Prof Maria Hrmova

School of Agriculture, Food and Wine

College of Science


Professional interests: My expertise is in the multidisciplinary field of structural biochemistry and biophysics.
 
Research in my group resulted in the publishing of around 220 peer-reviewed articles and patents explaining catalytic mechanisms of enzymes in crop plants, and the roles of transporters and transcription factors in plant abiotic stress tolerance. Our outputs have appeared in the top-tier journals Nature Communications, Science, Cell Research, Communications Biology, American Chemical Society, Biotechnology Advances, Current Opinion in Plant Biology, Biochemical Society Transactions, Plant Cell, Plant Physiology, Plant Journal, Biochemical Journal, Journal of Biological Chemistry, etc. Our works have received ~9,000 citations and 14 papers have been featured on the front covers of academic resources.
 
My group investigates molecular mechanisms that underpin the function of plant proteins in three major areas:
 
(i) CATALYTIC MECHANISMS OF ENZYMES INVOLVED IN PLANT DEVELOPMENT
We focus on catalytic mechanisms of plant exohydrolytic and xyloglucan xyloglucosyl transferase enzymes. With exohydrolases using high-resolution X-ray crystallography, enzyme kinetics, mass spectrometry, NMR spectroscopy, and multi-scale 3D molecular modelling, we discovered the glucose product displacement mechanism and how it is linked to the catalytic cycle. This newly described ‘substrate-product assisted processive catalytic’ mechanism represents a series of events, where on productive substrate binding near the active site, the entrapped glucose product modifies its binding patterns and evokes the formation of a temporary lateral cavity, which serves as a conduit for glucose departure to allow for the next catalytic cycle. This path enables efficient catalysis via multiple hydrolytic events without the enzyme losing contact with oligo- or polysaccharides. This discovery has significance in biotechnology to engineer enzymes for how plant materials can be converted into biofuels, biochemicals and other high-value products. It is also applicable in the pharmaceutical industry, where enzymes are sought as environmentally friendly and cost-effective options in bioremediation, and other applications. This work was published in two articles in Nature Communications.
With xyloglucan xyloglucosyl transferases we engineered the acceptor substrate specificity in nasturtium enzymes and in barley isoforms we discovered that they catalysed the covalent bond formation between the xyloglucan donor and the penta-galacturonide acceptor – the homogalacturonan (pectin) fragment. This work was published in Plant Molecular Biology, and Plant Journal.
 
Recently, I was invited to chair the "Enzymes session" at the 5th International Symposium on Frontiers in Molecular Science in Kyoto, Japan (https://sciforum.net/event/ISFMS2025).
This enzyme session will showcase original and impactful research that advances understanding of enzyme catalysis. We aim to highlight breakthroughs in catalytic mechanisms, biopolymer conversions, and enzyme functions in metabolic and chemical processes. Topics include enzyme kinetics and dynamics, de novo enzyme design, and enzyme bioengineering, using biochemical, biophysical, and computational approaches. The focus is on how molecular structure relates to enzyme function. Our central goal is to present enzymology as a vital and inspiring field for bioengineering, sustainability, and medicine.
 
(ii) PLANT TRANSPORT PROTEINS UNDERLYING ELEMENTAL SOIL TOXICITY TOLERANCE My laboratory is focused on the structural and functional properties of plant borate and HKT (High-affinity Potassium Transporter) Na+/K+ transporters and unorthodox and multifunctional aquaporins. By combining in silico and in vitro methods, we discovered that borate transporters mediate Na+-dependent anion transport and exhibit channel-like characteristics. This work was published in Plant Cell, and Plant Physiology. With HKT transporters, we constructed the 3D structural model for Na+-exclusion in rice and explained that variations in salt tolerance can be explained by transcription, alternative splicing, and a protein structure. We clarified a long-standing question, how do the structural variations in wheat HKT proteins underpin differences in Na+ transport capacity; this work was highlighted on the front cover of Cellular and Molecular Life Sciences and published in Plant Cell & Environment, and Communications Biology.
 
(iii) TRANSCRIPTION FACTORS INVOLVED IN THE REGULATION OF PLANT RESPONSES TO DROUGHTWe perform extensive 3D molecular modelling studies of transcription factors in complex with DNA cis-elements, such as bZIP, HDZip, DREB, ERF, NFY-YB, CBF, and MYB, and validate these DNA-binding properties in vitro. We engineered wheat transcription factor variants and in breakthrough science, using genetically engineered plants, we showed that these modifications changed DNA recognition and plant responses to drought and frost. Our work was highlighted on the front covers of Plant Biotechnology Journal, Plant Molecular Biology, and Journal of Experimental Botany.

Using a combination of biology, biochemistry, biophysics, bioinformatics, and computational chemistry techniques, including multi-scale molecular modelling of nanoscale reactant movements in a plant exohydrolytic enzyme, we have discovered a remarkable phenomenon during initial and final catalytic events near the surface of this enzyme. The enzyme formed a transient cavity, which allowed the trapped glucose product to escape to allow for the next round of catalysis. This path enables "substrate-product assisted processive catalysis" through multiple hydrolytic events without the enzyme losing contact with oligo- or polymeric substrates. We anticipate that such enzyme plasticity could be prevalent among exo-hydrolases.

Our discovery of substrate-product-assisted processive catalysis has significance for the multibillion-dollar biomedical, pharmaceutical, chemical, and biotechnology industries to engineer enzymes that could be used efficiently outside of biological systems.

Structural changes of a barley enzyme envisaged by high-resolution X-ray crystallography and multiscale molecular modelling.

Legend to the image: Structural changes of a barley enzyme envisaged by high-resolution X-ray crystallography and multiscale molecular modelling.

This work was published in three articles in Nature Communications and Communications Biology.

Streltsov VA, Luang S, Peisley A, Varghese JN, Ketudat Cairns JR, Fort S, Hijnen M, Tvaroška I, Ardá A, Jiménez-Barbero J, Alfonso-Prieto M, Rovira C, Mendoza F, Tiessler-Sala L, Sánchez-Aparicio S-E, Rodríguez-Guerra J, Lluch JM, Maréchal J-D, Masgrau L, Hrmova M* (2019) Discovery of processive catalysis by an exo-hydrolase with a pocket-shaped active site. Nature Communications 10 (2222); https://doi.org/10.1038/s41467-019-09691-z. *Corresponding author.

