Z., & Liu, L. (2024). A Causal Inspired Early-Branching Structure for Domain Generalization. International Journal of Computer Vision, 132(9), 4052-4072.
Scopus6 WoS52023 Wu, L. Y., Liu, L., Wang, Y., Zhang, Z., Boussaid, F., Bennamoun, M., & Xie, X. (2023). Learning Resolution-Adaptive Representations for Cross-Resolution Person Re-Identification. IEEE Transactions on Image Processing, 32, 4800-4811.
Scopus31 WoS26 Europe PMC32023 Shi, X., Qiao, Y., Wu, Q., Liu, L., & Dayoub, F. (2023). Improving Online Source-free Domain Adaptation for Object Detection by
Unsupervised Data Acquisition.2023 Ding, Y., Liu, L., Tian, C., Zhang, X., & Tian, X. (2023). Balanced image captioning with task-aware decoupled learning and fusion. Neurocomputing, 538, 12 pages.
Scopus32023 Wang, Z., Liu, L., Wang, L., & Zhou, L. (2023). R2GenGPT: Radiology Report Generation with frozen LLMs. Meta-Radiology, 1(3), 7 pages.
Scopus79 WoS352022 Liu, D., Wu, L., Zheng, F., Liu, L., & Wang, M. (2022). Verbal-Person Nets: Pose-Guided Multi-Granularity Language-to-Person Generation. IEEE Transactions on Neural Networks and Learning Systems, PP(11), 1-13.
Scopus28 WoS28 Europe PMC32022 Wang, X., Liu, L., & Shi, J. Q. (2022). Computationally Efficient Dilated Convolutional Model for Melody Extraction. IEEE Signal Processing Letters, 29, 1599-1603.
Scopus4 WoS22022 Shu, Y., Li, Q., Liu, L., & Xu, G. (2022). Privileged multi-task learning for attribute-aware aesthetic assessment. Pattern Recognition, 132, 1-11.
Scopus10 WoS102022 Yang, L., Wang, Y., Liu, L., Wang, P., & Zhang, Y. (2022). Center Prediction Loss for Re-identification. Pattern Recognition, 132, 1-11.
Scopus5 WoS42022 Wei, X. S., Cui, Q., Yang, L., Wang, P., Liu, L., & Yang, J. (2022). RPC: a large-scale and fine-grained retail product checkout dataset. Science China Information Sciences, 65(9), 2 pages.
Scopus24 WoS182022 Zhou, Y., Song, X., Zhang, Y., Liu, F., Zhu, C., & Liu, L. (2022). Feature Encoding With Autoencoders for Weakly Supervised Anomaly Detection. IEEE Transactions on Neural Networks and Learning Systems, 33(6), 2454-2465.
Scopus110 Europe PMC172022 Zhuang, B., Shen, C., Tan, M., Chen, P., Liu, L., & Reid, I. (2022). Structured Binary Neural Networks for Image Recognition. INTERNATIONAL JOURNAL OF COMPUTER VISION, 130(9), 22 pages.
Scopus8 WoS82021 Zhuang, B., Tan, M., Liu, J., Liu, L., Reid, I., & Shen, C. (2021). Effective Training of Convolutional Neural Networks with Low-bitwidth Weights and Activations. IEEE Transactions on Pattern Analysis and Machine Intelligence, 44(10), 6140-6152.
Scopus27 WoS22 Europe PMC52021 Peng, D., Lei, Y., Liu, L., Zhang, P., & Liu, J. (2021). Global and Local Texture Randomization for Synthetic-to-Real Semantic Segmentation. IEEE Transactions on Image Processing, 30, 6594-6608.
Scopus79 WoS69 Europe PMC62021 Su, H., Wang, P., Liu, L., Li, H., Li, Z., & Zhang, Y. (2021). Where to Look and How to Describe: Fashion Image Retrieval with an Attentional Heterogeneous Bilinear Network. IEEE Transactions on Circuits and Systems for Video Technology, 31(8), 3254-3265.
Scopus25 WoS242021 Lu, W., Gong, D., Fu, K., Sun, X., Diao, W., & Liu, L. (2021). Boundarymix: Generating pseudo-training images for improving segmentation with scribble annotations. Pattern Recognition, 117, 107924.
Scopus9 WoS82021 Zhang, J., Liu, L., Wang, P., & Zhang, J. (2021). Exploring the auxiliary learning for long-tailed visual recognition. Neurocomputing, 449, 303-314.
Scopus9 WoS92021 Kang, L., Liu, J., Liu, L., Zhou, Z., & Ye, D. (2021). Semi-supervised emotion recognition in textual conversation via a context-augmented auxiliary training task. Information Processing and Management, 58(6), 1-13.
Scopus10 WoS102021 Shu, Y., Li, Q., Liu, L., & Xu, G. (2021). Semi-supervised Adversarial Learning for Attribute-Aware Photo Aesthetic Assessment. IEEE Transactions on Multimedia, 26, 1-11.
Scopus10 WoS92021 Lei, Y., Liu, Y., Zhang, P., & Liu, L. (2021). Towards using count-level weak supervision for crowd counting. Pattern Recognition, 109, 1-13.
Scopus96 WoS832020 Zhang, L., Wang, P., Liu, L., Shen, C., Wei, W., Zhang, Y., & van den Hengel, A. (2020). Towards Effective Deep Embedding for Zero-Shot Learning. IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 30(9), 2843-2852.
Scopus70 WoS672020 Abbasnejad, M. E., Shi, Q., van den Hengel, A., & Liu, L. (2020). GADE: A Generative Adversarial Approach to Density Estimation and its Applications. International Journal of Computer Vision, 128(10-11), 2731-2743.
Scopus6 WoS62020 Jiang, S., Lu, X., Lei, Y., & Liu, L. (2020). Mask-Aware Networks for Crowd Counting. IEEE Transactions on Circuits and Systems for Video Technology, 30(9), 3119-3129.
Scopus352020 Gou, Y., Lei, Y., Liu, L., Zhang, P., & Peng, X. (2020). A Dynamic Parameter Enhanced Network for distant supervised relation extraction. Knowledge-Based Systems, 197, 1-12.
