Xiaoyong Xu

Xiaoyong Xu

School of Chemical Engineering

Faculty of Sciences, Engineering and Technology

Eligible to supervise Masters and PhD - email supervisor to discuss availability.


Xu Xiaoyong's research interests and expertise lie in high-performance perovskites, direct carbon fuel cells, direct ammonia fuel cells and solid oxide cells, with a strong application focus in clean energy and the environment, as well as carbon dioxide emission reduction and hydrogen production. His current projects include:
1. Development of high-performance perovskites for solid oxide batteries
2. Development of high-performance cathodes for carbon dioxide reaction and hydrogen production in solid oxide batteries.
3. Development of high-performance anodes for direct methane and ammonia solid oxide fuel cells
4. Development of metal supported-SOFC for transportation
5. Development of PFAS removal technology

  • Journals

    Year Citation
    2023 Vo, P. H. N., Buckley, T., Xu, X., Nguyen, T. M. H., Rudolph, V., & Shukla, P. (2023). Foam fractionation of per- and polyfluoroalkyl substances (PFASs) in landfill leachate using different cosurfactants. Chemosphere, 310, 136869.
    DOI Scopus1
    2022 Buckley, T., Xu, X., Rudolph, V., Firouzi, M., & Shukla, P. (2022). Review of foam fractionation as a water treatment technology. Separation Science and Technology, 57(6), 929-958.
    DOI WoS13
    2021 Khan, M. S., Xu, X., Knibbe, R., & Zhu, Z. (2021). Air electrodes and related degradation mechanisms in solid oxide electrolysis and reversible solid oxide cells. Renewable and Sustainable Energy Reviews, 143, 17 pages.
    DOI WoS32
    2021 Mao, X., Li, Z., Li, M., Xu, X., Yan, C., Zhu, Z., & Du, A. (2021). Computational Design and Experimental Validation of the Optimal Bimetal-Doped SrCoO<sub>3−δ</sub> Perovskite as Solid Oxide Fuel Cell Cathode. Journal of the American Chemical Society, 143(25), 9507-9514.
    DOI WoS15
    2020 Khan, M. S., Xu, X., Knibbe, R., Rehman, A. U., Li, Z., Yago, A. J., . . . Zhu, Z. (2020). New Insights into the Degradation Behavior of Air Electrodes during Solid Oxide Electrolysis and Reversible Solid Oxide Cell Operation. ENERGY TECHNOLOGY, 8(9), 10 pages.
    DOI WoS3
    2019 Zhao, J., Xu, X., Zhou, W., Zhu, Z., Guo, Y., & Zhong, S. (2019). A Novel Method to Purposely Modify the Anode/Electrolyte Interface in Solid Oxide Fuel Cells. CHEMISTRYSELECT, 4(47), 13835-13840.
    DOI
    2019 Xu, X., Zhao, J., Li, M., Zhuang, L., Zhang, J., Aruliah, S., . . . Zhu, Z. (2019). Sc and Ta-doped SrCoO3-delta perovskite as a high-performance cathode for solid oxide fuel cells. COMPOSITES PART B-ENGINEERING, 178, 7 pages.
    DOI WoS32
    2019 Khan, M. S., Xu, X., Li, M., Rehman, A. -U., Knibbe, R., Yago, A. J., & Zhu, Z. (2019). Evaluation of SrCo0.8Nb0.2O3-delta, SrCo0.8Ta0.2O3-delta and SrCo(0.8)Nb(0.1)Ta(0.1)O(3-delta )as air electrode materials for solid oxide electrolysis and reversible solid oxide cells. ELECTROCHIMICA ACTA, 321, 10 pages.
    DOI WoS6
    2018 Zhao, J., Xu, X., Li, M., Zhou, W., Liu, S., & Zhu, Z. (2018). Coking-resistant Ce0.8Ni0.2O2-delta internal reforming layer for direct methane solid oxide fuel cells. ELECTROCHIMICA ACTA, 282, 402-408.
    DOI WoS11
    2018 Khan, M. S., Xu, X., Knibbe, R., & Zhu, Z. (2018). Porous Scandia-Stabilized Zirconia Layer for Enhanced Performance of Reversible Solid Oxide Cells. ACS APPLIED MATERIALS & INTERFACES, 10(30), 25295-25302.
    DOI WoS11
    2017 Zhao, J., Xu, X., Zhou, W., & Zhu, Z. (2017). MnO-Co composite modified Ni-SDC anode for intermediate temperature solid oxide fuel cells. FUEL PROCESSING TECHNOLOGY, 161, 241-247.
    DOI WoS10
    2017 Zhao, J., Xu, X., Zhou, W., & Zhu, Z. (2017). An in situ formed MnO-Co composite catalyst layer over Ni-Ce0.8Sm0.2O2-x anodes for direct methane solid oxide fuel cells. JOURNAL OF MATERIALS CHEMISTRY A, 5(14), 6494-6503.