Luang S, Fernández-Luengo X, Nin-Hill A, Streltsov VA, Schwerdt JG, Alonso-Gil S, Ketudat Cairns JR, Pradeau S, Fort S, Maréchal J-D, Masgrau L, Rovira C, Hrmova M* (2022) The evolutionary advantage of an aromatic clamp in plant family 3 glycoside exo-hydrolases. Nature Communications 13 (5577); https://doi.org/10.1038/s41467-022-33180-5. *Corresponding author.

Luang S, Fernández-Luengo X, Streltsov VA, Maréchal J-D, Masgrau L*, Hrmova M* (2025) The structure and dynamics of water molecule networks underlie catalytic efficiency in a glycoside exo-hydrolase. Communications Biology 8, 729; https://doi.org/10.1038/s42003-025-08113-9. *Corresponding authors.

Press Releases for these articles can be seen here 

https://phys.org/news/2019-05-discovery-frontiers.html

 https://www.thewaite.org/ultra-fast-plant-enzyme-dynamics-leads-to-breakthroughs/

https://www.littlebytesnews.com/2025/05/water-molecules-form-harmonised.html

Movies describing the newly discovered catalytic mechanism can be seen here 

https://figshare.com/articles/media/Streltsov-et-al_movie_mp4/8075504

https://figshare.com/s/faf4d4d8c582ed0d7184

https://figshare.com/articles/media/The_structure_and_dynamics_of_water_molecule_networks_underlie_catalytic_efficiency_in_a_glycoside_exo-hydrolase/28367753

Movie descriptions:

Movie 1    Nature Communications 2019, 10 (2222)
Molecular animation of the sequence of events involving the glucose product entrapment, incoming substrate binding, and glucose displacement in a plant exo-hydrolase HvExoI, and how this sequence of events underlies substrate-product assisted processive catalysis. The movie shows the entrapped glucose molecule in the -1 subsite of the active site, through twelve residues located on seven loops. After the incoming β-D-glucopyranosyl-(1,3)-D-glucose substrate binds in the +1 and putative +2 subsites, the glucose product adjusts its binding patterns and traverses from the -1 subsite through rotations of Arg158 and Asp285 sidechains and associated backbone atoms, into the autonomous and transient lateral cavity, from where it advances through the aperture into the bulk solvent. The video was prepared in Chimera (Pettersen, E. F. et al. J. Comput. Chem. 25, 1605-1612; 2004), using the HD Movie Maker tool.

Movie 2    Nature Communications 2022, 13 (5577)
Molecular animation of sequences of events in wild-type HvExoI after the laminarihexaose substrate is hydrolysed into Glc and laminaripentaose (L5). Here, the Glc product adjusts its binding patterns and traverses from the -1 subsite through rotations of Arg158, Tyr253, Asp285, Glu491 sidechains, and associated backbone atoms into the autonomous and transient lateral cavity, from where it advances through the ad-hoc formed aperture into bulk solvent. These are key events of path 1 of substrate-product-assisted processive catalysis. The video was prepared as described in the legend for Movie 1.

Movie 3    Nature Communications 2022,13 (5577)
Molecular animation of sequences of events in the W434H mutant of HvExoI after the laminarihexaose substrate is hydrolysed into Glc and laminaripentaose (L5). Here, the Glc product adjusts its binding patterns and traverses from the -1 subsite through rotations of Arg158, Tyr253, Asp285, Glu491 sidechains, and associated backbone atoms into the autonomous and transient lateral cavity, from where it advances through the ad-hoc formed aperture into bulk solvent. These are key events of path 1 of substrate-product-assisted processive catalysis. The video was prepared as described in the legend for Movie 1.

Movie 4    Nature Communications 2022,13 (5577)
Molecular animation of sequences of events in the W434A mutant of HvExoI after the laminarihexaose substrate is hydrolysed into Glc and laminaripentaose (L5). Here, the Glc product diffuses through the preformed opening resulting from the W434A mutation. In this Glc egress path, the toll-like Arg158-Asp285-Glu491 barrier, Tyr253, and the Arg291-Glu220 salt bridge are not involved. These are key events of path 2, where substrate-product-assisted processive catalysis does not take place. The video was prepared as described in the legend for Movie 1.

Date Position Institution name
2010 - ongoing Professor (Research) University of Adelaide

Date Type Title Institution Name Country Amount
2025 Award Chair of the “Enzymes” session at the 5th International Symposium on Frontiers in Molecular Science in Kyoto, Japan Kyoto Prefectural University, Kyoto Prefectural University of Medicine and the Kyoto Prefectural Government Japan -
2023 Award COMMEMORATIVE MEDAL OF THE INSTITUTE OF CHEMISTRY OF THE SLOVAK ACADEMY OF SCIENCES THE INSTITUTE OF CHEMISTRY OF THE SLOVAK ACADEMY OF SCIENCES Slovakia -
2021 Award THE GOLD MEDAL OF THE SLOVAK ACADEMY OF SCIENCES THE SLOVAK ACADEMY OF SCIENCES Slovakia -
2019 Award PROFESSOR EMERITA AT THE UNIVERSITY OF ADELAIDE The University of Adelaide Australia -
2012 Award ELECTED MEMBER OF THE LEARNED SOCIETY OF SLOVAK ACADEMY OF SCIENCES Comenius University Slovakia -
2012 Award DOCTOR SCIENTIARUM BY THE COMENIUS UNIVERSITY, SLOVAK REPUBLIC THE COMENIUS UNIVERSITY Slovakia -

Language Competency
Czech Can read, write, speak, understand spoken and peer review
English Can read, write, speak, understand spoken and peer review
German Can read, write and understand spoken
Slovak Can read, write, speak, understand spoken and peer review

Date Institution name Country Title
2010 - 2012 Comenius University Slovakia Doctor Scientiarum (DrSci) in Chemistry
1978 - 1981 Comenius University in Bratislava Slovakia Philosophy Doctor (PhD) in Biochemistry
1976 - 1978 Comenius University Slovakia Master of Science (MSc) in Biochemistry
1974 - 1975 Comenius University Slovakia Bachelor of Science (BSc) in Biochemistry