Scopus172020 Chen, Y., Shen, C., Chen, H., Wei, X. S., Liu, L., & Yang, J. (2020). Adversarial learning of structure-aware fully convolutional networks for landmark localization. IEEE Transactions on Pattern Analysis and Machine Intelligence, 42(7), 1654-1669.
Scopus22 WoS15 Europe PMC32020 Zhang, L., Wang, P., Shen, C., Liu, L., Wei, W., Zhang, Y., & van den Hengel, A. (2020). Adaptive importance learning for improving lightweight image super-resolution network. International Journal of Computer Vision, 128(2), 479-499.
Scopus28 WoS332020 Zhuang, B., Liu, L., Tan, M., Shen, C., & Reid, I. (2020). Training quantized neural networks with a full-precision auxiliary module. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 1485-1494.
Scopus61 WoS502019 Teney, D., Wang, P., Cao, J., Liu, L., Shen, C., & Hengel, A. V. D. (2019). V-PROM: A Benchmark for Visual Reasoning Using Visual Progressive Matrices.. CoRR, abs/1907.12271, 12071-12078.
WoS122019 Wei, X. S., Wang, P., Liu, L., Shen, C., & Wu, J. (2019). Piecewise Classifier Mappings: Learning Fine-Grained Learners for Novel Categories with Few Examples. IEEE Transactions on Image Processing, 28(12), 6116-6125.
Scopus137 WoS113 Europe PMC132019 Wang, P., Liu, L., Shen, C., & Shen, H. T. (2019). Order-aware convolutional pooling for video based action recognition. Pattern Recognition, 91, 357-365.
Scopus25 WoS222019 Lei, Y., Zhou, Z., Zhang, P., Guo, Y., Ma, Z., & Liu, L. (2019). Deep point-to-subspace metric learning for sketch-based 3D shape retrieval. Pattern Recognition, 96, 106981-1-106981-13.
Scopus43 WoS412018 Chen, Z., Liu, L., Sa, I., Ge, Z., & Chli, M. (2018). Learning Context Flexible Attention Model for Long-Term Visual Place Recognition. IEEE Robotics and Automation Letters, 3(4), 4015-4022.
Scopus992017 Qiao, R., Liu, L., Shen, C., & Hengel, A. V. D. (2017). Visually Aligned Word Embeddings for Improving Zero-shot Learning. 2017 Li, Y., Liu, L., Shen, C., & Hengel, A. (2017). Mining Mid-level Visual Patterns with Deep CNN Activations. International Journal of Computer Vision, 121(3), 344-364.
Scopus38 WoS322017 Liu, L., Wang, P., Shen, C., Wang, L., Van Den Hengel, A., Wang, C., & Shen, H. T. (2017). Compositional model based Fisher vector coding for image classification. IEEE Transactions on Pattern Analysis and Machine Intelligence, 39(12), 2335-2348.
Scopus56 WoS44 Europe PMC72017 Wang, L., Liu, L., & Zhou, L. (2017). A graph-embedding approach to hierarchical visual word mergence. IEEE Transactions on Neural Networks and Learning Systems, 28(2), 308-320.
Scopus5 WoS6 Europe PMC42017 Qiao, R., Liu, L., Shen, C., & van den Hengel, A. (2017). Learning discriminative trajectorylet detector sets for accurate skeleton-based action recognition. Pattern Recognition, 66, 202-212.
Scopus52 WoS452016 Liu, L., Shen, C., & van den Hengel, A. (2016). Cross-convolutional-layer pooling for image recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence, 39(11), 2305-2313.
Scopus75 WoS66 Europe PMC92016 Zhou, L., Wang, L., Liu, L., Ogunbona, P., & Shen, D. (2016). Learning discriminative Bayesian networks from high-dimensional continuous neuroimaging data. IEEE Transactions on Pattern Analysis and Machine Intelligence, 38(11), 2269-2283.
Scopus28 WoS222016 Wang, P., Cao, Y., Shen, C., Liu, L., & Shen, H. T. (2016). Temporal pyramid pooling based convolutional neural network for action recognition. IEEE Transactions on Circuits and Systems for Video Technology, 27(99), 1-8.
Scopus119 WoS932016 Liu, L., Wang, L., & Shen, C. (2016). A generalized probabilistic framework for compact codebook creation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 38(2), 224-237.
Scopus3 WoS22015 Wang, C., Wang, L., & Liu, L. (2015). Density maximization for improving graph matching with its applications. IEEE Transactions on Image Processing, 24(7), 2110-2123.
Scopus12 WoS10 Europe PMC12014 Wang, L., Zhou, L., Shen, C., Liu, L., & Liu, H. (2014). A hierarchical word-merging algorithm with class separability measure. IEEE Transactions on Pattern Analysis and Machine Intelligence, 36(3), 417-435.
Scopus13 WoS9 Europe PMC12013 Liu, X., Yin, J., Wang, L., Liu, L., Liu, J., Hou, C., & Zhang, J. (2013). An adaptive approach to learning optimal neighborhood kernels. IEEE Transactions on Cybernetics, 43(1), 371-384.
Scopus232012 Liu, X., Wang, L., Yin, J., & Liu, L. (2012). Incorporation of radius-info can be simple with SimpleMKL. Neurocomputing, 89, 30-38.
Scopus202008 Liu, L. Q., Fu, Z. Z., Qian, W., Deng, Z. Q., & Xie, W. (2008). Small target detection based on small target isolation degree. Guangdian Gongcheng Opto Electronic Engineering, 35(12), 13-22. 2008 Qian, W., Fu, Z. Z., Liu, L. Q., Deng, Z. Q., & Xie, W. (2008). Voting-strategy-based approach to image registration. Guangdian Gongcheng Opto Electronic Engineering, 35(10), 86-91.
Scopus3 -
Book Chapters
Year Citation 2025 Shi, X., Qiao, Y., Wu, Q., Liu, L., & Dayoub, F. (2025). Improving Online Source-Free Domain Adaptation for Object Detection by Unsupervised Data Acquisition. In A. DelBue, C. Canton, J. Pont-Tuset, & T. Tommasi (Eds.), Lecture Notes in Computer Science (Vol. 15629 LNCS, pp. 195-205). SPRINGER INTERNATIONAL PUBLISHING AG.