    DOI WoS19
    2017 Yang, Y., Zhuang, L., Lin, R., Li, M., Xu, X., Rufford, T. E., & Zhu, Z. (2017). A facile method to synthesize boron-doped Ni/Fe alloy nano-chains as electrocatalyst for water oxidation. JOURNAL OF POWER SOURCES, 349, 68-74.
    DOI WoS42
    2017 Li, M., Zhao, M., Li, F., Zhou, W., Peterson, V. K., Xu, X., . . . Zhu, Z. (2017). A niobium and tantalum co-doped perovskite cathode for solid oxide fuel cells operating below 500 degrees C. NATURE COMMUNICATIONS, 8(1), 9 pages.
    DOI WoS191 Europe PMC8
    2017 Zhao, J., Xu, X., Zhou, W., Blakey, I., Liu, S., & Zhu, Z. (2017). Proton-Conducting La-Doped Ceria-Based Internal Reforming Layer for Direct Methane Solid Oxide Fuel Cells. ACS APPLIED MATERIALS & INTERFACES, 9(39), 33758-33765.
    DOI WoS23
    2017 Khan, M. S., Xu, X., Zhao, J., Knibbe, R., & Zhu, Z. (2017). A porous yttria-stabilized zirconia layer to eliminate the delamination of air electrode in solid oxide electrolysis cells. JOURNAL OF POWER SOURCES, 359, 104-110.
    DOI WoS24
    2015 Liang, F., Yu, Y., Zhou, W., Xu, X., & Zhu, Z. (2015). Highly defective CeO2 as a promoter for efficient and stable water oxidation. JOURNAL OF MATERIALS CHEMISTRY A, 3(2), 634-640.
    DOI WoS184
    2014 Xu, X., Zhou, W., & Zhu, Z. (2014). Stability of YSZ and SDC in molten carbonate eutectics for hybrid direct carbon fuel cells. RSC ADVANCES, 4(5), 2398-2403.
    DOI WoS10
    2013 Li, M., Zhou, W., Xu, X., & Zhu, Z. (2013). SrCo0.85Fe0.1P0.05O3-delta perovskite as a cathode for intermediate-temperature solid oxide fuel cells. JOURNAL OF MATERIALS CHEMISTRY A, 1(43), 13632-13639.
    DOI WoS39
    2013 Xu, X., Zhou, W., & Zhu, Z. (2013). Samaria-Doped Ceria Electrolyte Supported Direct Carbon Fuel Cell with Molten Antimony as the Anode. INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 52(50), 17927-17933.
    DOI WoS12
    2013 Xu, X., Hayes, P. C., & Jak, E. (2013). Experimental study of phase equilibria in the "SnO"-CaO-SiO2 system in equilibrium with tin metal. INTERNATIONAL JOURNAL OF MATERIALS RESEARCH, 104(3), 235-243.
    DOI WoS8
    2013 Xu, X., Henao, H. M., Hayes, P. C., & Jak, E. (2013). Experimental study of phase equilibria in the "SnO" -SiO2- "FeO" system at silica saturation, and fixed oxygen partial pressures at 1473 K. INTERNATIONAL JOURNAL OF MATERIALS RESEARCH, 104(11), 1079-1087.
    DOI WoS5
    2013 Xu, X., Zhou, W., Liang, F., & Zhu, Z. (2013). A comparative study of different carbon fuels in an electrolyte-supported hybrid direct carbon fuel cell. APPLIED ENERGY, 108, 402-409.
    DOI WoS59
    2013 Xu, X., Zhou, W., Liang, F., & Zhu, Z. (2013). Optimization of a direct carbon fuel cell for operation below 700 degrees C. INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 38(13), 5367-5374.
    DOI WoS32
    2012 Xu, X., Hayes, P. C., & Jak, E. (2012). Phase equilibria in the "SnO" - SiO2 - "FeO" system in equilibrium with tin-iron alloy and the potential application for electronic scrap recycling. INTERNATIONAL JOURNAL OF MATERIALS RESEARCH, 103(5), 529-536.
    DOI WoS20
    2011 Xu, X., Hayes, P. C., & Jak, E. (2011). Experimental study of phase equilibria in the "SnO2"-CaO-SiO2 system in air. INTERNATIONAL JOURNAL OF MATERIALS RESEARCH, 102(10), 1208-1215.
    DOI WoS2

1). Shizhang Qiao, Yao Zheng and Xiaoyong Xu, Solid Oxide Electrolysis Cells with Novel Perovskite-based Cathodes, ARC-Linkage (2022)

2). Xiaoyong Xu, Yao Zheng Strategic Research Investment Funds from The University of Adelaide, Metal-supported Solid oxide fuel cell for vehicle. 2021

3). Zhonghua Zhu, Xiaoyong Xu. Development of novel cathodes for next generation solid oxide fuel cells, ARC Discovery Projects, (2013–2015)

CE4014 Plant Design Project


Connect With Me
External Profiles