Date Title Institution name Country
2023 The commemorative medal Institute of Chemistry of the Slovak Academy of Sciences Slovakia
2021 The recipient of the Gold Medal of Slovak Academy of Sciences Slovak Academy of Sciences Slovakia
2019 Professor Emerita UNIVERSITY OF ADELAIDE Australia
2012 Doctor Scientiarum Comenius University in Bratislava Slovakia
2012 An elected member of the Learned Society of Slovak Academy of Sciences SLOVAK ACADEMY OF SCIENCES SLovakia

Year Citation
2025 Luang, S., Fernández-Luengo, X., Streltsov, V. A., Maréchal, J. -D., Masgrau, L., & Hrmova, M. (2025). The structure and dynamics of water molecule networks underlie catalytic efficiency in a glycoside exo-hydrolase. Communications Biology, 8(1), 729-1-729-17.
DOI Scopus1 WoS1 Europe PMC1
2025 Marunaka, Y., Merlino, A., Hrmova, M., Ruan, Y. C., Shiozaki, A., Takahashi, M., & Iwasaki, Y. (2025). Report of the 5th International Symposium on Frontiers in Molecular Science (ISFMS 2025). International Journal of Molecular Sciences, 26(18), 12 pages.
DOI
2024 Hrmova, M. (2024). Quaternary arrangements of membrane proteins: an aquaporin case. Biochemical Society Transactions, 52(6), 2557-2568.
DOI
2024 Henderson, S. W., Nourmohammadi, S., & Hrmova, M. (2024). Protein Structural Modeling and Transport Thermodynamics Reveal That Plant Cation–Chloride Cotransporters Mediate Potassium–Chloride Symport. International Journal of Molecular Sciences, 25(23), 12955.
DOI Scopus1 WoS1 Europe PMC1
2024 Hrmova, M., Zimmer, J., Bulone, V., & Fincher, G. B. (2024). Enzymes in 3D: Synthesis, remodelling, and hydrolysis of cell wall (1,3;1,4)-β-glucans. Plant Physiology, 194(1), 33-50.
DOI Scopus5 WoS6 Europe PMC3
2023 Stratilova, B., Sestak, S., Stratilova, E., Vadinova, K., Kozmon, S., & Hrmova, M. (2023). Engineering of substrate specificity in a plant cell-wall modifying enzyme through alterations of carboxyl-terminal amino acid residues. The Plant Journal, 116(5), 1529-1544.
DOI Scopus4 WoS3 Europe PMC1
2023 Venkataraghavan, A., Schwerdt, J. G., Tyerman, S. D., & Hrmova, M. (2023). Barley Nodulin 26-like intrinsic protein permeates water, metalloids, saccharides, and ion pairs due to structural plasticity and diversification. Journal of Biological Chemistry, 299(12), 105410-1-105410-14.
DOI Scopus3 WoS3 Europe PMC2
2023 Hrmova, M., & Schwerdt, J. G. (2023). Molecular mechanisms of processive glycoside hydrolases underline catalytic pragmatism. Biochemical Society Transactions, 51(3), 1387-1403.
DOI Scopus8 WoS8 Europe PMC8
2022 Gilliham, M., & Hrmova, M. (2022). Alluminating structure key to stress tolerance. Cell Research, 32(1), 5-6.
DOI Scopus2 WoS2 Europe PMC1
2022 Hrmova, M., Stratilová, B., & Stratilová, E. (2022). Broad specific xyloglucan:xyloglucosyl transferases are formidable players in the re-modelling of plant cell wall structures. International Journal of Molecular Sciences, 23(3), 1656-1-1656-19.
DOI Scopus35 WoS32 Europe PMC25
2022 Sperotto, R. A., Hrmova, M., Graether, S. P., & Timmers, L. F. S. M. (2022). Editorial: Structural bioinformatics and biophysical approaches for understanding the plant responses to biotic and abiotic stresses. Frontiers in Plant Science, 13, 1012584-1-1012584-3.
DOI
2022 Luang, S., Fernández-Luengo, X., Nin-Hill, A., Streltsov, V. A., Schwerdt, J. G., Alonso-Gil, S., . . . Hrmova, M. (2022). The evolutionary advantage of an aromatic clamp in plant family 3 glycoside exo-hydrolases. Nature Communications, 13(1), 5577-1-5577-19.
DOI Scopus7 WoS8 Europe PMC9
2022 Stratilová, B., Stratilová, E., Hrmova, M., & Kozmon, S. (2022). Definition of the acceptor substrate binding specificity in plant xyloglucan endotransglycosylases using computational chemistry. International Journal of Molecular Sciences, 23(19), 11838-1-11838-26.
DOI Scopus2 WoS2 Europe PMC1
2021 Hrmova, M. (2021). Special issue: "Peter Biely, a pioneering researcher in the enzymology of plant biomass degradation". Molecules, 26(16), 4857-1-4857-4.
DOI
2021 Han, Z. -L., Meng, C., Fu, X. -D., Min, Y., Hrmova, M., Yuan-Hui, Z., & Hai-Jin, M. (2021). Potassium alginate oligosaccharides alter gut microbiota, and have potential to prevent the development of hypertension and heart failure in spontaneously hypertensive rats. International Journal of Molecular Sciences, 22(18), 9823-1-9823-16.
DOI Scopus31 WoS30 Europe PMC27
2021 Hrmova, M., & Hussain, S. (2021). Plant transcription factors involved in drought and associated stresses. International Journal of Molecular Sciences, 22(11), 5662-1-5662-29.
DOI Scopus166 WoS147 Europe PMC91
2021 Wege, S., Qiu, J., Byrt, C., Houston, K., Waugh, R., Gilliham, M., & Hrmova, M. (2021). A single residue deletion in the barley HKT1;5 P189 variant restores plasma membrane localisation but not Na⁺ conductance. Biochimica et Biophysica Acta (BBA) - Biomembranes, 1863(10), 183669-1-183669-11.
DOI Scopus6 WoS5 Europe PMC5