DOI Scopus1 WoS12014 Wang, L., Liu, L., Zhou, L., & Chan, K. L. (2014). Application of SVMs to the bag-of-features model: A kernel perspective. In Support Vector Machines Applications (Vol. 9783319023007, pp. 155-189). Springer International Publishing.
DOI Scopus32014 Zhou, L., Wang, L., Liu, L., Ogunbona, P., & Shen, D. (2014). Support vector machines for neuroimage analysis: Interpretation from discrimination. In Support Vector Machines Applications (Vol. 9783319023007, pp. 191-220). Springer International Publishing.
DOI Scopus12 -
Conference Papers
Year Citation 2026 Huy, T. D., Shoby, A., Tran, S., Xie, Y., Chen, Q., Nguyen, P. L., . . . Phan, M. H. (2026). PedCLIP: A Vision-Language Model for Pediatric X-Rays with Mixture of Body Part Experts. In J. C. Gee, D. C. Alexander, J. Hong, J. E. Iglesias, C. H. Sudre, A. Venkataraman, . . . J. Park (Eds.), Lecture Notes in Computer Science Vol. 15964 LNCS (pp. 487-497). Springer Nature Switzerland.
DOI2025 Zhang, W., Li, Y., Qiao, Y., Huang, S., Liu, J., Dayoub, F., . . . Liu, L. (2025). Effective Tuning Strategies for Generalist Robot Manipulation Policies. In 2025 IEEE International Conference on Robotics and Automation (ICRA) (pp. 7255-7262). Atlanta, GA, USA: IEEE.
DOI2025 Lin, Y., Xu, H., Liu, L., & Shi, J. Q. (2025). A Simple-but-Effective Baseline for Training-Free Class-Agnostic Counting. In Proceedings - 2025 IEEE Winter Conference on Applications of Computer Vision, WACV 2025 (pp. 8155-8164). Tucson, AZ, USA: IEEE.
DOI Scopus12025 Xia, J., Sun, L., & Liu, L. (2025). Enhancing Close-up Novel View Synthesis via Pseudo-labeling. In Proceedings of the AAAI Conference on Artificial Intelligence Vol. 39 (pp. 8567-8574). Philadelphia, USA: Association for the Advancement of Artificial Intelligence (AAAI).
DOI2025 Xu, H. M., Chen, Q., Wang, L., & Liu, L. (2025). Attention-Driven GUI Grounding: Leveraging Pretrained Multimodal Large Language Models Without Fine-Tuning. In Proceedings of the AAAI Conference on Artificial Intelligence Vol. 39 (pp. 8851-8859). Philadelphia, USA: Association for the Advancement of Artificial Intelligence (AAAI).
DOI2025 Wang, Z., Liu, L., Weston, S. R. F., Tian, S., & Li, P. (2025). On Learning Discriminative Features from Synthesized Data for Self-supervised Fine-Grained Visual Recognition. In Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) Vol. 15147 LNCS (pp. 101-117). Milan, Italy: Springer Nature Switzerland.
DOI Scopus1 WoS12025 Chapman, A., Xu, H., & Liu, L. (2025). Enhancing Fine-Grained Visual Recognition in the Low-Data Regime Through Feature Magnitude Regularization. In Proceedings - 2024 25th International Conference on Digital Image Computing: Techniques and Applications, DICTA 2024 (pp. 101-108). Perth, Australia: IEEE.
DOI2024 Chen, L., Zhang, Y., Song, Y., Shen, Z., & Liu, L. (2024). LFME: A Simple Framework for Learning from Multiple Experts in Domain Generalization. In Advances in Neural Information Processing Systems Vol. 37. Vancouver, Canada: Neural information processing systems foundation.
Scopus22024 Ren, X., Wu, B., & Liu, L. (2024). I Learn Better If You Speak My Language: Understanding the Superior Performance of Fine-Tuning Large Language Models with LLM-Generated Responses. In EMNLP 2024 - 2024 Conference on Empirical Methods in Natural Language Processing, Proceedings of the Conference (pp. 10225-10245). Hybrid, Miami: Association for Computational Linguistics (ACL).
DOI2024 Lin, Y., Xu, H., Liu, L., Zou, J., & Shi, J. (2024). Revisiting Image Reconstruction for Semi-supervised Semantic Segmentation. In 2023 International Conference on Digital Image Computing: Techniques and Applications, DICTA 2023 (pp. 32-40). Online: IEEE.
DOI Scopus12024 Zou, J., Guo, M., Tian, Y., Lin, Y., Cao, H., Liu, L., . . . Shi, J. Q. (2024). Semantic Role Labeling Guided Out-of-distribution Detection. In 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation, LREC-COLING 2024 - Main Conference Proceedings (pp. 14641-14651). Online: European Language Resources Association (ELRA).
Scopus22024 Zhou, Z., Xu, H. -M., Shu, Y., & Liu, L. (2024). Unlocking the Potential of Pre-Trained Vision Transformers for Few-Shot Semantic Segmentation through Relationship Descriptors. In 2024 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) Vol. 33 (pp. 3817-3827). Seattle, WA, USA: IEEE.
DOI Scopus5 WoS52024 Li, Y., Wang, Z., Liu, Y., Wang, L., Liu, L., & Zhou, L. (2024). KARGEN: Knowledge-Enhanced Automated Radiology Report Generation Using Large Language Models. In Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) Vol. 15005 LNCS (pp. 382-392). Marrakesh: Springer Science and Business Media Deutschland GmbH.
DOI Scopus8 WoS22024 Liu, Y., Wang, Z., Li, Y., Liang, X., Liu, L., Wang, L., & Zhou, L. (2024). MRScore: Evaluating Medical Report with LLM-Based Reward System. In A. Feragen, S. Giannarou, B. Glocker, K. Lekadir, J. A. Schnabel, M. G. Linguraru, & Q. Dou (Eds.), Lecture Notes in Computer Science Vol. 15003 LNCS (pp. 283-292). Marrakesh, Morocco: SPRINGER INTERNATIONAL PUBLISHING AG.
DOI2024 Chen, L., Zhang, Y., Song, Y., Van Den Hengel, A., & Liu, L. (2024). Domain Generalization via Rationale Invariance. In Proceedings of the IEEE International Conference on Computer Vision (pp. 1751-1760). Paris, France: IEEE.
