Qi Chen
Australian Institute for Machine Learning - Projects
Faculty of Sciences, Engineering and Technology
Eligible to supervise Masters and PhD (as Co-Supervisor) - email supervisor to discuss availability.
Dr. Qi Chen is currently a postdoctoral research fellow at the Australian Institute for Machine Learning (AIML), the University of Adelaide, working with Prof. Anton van den Hengel and A/Prof. Qi Wu. He focuses mainly on Controllable Generative AI for Multimodality, (Multimodal) Large Language Models (LLMs), and Multimodal AI for Real-world Applications/Domains (e.g., Medicine, Architecture, and the Internet). He has over 20 peer-reviewed publications, most in flagship journals/conference proceedings, including IEEE-TPAMI/TIP/TMM, CVPR, NeurIPS, ICCV, etc. He also serves as a reviewer for top-tier journals/conference proceedings, including Nature Communications, IEEE-TPAMI, IJCV, CVPR, ICML, NeurIPS, ICLR, ICCV, ECCV, etc.
-
Appointments
Date Position Institution name 2023 - ongoing Postdoc University of Adelaide 2021 - 2024 Ph. D. Student University of Adelaide -
Research Interests
-
Journals
Year Citation 2025 Ge, J., Zhang, B., Liu, A., Phan, V. M. H., Chen, Q., Shu, Y., & Zhao, Y. (2025). CIT: Rethinking class-incremental semantic segmentation with a Class Independent Transformation. Pattern Recognition, 167, 111707.
2025 Zeng, R., Zhuo, Y., Li, J., Yang, Y., Wu, H., Chen, Q., . . . Leung, V. C. M. (2025). Improving Video Moment Retrieval by Auxiliary Moment-Query Pairs With Hyper-Interaction. IEEE Transactions on Circuits and Systems for Video Technology, 35(5), 3940-3954.
2025 Tan, M., Chen, Q., Huang, Z., Wu, Q., Li, Y., & Zhou, J. (2025). Auto-3D-house Design from Structured User Requirements. MACHINE INTELLIGENCE RESEARCH, 22(2), 18 pages.
2025 Zhang, J., Chen, X., Yang, B., Guan, Q., Chen, Q., Chen, J., . . . Xia, Y. (2025). Advances in attention mechanisms for medical image segmentation. Computer Science Review, 56, 18 pages.
Scopus12024 Chen, Q., Zhao, R., Wang, S., Phan, V. M. H., Hengel, A. V. D., Verjans, J., . . . Wu, Q. (2024). A Survey of Medical Vision-and-Language Applications and Their Techniques.. CoRR, abs/2411.12195. 2024 Guo, Y., Tan, M., Deng, Z., Wang, J., Chen, Q., Cao, J., . . . Chen, J. (2024). Towards Lightweight Super-Resolution With Dual Regression Learning. IEEE Transactions on Pattern Analysis and Machine Intelligence, 46(12), 8365-8379.
Scopus1 Europe PMC12022 Guo, Y., Zheng, Y., Tan, M., Chen, Q., Li, Z., Chen, J., . . . Huang, J. (2022). Towards Accurate and Compact Architectures via Neural Architecture Transformer. IEEE Transactions on Pattern Analysis and Machine Intelligence, 44(10), 6501-6516.
Scopus31 WoS5 Europe PMC62021 Tan, M., Xu, S., Zhang, S., & Chen, Q. (2021). A review on deep adversarial visual generation. Journal of Image and Graphics, 26(12), 2751-2766.
Scopus22020 Chen, Q., Wu, Q., Chen, J., Wu, Q., Van Den Hengel, A., & Tan, M. (2020). Scripted Video Generation with a Bottom-Up Generative Adversarial Network. IEEE Transactions on Image Processing, 29, 7454-7467.
Scopus28 WoS92019 Guo, Y., Chen, Q., Chen, J., Wu, Q., Shi, Q., & Tan, M. (2019). Auto-Embedding Generative Adversarial Networks for High Resolution Image Synthesis. IEEE Transactions on Multimedia, 21(11), 2726-2737.
Scopus63 WoS44 -
Conference Papers
Year Citation 2025 Chen, Q., Xie, Y., Wu, B., Chen, X., Ang, J., To, M. -S., . . . Wu, Q. (2025). Act Like a Radiologist: Radiology Report Generation Across Anatomical Regions. In Lecture Notes in Computer Science Vol. 15477 LNCS (pp. 36-52). Hanoi, Vietnam: Springer Nature Singapore.