2020 Yang, Y., Al-Baidhani, H. H. J., Harris, J., Riboni, M., Li, Y., Mazonka, I., . . . Kovalchuk, N. (2020). DREB/CBF expression in wheat and barley using the stress‐inducible promoters of HD‐Zip I genes: impact on plant development, stress tolerance and yield. Plant Biotechnology Journal, 18(3), 829-844.
DOI Scopus96 WoS77 Europe PMC51
2020 Borjigin, C., Schilling, R., Bose, J., Hrmova, M., Qiu, J., Wege, S., . . . Roy, S. (2020). A single nucleotide substitution in<i>TaHKT1;5-D</i>controls shoot Na<sup>+</sup>accumulation in bread wheat.
DOI
2020 Goonetilleke, S. N., Croxford, A. E., March, T. J., Wirthensohn, M. G., Hrmova, M., & Mather, D. E. (2020). Variation among S-locus haplotypes and among stylar RNases in almond. Scientific Reports, 10(1), 583-1-583-15.
DOI Scopus10 WoS8 Europe PMC4
2020 Stratilova, B., Rehulka, P., Garajova, S., Rehulkova, H., Stratilova, E., Hrmova, M., & Kozmon, S. (2020). Structural characterization of the Pet c 1.0201 PR-10 protein isolated from roots of Petroselinum crispum (Mill.) Fuss. Phytochemistry, 175, 112368-1-112368-9.
DOI Scopus4 WoS3 Europe PMC3
2020 Houston, K., Jiaen, Q., Wege, S., Oakey, H., Hrmova, M., Qu, Y., . . . Waugh, R. (2020). Barley sodium content is regulated by natural variants of the Na+ transporter HvHKT1;5. Communications Biology, 3(1), 258-1-258-9.
DOI Scopus33 WoS29 Europe PMC20
2020 Borjigin, C., Schilling, R. K., Bose, J., Hrmova, M., Qiu, J., Wege, S., . . . Roy, S. J. (2020). A single nucleotide substitution in TaHKT1;5-D controls shoot Na⁺ accumulation in bread wheat. Plant, Cell and Environment, 43(9), 2158-2171.
DOI Scopus22 WoS22 Europe PMC23
2020 Hrmova, M., Gilliham, M., & Tyerman, S. D. (2020). Plant transporters involved in combating boron toxicity: beyond 3D structures. Biochemical Society Transactions, 48(4), 1683-1696.
DOI Scopus28 WoS25 Europe PMC16
2020 Stratilová, B., Šesták, S., Mravec, J., Garajova, S., Pakanová, Z., Vadinová, K., . . . Hrmova, M. (2020). Another building block in the plant cell wall: Barley xyloglucan xyloglucosyl transferases link covalently xyloglucan and anionic oligosaccharides derived from pectin. The Plant Journal, 104(3), 752-767.
DOI Scopus26 WoS21 Europe PMC14
2020 Xu, B., Hrmova, M., & Gilliham, M. (2020). High affinity Na⁺ transport by wheat HKT1;5 is blocked by K⁺. Plant Direct, 4(10), 1-10.
DOI Scopus15 WoS13 Europe PMC11
2020 Stratilova, B., Kozmon, S., Stratilova, E., & Hrmova, M. (2020). Plant xyloglucan xyloglucosyl transferases and the cell wall structure: subtle but significant. Molecules, 25(23), 5619-1-5619-25.
DOI Scopus51 WoS47 Europe PMC33
2019 Stratilová, B., Firáková, Z., Klaudiny, J., Šesták, S., Kozmon, S., Strouhalová, D., . . . Hrmova, M. (2019). Engineering the acceptor substrate specificity in the xyloglucan endotransglycosylase TmXET6.3 from nasturtium seeds (Tropaeolum majus L.). Plant Molecular Biology, 100(1-2), 1-17.
DOI Scopus18 WoS16 Europe PMC11
2019 Streltsov, V. A., Luang, S., Peisley, A., Varghese, J. N., Ketudat Cairns, J. R., Fort, S., . . . Hrmova, M. (2019). Discovery of processive catalysis by an exo-hydrolase with a pocket-shaped active site. Nature Communications, 10(1), 10 pages.
DOI Scopus24 WoS23 Europe PMC19
2019 Kovalchuk, N., Wu, W., Bazanova, N., Reid, N., Singh, R., Shirley, N., . . . Lopato, S. (2019). Wheat wounding-responsive HD-Zip IV transcription factor GL7 is predominantly expressed in grain and activates genes encoding defensins. Plant Molecular Biology, 101(1-2), 41-61.
DOI Scopus7 WoS7 Europe PMC5
2019 Kovalchuk, N., Wu, W., Bazanova, N., Reid, N., Singh, R., Shirley, N., . . . Lopato, S. (2019). Correction to: Wheat wounding-responsive HD-Zip IV transcription factor GL7 is predominantly expressed in grain and activates genes encoding defensins (Plant Molecular Biology, (2019), 101, 1-2, (41-61), 10.1007/s11103-019-00889-9). Plant Molecular Biology, 101(1-2), 63-64.
DOI
2018 Hrmova, M., & Gilliham, M. (2018). Plants fighting back: to transport or not to transport, this is a structural question. Current Opinion in Plant Biology, 46, 68-76.
DOI Scopus16 WoS16 Europe PMC15
2018 Xu, B., Hrmova, M., & Gilliham, M. (2018). High affinity Na<sup>+</sup> transport by wheat HKT1;5 is blocked by K<sup>+</sup>.
DOI
2018 Yang, Y., Luang, S., Harris, J., Riboni, M., Li, Y., Bazanova, N., . . . Lopato, S. (2018). Overexpression of the class I homeodomain transcription factor TaHDZipI-5 increases drought and frost tolerance in transgenic wheat. Plant Biotechnology Journal, 16(6), 1227-1240.
DOI Scopus60 WoS58 Europe PMC40
2018 Yang, Y., Luang, S., Harris, J., Riboni, M., Li, Y., Bazanova, N., . . . Lopato, S. (2018). Overexpression of the class I homeodomain transcription factor TaHDZipI-5 increases drought and frost tolerance in transgenic wheat. Plant Biotechnology Journal, 16(6), 1227-1240.
DOI Scopus60 WoS58 Europe PMC40