DOI Scopus29 WoS202024 Phan, V. M. H., Xie, Y., Qi, Y., Liu, L., Liu, L., Zhang, B., . . . Verjans, J. W. (2024). Decomposing Disease Descriptions for Enhanced Pathology Detection: A Multi-Aspect Vision-Language Pre-training Framework. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR 2024) (pp. 11492-11501). Seattle, WA, USA: Institute of Electrical and Electronics Engineers (IEEE).
DOI Scopus12 WoS62023 Jiao, B., Liu, L., Gao, L., Wu, R., Lin, G., Wang, P., & Zhang, Y. (2023). Toward Re-Identifying Any Animal. In Advances in Neural Information Processing Systems Vol. 36 (pp. 12 pages). Online: Neural information processing systems foundation.
Scopus15 WoS32023 Xue, X., Yu, D., Liu, L., Liu, Y., Tsutsui, S., Li, Y., . . . Shou, M. Z. (2023). Transformer-based Open-world Instance Segmentation with Cross-task Consistency Regularization. In Proceedings of the 31st ACM International Conference on Multimedia (pp. 2507-2515). Online: ACM.
DOI2023 Zou, J., Liu, Y., Qi, Y., Cao, H., Liu, L., & Shi, J. Q. (2023). A Generative Approach for Comprehensive Financial Event Extraction at the Document Level. In ICAIF 2023 - 4th ACM International Conference on AI in Finance (pp. 323-330). Online: Association for Computing Machinery, Inc.
DOI Scopus2 WoS12023 Xu, H. M., Liu, L., Chen, H., Abbasnejad, E., & Felix, R. (2023). Progressive Feature Adjustment for Semi-supervised Learning from Pretrained Models. In Proceedings - 2023 IEEE/CVF International Conference on Computer Vision Workshops, ICCVW 2023 (pp. 3284-3294). Online: IEEE.
DOI2023 Yang, L., Song, Y., Ren, X., Lyu, C., Wang, Y., Zhuo, J., . . . Zhang, Y. (2023). Out-of-Distribution Generalization in Natural Language Processing: Past, Present, and Future. In H. Bouamor, J. Pino, & K. Bali (Eds.), Emnlp 2023 2023 Conference on Empirical Methods in Natural Language Processing Proceedings (pp. 4533-4559). SINGAPORE, Singapore: ASSOC COMPUTATIONAL LINGUISTICS-ACL.
DOI Scopus15 WoS72023 Zhou, Z., Lei, Y., Zhang, B., Liu, L., & Liu, Y. (2023). ZegCLIP: Towards Adapting CLIP for Zero-shot Semantic Segmentation. In Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition Vol. 2023-June (pp. 11175-11185). Vancouver, BC, Canada: IEEE.
DOI Scopus187 WoS1272023 Chen, L., Zhang, Y., Song, Y., Shan, Y., & Liu, L. (2023). Improved Test-Time Adaptation for Domain Generalization. In Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition Vol. 2023-June (pp. 24172-24182). Online: IEEE.
DOI Scopus51 WoS342023 Pang, T. Y., Ding, B., Liu, L., & Sergiienko, N. (2023). SHORT-TERM SEA SURFACE ELEVATION PREDICTION USING DEEP LEARNING METHODS. In Proceedings of the International Conference on Offshore Mechanics and Arctic Engineering - OMAE Vol. 5 (pp. 10 pages). Melbourne, Australia: American Society of Mechanical Engineers.
DOI Scopus1 WoS12023 Shu, Y., Van Den Hengel, A., & Liu, L. (2023). Learning Common Rationale to Improve Self-Supervised Representation for Fine-Grained Visual Recognition Problems. In Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition Vol. 2023-June (pp. 11392-11401). Online: IEEE.
DOI Scopus18 WoS112023 Wang, Q., Liu, L., Jing, C., Chen, H., Liang, G., Wang, P., & Shen, C. (2023). Learning Conditional Attributes for Compositional Zero-Shot Learning. In Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition Vol. 2023-June (pp. 11197-11206). Online: IEEE.
DOI Scopus46 WoS372023 Wang, Z., Liu, L., Wang, L., & Zhou, L. (2023). METransformer: Radiology Report Generation by Transformer with Multiple Learnable Expert Tokens. In Proceedings / CVPR, IEEE Computer Society Conference on Computer Vision and Pattern Recognition. IEEE Computer Society Conference on Computer Vision and Pattern Recognition Vol. 2023-June (pp. 11558-11567). Vancouver, BC, Canada: IEEE.
DOI Scopus112 WoS842023 Luo, Q., & Liu, L. (2023). Zero-Shot Slot Filling with Slot-Prefix Prompting and Attention Relationship Descriptor. In Proceedings of the AAAI Conference on Artificial Intelligence, AAAI 2023 Vol. 37 (pp. 13344-13352). Washington, DC, USA: PKP/PS. Part of PKP Publsihing Sewrvices Nework.
DOI Scopus82023 Ding, Y., Tian, C., Ding, H., & Liu, L. (2023). The CLIP Model is Secretly an Image-to-Prompt Converter. In A. Oh, T. Neumann, A. Globerson, K. Saenko, M. Hardt, & S. Levine (Eds.), ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 36 (NEURIPS 2023) Vol. 36 (pp. 12 pages). Online: NEURAL INFORMATION PROCESSING SYSTEMS (NIPS).
Scopus52022 Xu, H. -M., Liu, L., Bian, Q., & Yang, Z. (2022). Semi-supervised Semantic Segmentation with Prototype-based Consistency Regularization. In S. Koyejo, S. Mohamed, A. Agarwal, D. Belgrave, K. Cho, & A. Oh (Eds.), ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 35 (NEURIPS 2022) (pp. 14 pages). Online: NEURAL INFORMATION PROCESSING SYSTEMS (NIPS).
WoS222022 Xu, H. M., Liu, L., & Abbasnejad, E. (2022). Progressive Class Semantic Matching for Semi-supervised Text Classification. In M. Carpuat, M. -C. De Marneffe, & I. V. Meza Ruiz (Eds.), NAACL 2022 - 2022 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Proceedings of the Conference (pp. 3003-3013). Seattle, Washington & Online: Association for Computational Linguistics.