DOI2025 Xu, H. M., Chen, Q., Wang, L., & Liu, L. (2025). Attention-Driven GUI Grounding: Leveraging Pretrained Multimodal Large Language Models Without Fine-Tuning. In Proceedings of the AAAI Conference on Artificial Intelligence Vol. 39 (pp. 8851-8859). Philadelphia, USA: Association for the Advancement of Artificial Intelligence (AAAI).
DOI2024 Xie, Y., Chen, Q., Wang, S., To, M. S., Lee, I., Khoo, E. W., . . . Wu, Q. (2024). PairAug: What Can Augmented Image-Text Pairs Do for Radiology?. In Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition (pp. 11652-11661). Seattle, Washington, USA: IEEE.
DOI Scopus22024 Huang, Z., Chen, Q., Sung, L., Yang, Y., Wang, N., Wu, Q., & Tan, M. (2024). G-NeRF: Geometry-enhanced Novel View Synthesis from Single-View Images. In 2024 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR) (pp. 10117-10126). WA, Seattle: IEEE COMPUTER SOC.
DOI Scopus12024 Chen, Q., Zhang, B., Wang, G., & Wu, Q. (2024). Weak-eval-Strong: Evaluating and Eliciting Lateral Thinking of LLMs with Situation Puzzles. In Advances in Neural Information Processing Systems Vol. 37.
Scopus12024 Chen, Q., Pitawela, D., Zhao, C., Zhou, G., Chen, H. T., & Wu, Q. (2024). WebVLN: Vision-and-Language Navigation on Websites. In Proceedings of the AAAI Conference on Artificial Intelligence Vol. 38 (pp. 1165-1173). Online: Association for the Advancement of Artificial Intelligence (AAAI).
DOI Scopus32023 Deng, C., Chen, Q., Qin, P., Chen, D., & Wu, Q. (2023). Prompt Switch: Efficient CLIP Adaptation for Text-Video Retrieval. In Proceedings of the IEEE International Conference on Computer Vision (pp. 15602-15612). Online: IEEE.
DOI Scopus282023 Chen, Q., Deng, C., & Wu, Q. (2023). Learning Distinct and Representative Modes for Image Captioning. In Advances in Neural Information Processing Systems Vol. 35 (pp. 14 pages). USA: Neural information processing systems foundation.
Scopus162023 Raymond, C., Chen, Q., Xue, B., & Zhang, M. (2023). Fast and Efficient Local-Search for Genetic Programming Based Loss Function Learning. In GECCO 2023 - Proceedings of the 2023 Genetic and Evolutionary Computation Conference (pp. 1184-1193). Lisbon Portugal: ACM.
DOI2023 Chen, Q., Xue, B., Banzhaf, W., & Zhang, M. (2023). Relieving Genetic Programming from Coefficient Learning for Symbolic Regression via Correlation and Linear Scaling. In GECCO 2023 - Proceedings of the 2023 Genetic and Evolutionary Computation Conference (pp. 420-428). Lisbon, Portugal: ACM.
DOI Scopus52023 Zhang, H., Chen, Q., Xue, B., Banzhaf, W., & Zhang, M. (2023). A Double Lexicase Selection Operator for Bloat Control in Evolutionary Feature Construction for Regression. In GECCO 2023 - Proceedings of the 2023 Genetic and Evolutionary Computation Conference (pp. 1194-1202). Lisdbon, POortugal: ACM.
DOI Scopus22023 Guo, Y., Chen, Y., Zheng, Y., Chen, Q., Zhao, P., Huang, J., . . . Tan, M. (2023). Pareto-aware Neural Architecture Generation for Diverse Computational Budgets. In IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops Vol. 2023-June (pp. 2248-2258). Vancouver, BC, Canada: IEEE.
DOI Scopus32023 Lin, J., Chen, Q., Xue, B., & Zhang, M. (2023). AMTEA-Based Multi-task Optimisation for Multi-objective Feature Selection in Classification. In J. Correia, S. Smith, & R. Qaddoura (Eds.), Conference Proceedings of the Applications of Evolutionary Computation 26th European Conference, EvoApplications 2023, Held as Part of EvoStar 2023. Vol. 13989 LNCS (pp. 623-639). Brno, Czech Republic: Springer Nature Switzerland.
DOI Scopus22023 Zhang, H., Chen, Q., Tonda, A., Xue, B., Banzhaf, W., & Zhang, M. (2023). MAP-Elites with Cosine-Similarity for Evolutionary Ensemble Learning. In G. Pappa, M. Giacobini, & Z. Vasicek (Eds.), Conference proceedings Genetic Programming. EuroGP 2023 Vol. 13986 (pp. 84-100). Brno, Czech Republic: Springer Nature Switzerland.