2018 Xu, B., Waters, S., Byrt, C., Plett, D., Tyerman, S., Tester, M., . . . Gilliham, M. (2018). Structural variations in wheat HKT1;5 underpin differences in Na+ transport capacity. Cellular and Molecular Life Sciences, 75(6), 1133-1144.
DOI Scopus36 WoS34 Europe PMC23
2018 Luang, S., Sornaraj, P., Bazanova, N., Jia, W., Eini Gandomani, O., Hussain, S. S., . . . Lopato, S. (2018). The wheat TabZIP2 transcription factor is activated by the nutrient starvation-responsive SnRK3/CIPK protein kinase. Plant Molecular Biology, 96(6), 543-561.
DOI Scopus29 WoS26 Europe PMC21
2018 Bi, H., Shi, J., Kovalchuk, N., Luang, S., Bazanova, N., Chirkova, L., . . . Borisjuk, N. (2018). Overexpression of the TaSHN1 transcription factor in bread wheat leads to leaf surface modifications, improved drought tolerance and no yield penalty under controlled growth conditions. Plant, Cell & Environment, 41(11), 2549-2566.
DOI Scopus58 WoS49 Europe PMC43
2017 Bi, H., Luang, S., Li, Y., Bazanova, N., Borysyuk, M., Hrmova, M., & Lopato, S. (2017). Wheat drought-responsive WXPL transcription factors regulate cuticle biosynthesis genes. Plant Molecular Biology, 94(1), 15-32.
DOI Scopus22 WoS18 Europe PMC12
2016 Bi, H., Luang, S., Li, Y., Bazanova, N., Morran, S., Song, Z., . . . Lopato, S. (2016). Identification and characterization of wheat drought-responsive MYB transcription factors involved in the regulation of cuticle biosynthesis. Journal of Experimental Botany, 67(18), 5363-5380.
DOI Scopus80 WoS73 Europe PMC68
2016 Rabiger, D. S., Taylor, J. M., Spriggs, A., Hand, M. L., Henderson, S. T., Johnson, S. D., . . . Koltunow, A. G. M. (2016). Generation of an integrated Hieracium genomic and transcriptomic resource enables exploration of small RNA pathways during apomixis initiation. BMC Biology, 14(1), 86-1-86-21.
DOI Scopus21 WoS19 Europe PMC18
2016 Harris, J., Sornaraj, P., Taylor, M., Bazanova, N., Baumann, U., Lovell, B., . . . Hrmova, M. (2016). Molecular interaction of the γ-clade homeodomain-leucine zipper class I transcription factors during the wheat response to water deficit. Plant Molecular Biology, 90(4), 435-452.
DOI Scopus33 WoS32 Europe PMC23
2016 Zieleniecki, J., Nagarajan, Y., Waters, S., Rongala, J., Thompson, V., Hrmova, M., & Köper, I. (2016). Cell-free synthesis of a functional membrane transporter into a tethered bilayer lipid membrane. Langmuir, 32(10), 2445-2449.
DOI Scopus27 WoS25 Europe PMC15
2016 Kovalchuk, N., Chew, W., Sornaraj, P., Borisjuk, N., Yang, N., Singh, R., . . . Lopato, S. (2016). The homeodomain transcription factor TaHDZipI-2 from wheat regulates frost tolerance, flowering time and spike development in transgenic barley. New Phytologist, 211(2), 671-687.
DOI Scopus36 WoS34 Europe PMC32
2016 Amalraj, A., Luang, S., Kumar, M., Sornaraj, P., Eini, O., Kovalchuk, N., . . . Lopato, S. (2016). Change of function of the wheat stress-responsive transcriptional repressor TaRAP2.1L by repressor motif modification. Plant Biotechnology Journal, 14(2), 820-832.
DOI Scopus39 WoS35 Europe PMC27
2016 Sornaraj, P., Luang, S., Lopato, S., & Hrmova, M. (2016). Basic leucine zipper (bZIP) transcription factors involved in abiotic stresses: a molecular model of a wheat bZIP factor and implications of its structure in function. Biochimica et Biophysica Acta, 1860(1, Part A), 46-56.
DOI Scopus136 WoS111 Europe PMC81
2016 Li, B., Byrt, C., Qiu, J., Baumann, U., Hrmova, M., Evrard, A., . . . Roy, S. (2016). Identification of a stelar-localized transport protein that facilitates root-to-shoot transfer of chloride in arabidopsis. Plant Physiology, 170(2), 1014-1029.
DOI Scopus102 WoS89 Europe PMC70
2016 Nagarajan, Y., Rongala, J., Luang, S., Singh, A., Shadiac, N., Hayes, J., . . . Hrmova, M. (2016). A barley efflux transporter operates in a Na⁺-dependent manner, as revealed by a multidisciplinary platform. The Plant Cell, 28(1), 202-218.
DOI Scopus24 WoS23 Europe PMC17
2015 Yadav, D., Shavrukov, Y., Bazanova, N., Chirkova, L., Borisjuk, N., Kovalchuk, N., . . . Lopato, S. (2015). Constitutive overexpression of the TaNF-YB4 gene in transgenic wheat significantly improves grain yield. Journal of Experimental Botany, 66(21), 6635-6650.
DOI Scopus58 WoS47 Europe PMC31
2015 Tankrathok, A., Iglesias-Fernández, J., Williams, R., Pengthaisong, S., Baiya, S., Hakki, Z., . . . Ketudat Cairns, J. (2015). A single glycosidase harnesses different pyranoside ring transition state conformations for hydrolysis of mannosides and glucosides. ACS Catalysis, 5(10), 6041-6051.
DOI Scopus23 WoS21
2015 Zhang, H., Luo, M., Day, R., Talbot, M., Ivanova, A., Ashton, A., . . . Koltunow, A. (2015). Developmentally regulated HEART STOPPER, a mitochondrially targeted L18 ribosomal protein gene, is required for cell division, differentiation, and seed development in Arabidopsis.. Journal of Experimental Botany, 66(19), 5867-5880.
DOI Scopus20 WoS20 Europe PMC16
2014 Li, M., Lopato, S., Hrmova, M., Pickering, M., Shirley, N., Koltunow, A., & Langridge, P. (2014). Expression patterns and protein structure of a lipid transfer protein END1 from Arabidopsis. Planta, 240(6), 1319-1334.