DOI Scopus122022 Xu, H. M., Chen, H., Liu, L., & Yin, Y. (2022). Dual Decision Improves Open-Set Panoptic Segmentation. In BMVC 2022 - 33rd British Machine Vision Conference Proceedings (pp. 1-13). London, UK: The British Machine Vision Association..
Scopus42022 Yang, L., Liu, H., Liu, L., Zhou, J., Zhang, L., Wang, P., & Zhang, Y. (2022). Pluggable Weakly-Supervised Cross-View Learning for Accurate Vehicle Re-Identification. In ICMR 2022 - Proceedings of the 2022 International Conference on Multimedia Retrieval (pp. 81-89). Online: ACM.
DOI Scopus4 WoS42022 Xu, H. M., Liu, L., Bian, Q., & Yang, Z. (2022). Semi-supervised Semantic Segmentation with Prototype-based Consistency Regularization. In S. Koyejo, S. Mohamed, A. Agarwal, D. Belgrave, & A. Oh (Eds.), Advances in Neural Information Processing Systems Vol. 35 (pp. 1-18). New Orleans, LA, USA: Curran Associates.
Scopus812022 Chen, L., Zhang, Y., Song, Y., Liu, L., & Wang, J. (2022). Self-supervised Learning of Adversarial Example: Towards Good Generalizations for Deepfake Detection. In Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition Vol. 2022-June (pp. 18689-18698). Online: IEEE.
DOI Scopus215 WoS1432022 Jiao, B., Liu, L., Gao, L., Lin, G., Yang, L., Zhang, S., . . . Zhang, Y. (2022). Dynamically Transformed Instance Normalization Network for Generalizable Person Re-Identification. In Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) Vol. 13674 LNCS (pp. 285-301). Online: Springer Nature Switzerland.
DOI Scopus53 WoS482022 Shu, Y., Yu, B., Xu, H., & Liu, L. (2022). Improving Fine-Grained Visual Recognition in Low Data Regimes via Self-boosting Attention Mechanism. In Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) Vol. 13685 LNCS (pp. 449-465). Online: Springer Nature Switzerland.
DOI Scopus29 WoS252022 Zou, J., Cao, H., Liu, Y., Liu, L., Abbasnejad, E., & Shi, J. Q. (2022). UOA at the FinNLP-2022 ERAI Task: Leveraging the Class Label Description for Financial Opinion Mining. In FinNLP 2022 - 4th Workshop on Financial Technology and Natural Language Processing, Proceedings of the Workshop (pp. 122-126). Online: Association for Computational Linguistics (ACL).
Scopus12022 Zou, J., Cao, H., Liu, L., Lin, Y., Abbasnejad, E., & Shi, J. Q. (2022). Astock: A New Dataset and Automated Stock Trading based on Stock-specific News Analyzing Model. In FinNLP 2022 - 4th Workshop on Financial Technology and Natural Language Processing, Proceedings of the Workshop (pp. 178-186). Online: Association for Computational Linguistics (ACL).
Scopus62022 Chen, L., Zhang, Y., Song, Y., Wang, J., & Liu, L. (2022). OST: Improving Generalization of DeepFake Detection via One-Shot Test-Time Training. In Advances in Neural Information Processing Systems Vol. 35 (pp. 14 pages). Online: Neural information processing systems foundation.
Scopus472021 Luo, Q., Liu, L., Lin, Y., & Zhang, W. (2021). Don't Miss the Labels: Label-semantic Augmented Meta-Learner for Few-Shot Text Classification. In C. Zong, F. Xia, W. Li, & R. Navigli (Eds.), Findings of the Association for Computational Linguistics: ACL-IJCNLP 2021 (pp. 2773-2782). Stroudsburg, PA, USA: Association for Computational Linguistics.
DOI Scopus58 WoS402021 Gou, Y., Lei, Y., Liu, L., Dai, Y., & Shen, C. (2021). Contextualize Knowledge Bases with Transformer for End-to-end Task-Oriented Dialogue Systems. In Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing (pp. 4300-4310). online: Association for Computational Linguistics.
DOI Scopus132021 Kang, L., Liu, J., Liu, L., & Ye, D. (2021). Label definitions augmented interaction model for legal charge prediction. In Proceedings of the 43rd European Conference on Information Retrieval (ECIR 2021), as published in Lecture Notes in Computer Science Vol. 12656 (pp. 270-283). Cham, Switzerland: Springer.
DOI Scopus5 WoS22021 Xu, H. M., Liu, L., & Gong, D. (2021). Semi-supervised Learning via Conditional Rotation Angle Estimation. In DICTA 2021 - 2021 International Conference on Digital Image Computing: Techniques and Applications (pp. 1-8). online: IEEE.
DOI Scopus52020 Liu, Y., Liu, L., Zhang, H., Rezatofighi, H., Yan, Q., & Reid, I. D. (2020). Meta Learning with Differentiable Closed-form Solver for Fast Video Object Segmentation.. In IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (pp. 8439-8446). Las Vegas, NV, USA (Virtual): IEEE.
DOI Scopus7 WoS42020 Liao, Z., Liu, L., Wu, Q., Teney, D., Shen, C., Van Den Hengel, A., & Verjans, J. (2020). Medical data inquiry using a question answering model. In Proceedings: 2020 IEEE 17th International Symposium on Biomedical Imaging (ISBI 2020) Vol. 2020-April (pp. 1490-1493). online: IEEE.
DOI Scopus9 WoS42020 Teney, D., Wang, P., Cao, J., Liu, L., Shen, C., & Van Den Hengel, A. (2020). V-PROM: A benchmark for visual reasoning using visual progressive matrices. In Proceedings of the Thirty-Fourth AAAI Conference on Artificial Intelligence (AAAI-20) Vol. 34 (pp. 12071-12078). Palo Alto, CA: Association for the Advancement of Artificial Intelligence.
DOI Scopus202020 Liu, Y., Liu, L., Wang, P., Zhang, P., & Lei, Y. (2020). Semi-supervised Crowd Counting via Self-training on Surrogate Tasks. In Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) Vol. 12360 LNCS (pp. 242-259). Switzerland: Springer International Publishing.
DOI Scopus58 WoS512020 Wang, X., Liu, L., & Shi, Q. (2020). Harmonic Structure-Based Neural Network Model for Music Pitch Detection. In Proceedings - 19th IEEE International Conference on Machine Learning and Applications, ICMLA 2020 (pp. 87-92). online: IEEE.