DOI Scopus52022 Chen, Q., Tan, M., Qi, Y., Zhou, J., Li, Y., & Wu, Q. (2022). V2C: Visual Voice Cloning. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR, 2022) Vol. 2022-June (pp. 21210-21219). Online: IEEE.
DOI Scopus21 WoS22021 Chen, Y., Guo, Y., Chen, Q., Li, M., Zeng, W., Wang, Y., & Tan, M. (2021). Contrastive Neural Architecture Search with Neural Architecture Comparators. In Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition (pp. 9497-9506). Nathville, TN, USA: IEEE.
DOI Scopus682021 Qiao, Y., Chen, Q., Deng, C., DIng, N., Qi, Y., Tan, M., . . . Wu, Q. (2021). R-GAN: Exploring Human-like Way for Reasonable Text-to-Image Synthesis via Generative Adversarial Networks. In MM 2021 - Proceedings of the 29th ACM International Conference on Multimedia (pp. 2085-2093). New York, NY, United States: Association for Computing Machinery.
DOI Scopus17 WoS72021 Al-Helali, B., Chen, Q., Xue, B., & Zhang, M. (2021). GP-based Feature Selection and Weighted KNN-based Instance Selection for Symbolic Regression with Incomplete Data. In Proceedings of the 2020 IEEE Symposium Series on Computational Intelligence, SSCI 2020 (pp. 905-912). Canberra, ACT, Aust: IEEE.
DOI Scopus22021 Zheng, Y., Wen, Z., Tan, M., Zeng, R., Chen, Q., Wang, Y., & Wu, Q. (2021). Modular graph attention network for complex visual relational reasoning. In Proceedings of the 15th Asian Conference on Computer Vision (ACCV 2020), as published in Lecture Notes in Computer Science Vol. 12627 (pp. 137-153). Cham, Switzerland: Springer.
DOI Scopus22020 Chen, Q., Wang, W., Huang, K., De, S., & Coenen, F. (2020). Adversarial Domain Adaptation for Crisis Data Classification on Social Media. In Proceedings - IEEE Congress on Cybermatics: 2020 IEEE International Conferences on Internet of Things, iThings 2020, IEEE Green Computing and Communications, GreenCom 2020, IEEE Cyber, Physical and Social Computing, CPSCom 2020 and IEEE Smart Data, SmartData 2020 (pp. 282-287). Rhodes, Greece: IEEE.
DOI Scopus42020 Chen, Q., Wang, W., Huang, K., De, S., & Coenen, F. (2020). Multi-modal Adversarial Training for Crisis-related Data Classification on Social Media. In Proceedings - 2020 IEEE International Conference on Smart Computing, SMARTCOMP 2020 (pp. 232-237). Bologna, Italy: IEEE.
DOI Scopus82020 Chen, Q., Wu, Q., Tang, R., Wang, Y., Wang, S., & Tan, M. (2020). Intelligent home 3D: Automatic 3D-house design from linguistic descriptions only. In Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition (pp. 12622-12631). online: IEEE.
DOI Scopus372020 Guo, Y., Chen, J., Wang, J., Chen, Q., Cao, J., Deng, Z., . . . Tan, M. (2020). Closed-Loop Matters: Dual Regression Networks for Single Image Super-Resolution. In 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (pp. 1-10). Seattle, WA, USA: IEEE.
DOI Scopus3512020 Liu, L., Cao, J., Liu, M., Guo, Y., Chen, Q., & Tan, M. (2020). Dynamic Extension Nets for Few-shot Semantic Segmentation. In Proceedings of the 28th ACM International Conference on Multimedia (pp. 1-9). Seattle, WA, USA: ACM.
DOI Scopus392020 Al-Helali, B., Chen, Q., Xue, B., & Zhang, M. (2020). Data Imputation for Symbolic Regression with Missing Values: A Comparative Study. In 2020 IEEE Symposium Series on Computational Intelligence, SSCI 2020 (pp. 2093-2100). Canberra, ACT, Aust: IEEE.
DOI Scopus22020 Al-Helali, B., Chen, Q., Xue, B., & Zhang, M. (2020). Multi-Tree Genetic Programming-based Transformation for Transfer Learning in Symbolic Regression with Highly Incomplete Data. In 2020 IEEE Congress on Evolutionary Computation, CEC 2020 - Conference Proceedings (pp. 1-8). Glasgow, Scotland: IEEE.