DOI Scopus5 WoS5 Europe PMC4
2014 Lopato, S., Borisjuk, N., Langridge, P., & Hrmova, M. (2014). Endosperm transfer cell-specific genes and proteins: structure, function and applications in biotechnology. Frontiers in Plant Science, 5(FEB), 64-1-64-14.
DOI Scopus21 WoS18 Europe PMC16
2014 Borisjuk, N., Hrmova, M., & Lopato, S. (2014). Transcriptional regulation of cuticle biosynthesis. Biotechnology Advances, 32(2), 526-540.
DOI Scopus75 WoS67 Europe PMC57
2013 Tankrathok, A., Iglesias-Ferna, J., Luang, S., Robinson, R., Kimura, A., Rovira, C., . . . Cairns, J. (2013). Structural analysis and insights into the glycon specificity of the rice GH1 Os7BGlu26 β-D-mannosidase. Acta Crystallographica Section D-Biological Crystallography, 69(10), 2124-2135.
DOI Scopus10 WoS9 Europe PMC6
2013 Chew, W., Hrmova, M., & Lopato, S. (2013). Role of homeodomain leucine zipper (HD-Zip) iv transcription factors in plant development and plant protection from deleterious environmental factors. International Journal of Molecular Sciences, 14(4), 8122-8147.
DOI Scopus93 WoS81 Europe PMC65
2013 Waters, S., Gilliham, M., & Hrmova, M. (2013). Plant High-Affinity Potassium (HKT) transporters involved in salinity tolerance: structural insights to probe differences in ion selectivity. International Journal of Molecular Sciences, 14(4), 7660-7680.
DOI Scopus109 WoS96 Europe PMC63
2013 Shadiac, N., Nagarajan, Y., Waters, S., & Hrmova, M. (2013). Close allies in membrane protein research: cell-free synthesis and nanotechnology. Molecular Membrane Biology, 30(3), 229-245.
DOI Scopus20 WoS22 Europe PMC18
2013 Periasamy, A., Shadiac, N., Amalraj, A., Garajova, S., Nagarajan, Y., Waters, S., . . . Hrmova, M. (2013). Cell-free protein synthesis of membrane (1,3)-beta-D-glucan (curdlan) synthase: Co-translational insertion in liposomes and reconstitution in nanodiscs. Biochimica et Biophysica Acta-Biomembranes, 1828(2), 743-757.
DOI Scopus62 WoS56 Europe PMC45
2013 Eini Gandomani, O., Yang, N., Pyvovarenko, T., Pillman, K., Bazanova, N., Tikhomirov, N., . . . Lopato, S. (2013). Complex regulation by Apetala2 domain-containing transcription factors revealed through analysis of the stress-responsive TdCor410b promoter from durum wheat. PLoS One, 8(3), 1-19.
DOI Scopus30 WoS28 Europe PMC25
2012 Marti, A., Wirthensohn, M., Alonso, J., Company, R., & Hrmova, M. (2012). Molecular modeling of S-RNases involved in almond self-incompatibility. Frontiers in Plant Science, 3(139), 1-4.
DOI Scopus4 WoS4 Europe PMC1
2012 Cotsaftis, O., Plett, D., Shirley, N., Tester, M., & Hrmova, M. (2012). A two-staged model of Na+ exclusion in rice explained by 3D modeling of HKT transporters and alternative splicing. PLoS One, 7(7), 1-10.
DOI Scopus171 WoS153 Europe PMC112
2012 Kovalchuk, N., Gilson, J., Bazanova, N., Pyvovarenko, T., Singh, R., Shirley, N., . . . Lopato, S. (2012). Characterization of the wheat gene encoding a grain-specific lipid transfer protein TdPR61, and promoter activity in wheat, barley and rice. Journal of Experimental Botany, 63(5), 2025-2040.
DOI Scopus17 WoS14 Europe PMC10
2011 Harris, J., Hrmova, M., Lopato, S., & Langridge, P. (2011). Modulation of plant growth by HD-Zip class I and II transcription factors in response to environmental stimuli. New Phytologist - Online, 190(4), 1-15.
DOI Scopus162 WoS151 Europe PMC116
2011 Marti, A., Alonso, J., Company, R., Wirthensohn, M., & Hrmova, M. (2011). Molecular modelling of RNases from almond involved in self-incompatibility. Proceedings of the Vth International Symposium on Pistachios and Almonds, 912(912), 641-643.
DOI
2011 Drew, D., Hrmova, M., Lunde, C., Jacobs, A., Tester, M., & Fincher, G. (2011). Structural and functional analyses of PpENA1 provide insights into cation binding by type IID P-type ATPases in lower plants and fungi. Biochimica et Biophysica Acta-Biomembranes, 1808(6), 1483-1492.
DOI Scopus7 WoS7 Europe PMC6
2011 Rivandi, A., Miyazaki, J., Hrmova, M., Pallotta, M., Tester, M., & Collins, N. (2011). A SOS3 homologue maps to HvNax4, a barley locus controlling an environmentally sensitive Na⁺ exclusion trait. Journal of Experimental Botany, 62(3), 1201-1216.
DOI Scopus67 WoS59 Europe PMC38
2010 Kuntothom, T., Raab, M., Tvaroska, I., Fort, S., Pengthaisong, S., Canada, J., . . . Hrmova, M. (2010). Binding of β-D-glucosides and β-D-mannosides by rice and barley β-D-glycosidases with distinct substrate specificities. Biochemistry, 49(40), 8779-8793.
DOI Scopus12 WoS12 Europe PMC9
2010 Schnurbusch, T., Hayes, J., Hrmova, M., Baumann, U., Ramesh, S., Tyerman, S., . . . Sutton, T. (2010). Boron toxicity tolerance in barley through reduced expression of the multifunctional aquaporin HvNIP2;1. Plant Physiology, 153(4), 1706-1715.
DOI Scopus159 WoS142 Europe PMC98