DOI Scopus62020 Wang, X., Liu, L., & Shi, Q. (2020). Enhancing Piano Transcription by Dilated Convolution. In Proceedings - 19th IEEE International Conference on Machine Learning and Applications, ICMLA 2020 (pp. 1446-1453). online: IEEE.
DOI Scopus52019 Abbasnejad, M. E., Shi, Q., Van Den Hengel, A., & Liu, L. (2019). A generative adversarial density estimator. In Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition Vol. 2019-June (pp. 10774-10783). online: IEEE.
DOI Scopus19 WoS112019 Wang, X., Liu, L., & Shi, Q. (2019). Exploiting stereo sound channels to boost performance of neural network-based music transcription. In Proceedings - 18th IEEE International Conference on Machine Learning and Applications, ICMLA 2019 (pp. 1353-1358). online: IEEE.
DOI Scopus32019 Gong, D., Liu, L., Le, V., Saha, B., Mansour, M. R., Venkatesh, S., & Van Den Hengel, A. (2019). Memorizing normality to detect anomaly: Memory-augmented deep autoencoder for unsupervised anomaly detection. In Proceedings of the IEEE International Conference on Computer Vision Vol. 2019-October (pp. 1705-1714). online: IEEE.
DOI Scopus1623 WoS13182019 Zhuang, B., Shen, C., Tan, M., Liu, L., & Reid, I. (2019). Structured binary neural networks for accurate image classification and semantic segmentation. In Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition Vol. 2019-June (pp. 413-422). online: IEEE.
DOI Scopus130 WoS1072019 Wei, X. S., Zhang, C. L., Liu, L., Shen, C., & Wu, J. (2019). Coarse-to-fine: A RNN-based hierarchical attention model for vehicle re-identification. In Proceedings of the 14th Asian Conference on Computer Vision (ACCV 2018), as published in Lecture Notes in Computer Science Vol. 11362 (pp. 575-591). Switzerland: Springer.
DOI Scopus32 WoS332018 Yang, J., Gong, D., Liu, L., & Shi, Q. (2018). Seeing Deeply and Bidirectionally: A Deep Learning Approach for Single Image Reflection Removal. In Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) Vol. 11207 LNCS (pp. 675-691). Switzerland: Springer Nature.
DOI Scopus25 WoS942018 Zhuang, B., Shen, C., Tan, M., Liu, L., & Reid, I. (2018). Towards effective low-bitwidth convolutional neural networks. In Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR 2018) (pp. 7920-7928). Piscataway, NJ.: IEEE.
DOI Scopus217 WoS1752018 Milan, A., Pham, T., Vijay, K., Morrison, D., Tow, A. W., Liu, L., . . . Leitner, J. (2018). Semantic segmentation from limited training data. In 2018 IEEE International Conference on Robotics and Automation (ICRA) Vol. abs/1709.07665 (pp. 1908-1915). online: IEEE.
DOI Scopus29 WoS242017 Wang, P., Liu, L., Shen, C., Huang, Z., van den Hengel, A., & Shen, H. (2017). Multi-attention network for one shot learning. In Proceedings of the 30th IEEE Conference on Computer Vision and Pattern Recognition (CVPR 2017) Vol. 2017-January (pp. 6212-6220). Online: IEEE.
DOI Scopus82 WoS512017 Li, Y., Lin, G., Zhuang, B., Liu, L., Shen, C., & van den Hengel, A. (2017). Sequential person recognition in photo albums with a recurrent network. In Proceedings: 30th IEEE Conference on Computer Vision and Pattern Recognition Vol. 2017-January (pp. 5660-5668). online: IEEE.
DOI Scopus24 WoS112017 Chen, Y., Shen, C., Wei, X., Liu, L., & Yang, J. (2017). Adversarial PoseNet: a structure-aware convolutional network for human pose estimation. In Proceedings of the IEEE International Conference on Computer Vision (ICCV 2017) Vol. 2017 (pp. 1221-1230). Piscataway, NJ: IEEE.
DOI Scopus297 WoS1732017 Zhuang, B., Liu, L., Shen, C., & Reid, I. (2017). Towards context-aware interaction recognition for visual relationship detection. In Proceedings 2017 IEEE International Conference on Computer Vision ICCV 2017 Vol. 2017-October (pp. 589-598). Venice, Italy: IEEE.
DOI Scopus133 WoS1112017 Zhuang, B., Liu, L., Li, Y., Shen, C., & Reid, I. (2017). Attend in groups: a weakly-supervised deep learning framework for learning from web data. In Proceedings of the 30th IEEE Conference on Computer Vision and Pattern Recognition (CVPR 2017) Vol. 2017-January (pp. 2915-2924). Online: IEEE.
DOI Scopus52 WoS822017 Gong, D., Yang, J., Liu, L., Zhang, Y., Reid, I., Shen, C., . . . Shi, Q. (2017). From motion blur to motion flow: a deep learning solution for removing heterogeneous motion blur. In Proceedings of the 30th IEEE Conference on Computer Vision and Pattern Recognition (CVPR 2017) Vol. 2017-January (pp. 3806-3815). Online: IEEE.
DOI Scopus348 WoS2742017 Chen, Z., Jacobson, A., Sunderhauf, N., Upcroft, B., Liu, L., Shen, C., . . . Milford, M. (2017). Deep Learning Features at Scale for Visual Place Recognition. In Proceedings - IEEE International Conference on Robotics and Automation (pp. 3223-3230). Online: IEEE.
DOI Scopus3002017 Teney, D., Liu, L., & van den Hengel, A. (2017). Graph-structured representations for visual question answering. In Proceedings of the 30th IEEE Conference on Computer Vision and Pattern Recognition (CVPR 2017) Vol. 2017-January (pp. 3233-3241). Online: IEEE.
DOI Scopus294 WoS2812017 Shen, T., Lin, G., Liu, L., Shen, C., & Reid, I. (2017). Weakly supervised semantic segmentation based on web image co-segmentation. In British Machine Vision Conference 2017, BMVC 2017 (pp. 1-12). online: BMVC.