DOI Scopus62020 Al-Helali, B., Chen, Q., Xue, B., & Zhang, M. (2020). Genetic Programming-Based Selection of Imputation Methods in Symbolic Regression with Missing Values. In M. Gallagher, N. Moustafa, & E. Lakshika (Eds.), Conference proceedings of AI 2020: Advances in Artificial Intelligence 33rd Australasian Joint Conference Vol. 12576 (pp. 163-175). Canberra, ACT, Aust: Springer International Publishing.
DOI Scopus22020 Al-Helali, B., Chen, Q., Xue, B., & Zhang, M. (2020). Genetic Programming-Based Simultaneous Feature Selection and Imputation for Symbolic Regression with Incomplete Data. In S. Palaiahnakote, G. Sanniti di Baja, L. Wang, & W. Yan (Eds.), Conference Proceedings Pattern Recognition 5th Asian Conference, ACPR 2019 Vol. 12047 LNCS (pp. 566-579). Auckland, New Zealand: Springer International Publishing.
DOI Scopus62019 Al-Helali, B., Chen, Q., Xue, B., & Zhang, M. (2019). A Genetic Programming-based Wrapper Imputation Method for Symbolic Regression with Incomplete Data. In Proceedings of the 2019 IEEE Symposium Series on Computational Intelligence (SSCI) (pp. 2395-2402). Xiamen, China: IEEE.
DOI Scopus82019 Chen, Q., Xue, B., & Zhang, M. (2019). Instance based Transfer Learning for Genetic Programming for Symbolic Regression. In 2019 IEEE Congress on Evolutionary Computation, CEC 2019 - Proceedings (pp. 3006-3013). Wellington, New Zealand: IEEE.
DOI Scopus192019 Guo, Y., Zheng, Y., Tan, M., Chen, Q., Chen, J., Zhao, P., & Huang, J. (2019). NAT: Neural architecture transformer for accurate and compact architectures. In Proceedings of the 33rd International Conference on Neural Information Processing Systems Vol. 32 (pp. 1-12). Red Hook, NY, USA: Curran Associates Inc.
Scopus512019 Chen, Q., & Wang, W. (2019). Multi-modal Neural Network for Traffic Event Detection. In Proceedings of the 2019 IEEE 2nd International Conference on Electronics and Communication Engineering, ICECE 2019 (pp. 26-30). Xi'an, China: IEEE.
DOI Scopus8 -
Preprint
Year Citation 2025 Nguyen, D., Ho, M. K., Ta, H., Nguyen, T. T., Chen, Q., Rav, K., . . . Phan, V. M. H. (2025). Localizing Before Answering: A Hallucination Evaluation Benchmark for
Grounded Medical Multimodal LLMs.2025 Huy, T. D., Huynh, D. A., Xie, Y., Qi, Y., Chen, Q., Nguyen, P. L., . . . Phan, V. M. H. (2025). Seeing the Trees for the Forest: Rethinking Weakly-Supervised Medical
Visual Grounding.2024 Xu, H. -M., Chen, Q., Wang, L., & Liu, L. (2024). Attention-driven GUI Grounding: Leveraging Pretrained Multimodal Large
Language Models without Fine-Tuning.2024 Chen, Q., Zhang, B., Wang, G., & Wu, Q. (2024). Weak-eval-Strong: Evaluating and Eliciting Lateral Thinking of LLMs with
Situation Puzzles.2024 Chen, Q., Zhao, R., Wang, S., Phan, V. M. H., Hengel, A. V. D., Verjans, J., . . . Wu, Q. (2024). A Survey of Medical Vision-and-Language Applications and Their
Techniques.2023 Chen, Q., Pitawela, D., Zhao, C., Zhou, G., Chen, H. -T., & Wu, Q. (2023). WebVLN: Vision-and-Language Navigation on Websites. 2021 Chen, Q., Li, Y., Qi, Y., Zhou, J., Tan, M., & Wu, Q. (2021). V2C: Visual Voice Cloning. 2020 Cao, J., Chen, Q., Guo, J., & Shi, R. (2020). Attention-guided Context Feature Pyramid Network for Object Detection.
-
Current Higher Degree by Research Supervision (University of Adelaide)
Date Role Research Topic Program Degree Type Student Load Student Name 2025 Co-Supervisor Reconstruct Neural rendering field from compressed and corrupted data Doctor of Philosophy Doctorate Full Time Mr Hanwen Wang
Connect With Me
External Profiles