2010 Kaewthai, N., Harvey, A., Hrmova, M., Brumer, H., Ezcurra, I., Teeri, T., & Fincher, G. (2010). Heterologous expression of diverse barley XTH genes in the yeast Pichia pastoris. Plant Biotechnology, 27(3), 251-258.
DOI Scopus21 WoS17
2010 Luang, S., Cairns, J., Streltsov, V., & Hrmova, M. (2010). Crystallisation of wild-type and variant forms of a recombinant plant enzyme β-D-glucan glucohydrolase from barley (Hordeum vulgare L.) and preliminary X-ray analysis. International Journal of Molecular Sciences (Online), 11(7), 2759-2769.
DOI Scopus5 WoS5 Europe PMC5
2010 Hanlin, R., Hrmova, M., Harbertson, J., & Downey, M. (2010). Review: Condensed tannin and grape cell wall interactions and their impact on tannin extractability into wine. Australian Journal of Grape and Wine Research, 16(1), 173-188.
DOI Scopus196 WoS186
2010 Kovalchuk, N., Li, M., Wittek, F., Reid, N., Singh, R., Shirley, N., . . . Lopato, S. (2010). Defensin promoters as potential tools for engineering disease resistance in cereal grains. Plant Biotechnology Journal, 8(1), 47-64.
DOI Scopus48 WoS40 Europe PMC26
2010 Zhang, Q., Shirley, N., Burton, R., Lahnstein, J., Hrmova, M., & Fincher, G. (2010). The genetics, transcriptional profiles, and catalytic properties of UDP-α-D-xylose 4-epimerases from barley. Plant Physiology, 153(2), 555-568.
DOI Scopus16 WoS16 Europe PMC9
2010 Vaaj-Kolstad, G., Farkas, V., Fincher, G., & Hrmova, M. (2010). Barley xyloglucan xyloglucosyl transferases bind xyloglucan-derived oligosaccharides in their acceptor-binding regions in multiple conformational states. Archives of Biochemistry and Biophysics, 496(1), 61-68.
DOI Scopus9 WoS7 Europe PMC5
2010 Kosik, O., Auburn, R., Russell, S., Stratilova, E., Garajova, S., Hrmova, M., & Farkas, V. (2010). Polysaccharide microarrays for high-throughput screening of transglycosylase activities in plant extracts. Glycoconjugate Journal, 27(1), 79-87.
DOI Scopus41 WoS34 Europe PMC28
2010 Hrmova, M., Stone, B., & Fincher, G. (2010). High-yield production, refolding and a molecular modelling of the catalytic module of (1,3)-β-D-glucan (curdlan) synthase from Agrobacterium sp.. Glycoconjugate Journal, 27(4), 461-476.
DOI Scopus11 WoS12 Europe PMC9
2010 Luang, S., Hrmova, M., & Cairns, J. (2010). High-level expression of barley β-d-glucan exohydrolase HvExoI from a codon-optimized cDNA in Pichia pastoris. Protein Expression and Purification, 73(1), 90-98.
DOI Scopus12 WoS11 Europe PMC9
2010 Vaaje-Kolstad, G., Farkas, V., Hrmova, M., & Fincher, G. (2010). Xyloglucan xyloglucosyl transferases from barley (Hordeum vulgare L.) bind oligomeric and polymeric xyloglucan molecules in their acceptor binding sites. Biochimica et Biophysica Acta-General Subjects, 1800(7), 674-684.
DOI Scopus20 WoS19 Europe PMC9
2010 Kaiser, B., & Hrmova, M. (2010). A glimpse at regulation of nitrogen homeostasis. Structure, 18(11), 1395-1397.
DOI
2009 Kuntothom, T., Luang, S., Harvey, A., Fincher, G., Opassiri, R., Hrmova, M., & Cairns, J. (2009). Rice family GH1 glycoside hydrolases with β-d-glucosidase and β-d-mannosidase activities. Archives of Biochemistry and Biophysics, 491(1-2), 85-95.
DOI Scopus36 WoS34 Europe PMC23
2009 Kovalchuk, N., Gilson, J., Pallotta, M., Singh, R., Ismagul, A., Eliby, S., . . . Lopato, S. (2009). Characterization of the wheat endosperm transfer cell-specific protein TaPR60. Plant Molecular Biology, 71(1-2), 81-98.
DOI Scopus39 WoS34 Europe PMC32
2009 Pettolino, F., Sasaki, I., Turbic, A., Wilson, S., Bacic, A., Hrmova, M., & Fincher, G. (2009). Hyphal cell walls from the plant pathogen Rhynchosporium secalis contain (1,3/1,6)-β-D-glucans, galacto- and rhamnomannans, (1,3;1,4)-β-D-glucans and chitin. FEBS Journal, 276(14), 3698-3709.
DOI Scopus41 WoS36 Europe PMC35
2009 Montel, E., Hrmova, M., Fincher, G., Driguez, H., & Cottaz, S. (2009). A chemoenzymatic route to conjugatable beta(1 -&gt; 3)-glucan oligosaccharides. Australian Journal of Chemistry, 62(6), 575-584.
DOI Scopus8 WoS7
2009 Hrmova, M., Farkas, V., Harvey, A., Lahnstein, J., Wischmann, B., Kaewthai, N., . . . Fincher, G. (2009). Substrate specificity and catalytic mechanism of a xyloglucan xyloglucosyl transferase HvXET6 from barley (Hordeum vulgare L.). FEBS Journal, 276(2), 437-456.
DOI Scopus40 WoS36 Europe PMC29
2008 Macedo Rodrigues, J., Tucker, M., Johnson, S., Hrmova, M., & Koltunow, A. (2008). Sexual and Apomictic Seed Formation in Hieracium Requires the Plant Polycomb-Group Gene fertilization independent endosperm. Plant Cell, 20(9), 2372-2386.
DOI Scopus57 WoS51 Europe PMC47
2008 Hrmova, M., Farkas, V., Lahnstein, J., & Fincher, G. B. (2008). A barley xyloglucan xyloglucosyl transferase covalently links xyloglucan, cellulosic substrates, and (1,3;1,4)-β-D-glucans (Journal of Biological Chemistry (2007) 282 (12951-12962)). Journal of Biological Chemistry, 283(40), 27344.
Scopus5 WoS4
2007 Hrmova, M., & Fincher, G. (2007). Dissecting the catalytic mechanism of a plant beta-D-glucan glucohydrolase through structural biology using inhibitors and substrate analogues. Carbohydrate Research, 342(12-13SI), 1613-1623.