Scopus272016 Li, Y., Liu, L., Shen, C., & van den Hengel, A. (2016). Image co-localization by mimicking a good detector’s confidence score distribution. In B. Leibe, J. Matas, N. Sebe, & M. Welling (Eds.), Proceedings of the 14th European Conference on Computer Vision, Part II Vol. 9906 LNCS (pp. 19-34). Amsterdam, Netherlands: Springer International Publishing.
DOI Scopus37 WoS312016 Wang, P., Liu, L., Shen, C., Huang, Z., Van Den Hengel, A., & Shen, H. (2016). What's wrong with that object? Identifying images of unusual objects by modelling the detection score distribution. In Proceedings of the 29th IEEE Computer Society Conference on Computer Vision and Pattern Recognition Vol. 2016-December (pp. 1573-1581). Las Vegas, NV: IEEE.
DOI Scopus10 WoS72016 Qiao, R., Liu, L., Shen, C., & van den Hengel, A. (2016). Less is more: zero-shot learning from online textual documents with noise suppression. In Proceedings of the 29th IEEE Computer Society Conference on Computer Vision and Pattern Recognition Vol. 2016-December (pp. 2249-2257). Las Vegas, NV: IEEE.
DOI Scopus159 WoS1172016 Wu, Q., Shen, C., Liu, L., Dick, A., & Van Den Hengel, A. (2016). What value do explicit high level concepts have in vision to language problems?. In Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition Vol. 2016-December (pp. 203-212). Las Vegas, NV: IEEE.
DOI Scopus430 WoS2982016 Ge, Z., McCool, C., Sanderson, C., Wang, P., Liu, L., Reid, I., & Corke, P. (2016). Exploiting temporal information for DCNN-based fine-grained object classification. In A. Liew, B. Lovell, C. Fookes, J. Zhou, Y. Gao, M. Blumenstein, & Z. Wang (Eds.), Proceedings of the 2016 International Conference on Digital Image Computing: Techniques and Applications (DICTA 2016) (pp. 442-447). Gold Coast, AUSTRALIA: IEEE.
DOI Scopus16 WoS62015 Li, Y., Liu, L., Shen, C., & Van Den Hengel, A. (2015). Mid-level deep pattern mining. In Proceedings of the 2015 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Vol. 07-12-June-2015 (pp. 971-980). Boston, MA: IEEE.
DOI Scopus88 WoS652015 Liu, L., Shen, C., & van den Hengel, A. (2015). The treasure beneath convolutional layers: cross-convolutional-layer pooling for image classification. In Proceedings of the 2015 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Vol. 07-12-June-2015 (pp. 4749-4757). Boston, MA: IEEE.
DOI Scopus169 WoS1142014 Liu, L., Shen, C., Wang, L., Van Den Hengel, A., & Wang, C. (2014). Encoding high dimensional local features by sparse coding based fisher vectors. In Proceedings of the 27th International Conference on Neural Information Processing Systems Vol. 2 (pp. 1143-1151). Online: MIT Press.
Scopus682014 Wang, C., Wang, L., & Liu, L. (2014). Progressive mode-seeking on graphs for sparse feature matching. In Proceedings of the 13th European Conference on Computer Vision Vol. 8690 LNCS (pp. 788-802). Zurich, Switzerland: Springer.
DOI Scopus472014 Zhou, L., Wang, L., Liu, L., Ogunbona, P., & Shen, D. (2014). Max-margin based learning for discriminative Bayesian network from neuroimaging data. In Proceedings of the 17th International Conference on Medical Image Computing and Computer-Assisted Intervention Vol. 17 (pp. 321-328). Boston, MA, USA: Springer.
DOI Scopus2 WoS1 Europe PMC12014 Liu, L., & Wang, L. (2014). HEp-2 cell image classification with multiple linear descriptors. In Pattern Recognition Vol. 47 (pp. 2400-2408). Elsevier BV.
DOI Scopus232013 Wang, C., Wang, L., & Liu, L. (2013). Improving graph matching via density maximization. In 2013 IEEE International Conference on Computer Vision (ICCV) (pp. 3424-3431). USA: IEEE.
DOI Scopus102013 Liu, L., & Wang, L. (2013). A scalable unsupervised feature merging approach to efficient dimensionality reduction of high-dimensional visual data. In 2013 IEEE International Conference on Computer Vision (ICCV) (pp. 3008-3015). USA: IEEE.
DOI Scopus102013 Zhang, J., Wang, L., Liu, L., Zhou, L., & Li, W. (2013). Accelerating the divisive information-theoretic clustering of visual words. In 2013 International Conference on Digital Image Computing: Techniques and Applications (DICTA) (pp. 1-8). USA: IEEE.
DOI2013 Zhou, L., Wang, L., Liu, L., Ogunbona, P., & Shen, D. (2013). Discriminative brain effective connectivity analysis for Alzheimer's disease: a kernel learning approach upon sparse Gaussian Bayesian network. In 2013 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (pp. 2243-2250). USA: IEEE.
DOI Scopus182012 Liu, L., & Wang, L. (2012). What has my classifier learned? Visualizing the classification rules of bag-of-feature model by support region detection. In 2012 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (pp. 3586-3593). USA: IEEE.
DOI Scopus192011 Liu, L., & Wang, L. (2011). Exploring latent class information for image retrieval using the Bag-of-Feature model. In Proceedings of the 19th ACM international conference on Multimedia (pp. 1405-1408). New York; USA: ACM.
DOI2011 Liu, L., Wang, L., & Liu, X. (2011). In defense of soft-assignment coding. In 2011 IEEE International Conference on Computer Vision (ICCV) (pp. 2486-2493). USA: IEEE.
DOI Scopus4592011 Liu, L., Wang, L., & Shen, C. (2011). A generalized probabilistic framework for compact codebook creation. In Proceedings IEEE Conference on Computer Vision and Pattern Recognition (pp. 1537-1544). USA: IEEE.
DOI Scopus9 WoS62010 Zhizhong, F., Lingqiao, L., Haiying, X., & Jin, X. (2010). Human computer interaction research and realization based on leg movement analysis. In 2010 International Conference on Apperceiving Computing and Intelligence Analysis Icacia 2010 Proceeding (pp. 421-426). IEEE.
DOI Scopus52008 Lingqiao, L., Zhizhong, F., Jingjing, X., & Wei, Q. (2008). Edge mapping: A new motion estimation method for video stabilization. In Proceedings International Symposium on Computer Science and Computational Technology Iscsct 2008 Vol. 2 (pp. 440-444). IEEE.
DOI Scopus92008 Qian, W., Fu, Z., Liu, L., & Deng, Z. (2008). Image registration based on feature extraction and voting strategy. In 2008 International Conference on Communications Circuits and Systems Proceedings Icccas 2008 (pp. 706-709). IEEE.
DOI Scopus2 -
Preprint
Year Citation 2024 Phan, V. M. H., Xie, Y., Qi, Y., Liu, L., Liu, L., Zhang, B., . . . Verjans, J. W. (2024). Decomposing Disease Descriptions for Enhanced Pathology Detection: A Multi-Aspect Vision-Language Pre-training Framework..
DE170101259 (ARC Discovery Early Career Researcher Award 17): Zero-shot
and few-shot learning with deep knowledge transfer
DP160103710 (ARC Discovery Project 16) : Whole image understanding by
convolutions on graphs
Introduction to Statistic Machine Learning, Puzzle based Learning, Big Data Analysis and Project, Artificial Intelligence
-
Current Higher Degree by Research Supervision (University of Adelaide)
Date Role Research Topic Program Degree Type Student Load Student Name 2025 Principal Supervisor Improving the Automation Efficiency of Q&A Chatbots Based on AI Agents Master of Philosophy Master Full Time Ms Shiya Huang 2025 Principal Supervisor Toward Multi-Agent 3D Dynamic Scene Generation: A Framework for Complex Interactions in Shared Virtual Environments Master of Philosophy Master Full Time Mr Zhiyuan Zhang 2025 Principal Supervisor Low-Cost Implementation of Visual Pseudo-Tactile and Multitasking Imitation Learning Master of Philosophy Master Full Time Mr Yukun Chen 2024 Principal Supervisor Novel View Synthesis in Real-World Scenarios Doctor of Philosophy Doctorate Full Time Mr Jiatong Xia 2024 Co-Supervisor Data-driven physically plausible dexterous manipulation Doctor of Philosophy Doctorate Full Time Mr King Hang Wong 2023 Principal Supervisor 3D indoor Scene Reconstruction Doctor of Philosophy Doctorate Full Time Mr Wenbo Zhang 2023 Co-Supervisor Implement a scalable, automated workflow for transposon annotation as part of the Ruminant T2T genome sequencing consortium Doctor of Philosophy Doctorate Full Time Miss Luan Zhong 2023 Principal Supervisor Low-supervision Learning via Knowledge Transfer from Pretrained Models Doctor of Philosophy Doctorate Full Time Mr Zicheng Duan 2023 Principal Supervisor Generative AI: Video Generation from text Doctor of Philosophy Doctorate Full Time Mr Ankit Yadav 2022 Principal Supervisor Improving the Few-Shot Generalization of Data-to-Text Generation Models Doctor of Philosophy Doctorate Full Time Mr Xuan Ren -
Past Higher Degree by Research Supervision (University of Adelaide)
Date Role Research Topic Program Degree Type Student Load Student Name 2024 - 2025 Principal Supervisor Robust and Generalizable Temporal Video Understanding Doctor of Philosophy Doctorate Full Time Mr Qing Zhong 2023 - 2024 Principal Supervisor Neural Radiance Fields in Real-World Scenarios Master of Philosophy Master Full Time Mr Jiatong Xia 2023 - 2025 Co-Supervisor Domain Adaptation Object Detection for Mobile Robots Master of Philosophy Master Full Time Mr Xiangyu Shi 2021 - 2024 Principal Supervisor Low-Shot Learning based on Pre-trained Model Doctor of Philosophy Doctorate Full Time Dr Ziqin Zhou 2021 - 2024 Principal Supervisor Domain Generalization and its Application in Deepfake Detection Doctor of Philosophy Doctorate Full Time Mr Liang Chen 2021 - 2025 Co-Supervisor Strategic Reduction of Training and Annotation in Computer Vision: Leveraging Pre-trained Models and Auxiliary Tasks for Efficient Learning Doctor of Philosophy Doctorate Full Time Mr Yuhao Lin 2020 - 2024 Principal Supervisor Enhancing Model Generalization in Weakly Supervised and Low-Shot Transfer Learning Scenarios Master of Philosophy Master Part Time Mr Avi Nisel Chapman 2020 - 2023 Co-Supervisor Deep Learning for Multipitch Detection and Melody Extraction Doctor of Philosophy Doctorate Part Time Mr Xian Wang 2020 - 2024 Co-Supervisor Convolutional Neural Network for Analysing Gravitational Wave Signals Master of Philosophy Master Full Time Miss Kendall Louise Jenner 2019 - 2023 Co-Supervisor Machine Learning and Natural Language Processing in Stock Prediction Doctor of Philosophy Doctorate Full Time Mr Jinan Zou 2018 - 2019 Co-Supervisor High-performance Object Detection and Tracking using Deep Learning Master of Philosophy Master Full Time Mr Xinyu Wang 2018 - 2022 Principal Supervisor Deep Semi-Supervised Learning Methodologies and Applications Doctor of Philosophy Doctorate Full Time Mr Hai-Ming Xu 2018 - 2021 Co-Supervisor Deep Learning for 2D and 3D Scene Understanding Doctor of Philosophy Doctorate Full Time Mr Yu Liu 2017 - 2019 Co-Supervisor Context Learning and Weakly Supervised Learning for Semantic Segmentation Doctor of Philosophy Doctorate Full Time Mr Tong Shen 2017 - 2020 Co-Supervisor Efficient Scene Parsing with Imagery and Point Cloud Data Doctor of Philosophy Doctorate Full Time Mr Tong He 2017 - 2021 Co-Supervisor Deep Learning for Image Deblurring and Reflection Removal Doctor of Philosophy Doctorate Full Time Mr Jie Yang 2014 - 2018 Co-Supervisor Mid-level Representations for Action Recognition and Zero-shot Learning Doctor of Philosophy Doctorate Full Time Mr Ruizhi Qiao 2014 - 2018 Co-Supervisor Deep Learning Based RGB-D Vision Tasks Doctor of Philosophy Doctorate Full Time Mr Yuanzhouhan Cao
Connect With Me
External Profiles