DOI Scopus32 WoS28 Europe PMC25
2007 Hrmova, M., Farkas, V., Lahnstein, J., & Fincher, G. (2007). A barley xyloglucan xyloglucosyl transferase covalently links xyloglucan, cellulosic substrates, and (1 3;1 4)-β-D-glucans. Journal of Biological Chemistry, 282(17), 12951-12962.
DOI Scopus140 WoS130 Europe PMC100
2006 Hrmova, M., Burton, R., Biely, P., Lahnstein, J., & Fincher, G. (2006). Hydrolysis of (1,4)-beta-D-mannans in barley (Hordeum vulgare L.) is mediated by the concerted action of (1,4)-beta-D-mannan endohydrolase and beta-D-mannosidase. Biochemical Journal, 399 Part 1(1), 77-90.
DOI Scopus40 WoS40 Europe PMC33
2006 Nielsen, K., Hrmova, M., Nielsen, J., Forslund, K., Ebert, S., Olsen, C., . . . Moller, B. (2006). Reconstitution of cyanogenesis in barley (Hordeum vulgare L.) and its implications for resistance against the barley powdery mildew fungus. Planta, 223(5), 1010-1023.
DOI Scopus36 WoS34 Europe PMC27
2006 Farrokhi, N., Burton, R., Brownfield, L., Hrmova, M., Wilson, S., Bacic, A., & Fincher, G. (2006). Plant cell wall biosynthesis: genetic, biochemical and functional genomics approaches to the identification of key genes. Plant Biotechnology Journal, 4(2), 145-167.
DOI Scopus195 WoS183 Europe PMC135
2006 Zhang, Q., Hrmova, M., Shirley, N., Lahnstein, J., & Fincher, G. (2006). Gene expression patterns and catalytic properties of UDP-D-glucose 4-epimerases from barley (Hordeum vulgare L.). Biochemical Journal, 394(1), 115-124.
DOI Scopus44 WoS40 Europe PMC36
2006 Burton, R., Wilson, S., Hrmova, M., Harvey, A., Shirley, N., Medhurst, A., . . . Fincher, G. (2006). Cellulose synthase-like CslF genes mediate the synthesis of cell wall (1,3;1,4)-beta-D-glucans. Science, 311(5769), 1940-1942.
DOI Scopus406 WoS361 Europe PMC291
2005 Hrmova, M., Streltsov, V., Smith, B., Vasella, A., Varghese, J., & Fincher, G. (2005). Structural rationale for low-nanomolar binding of transition state mimics to a family GH3 β-D-glucan glucohydrolase from barley. Biochemistry, 44(50), 16529-16539.
DOI Scopus40 WoS40 Europe PMC34
2004 Zhang, D., Hrmova, M., Wan, C., Wu, C., Balzen, J., Cai, W., . . . Haigler, C. (2004). Members of a new group of chitinase-like genes are expressed preferentially in cotton cells with secondary walls. Plant Molecular Biology, 54(3), 353-372.
DOI Scopus69 WoS64 Europe PMC51
2004 Strohmeier, M., Hrmova, M., Fischer, M., Harvey, A., Fincher, G., & Pleiss, J. (2004). Molecular modeling of family GH16 glycoside hydrolases: Potential roles for xyloglucan transglucosylases/hydrolases in cell wall modification in the poaceae. Protein Science, 13(12), 3200-3213.
DOI Scopus92 WoS86 Europe PMC70
2004 Macdonald, J., Hrmova, M., Fincher, G., & Stick, R. (2004). The synthesis of 3-O-(beta-D-glucopyranosyl)- and 3-O-(beta-laminaribiosyl)-isofagomines, potent inhibitors of a 1,3-beta-D-glucan endo-hydrolase. Australian Journal of Chemistry, 57(3), 187-191.
DOI Scopus7 WoS6
2004 Hrmova, M., De Gori, R., Smith, B., Vasella, A., Varghese, J., & Fincher, G. (2004). Three-dimensional structure of the barley beta-D-glucan glucohydrolase in complex with a transition state mimic. Journal of Biological Chemistry, 279(6), 4970-4980.
DOI Scopus35 WoS34 Europe PMC29
2004 Haigler, C., Zhang, D., & Hrmova, M. (2004). Discovery of genes related to high-rate cellulose synthesis through analysis of gene expression during secondary wall deposition in cotton fibers. Abstracts of Papers of the American Chemical Society, 227(1), U300.
2003 Li, J., Burton, R., Harvey, A., Hrmova, M., Wardak, A., Stone, B., & Fincher, G. (2003). Biochemical evidence linking a putative callose synthase gene with (1→3)-β-d-glucan biosynthesis in barley. Plant Molecular Biology, 53(1), 213-225.
DOI Scopus60 WoS61 Europe PMC45
2003 Lee, R., Hrmova, M., Burton, R., Lahnstein, J., & Fincher, G. (2003). Bifunctional family 3 glycoside hydrolases from barley with alpha-L-arabinofuranosidase and beta-D-xylosidase activity - Characterization, primary structures, and COOH-terminal processing. Journal of Biological Chemistry, 278(7), 5377-5387.
DOI Scopus171 WoS153 Europe PMC112
2003 Fairweather, J., Hrmova, M., Rutten, S., Fincher, G., & Driguez, H. (2003). Synthesis of complex oligosaccharides by using a mutated (1,3)-beta-D-glucan endohydrolase from barley. Chemistry-A European Journal, 9(11), 2603-2610.
DOI Scopus28 WoS25 Europe PMC8
2003 Hrmova, M., Imai, T., Rutten, S. J., Fairweather, J. K., Pelosi, L., Bulone, V., . . . Fincher, G. B. (2003). Mutated barley (1,3)-β-D-glucan endohydrolases synthesize crystalline (1,3)-β-D-glucans (vol 277, pg 30102, 2002). JOURNAL OF BIOLOGICAL CHEMISTRY, 278(48), 48506.
DOI
2003 Hrmova, M., Imai, T., Rutten, S. J., Fairweather, J. K., Pelosi, L., Bulone, V., . . . Fincher, G. B. (2003). Erratum: Mutated barley (1,3)-β-D-glucan endohydrolases synthesize crystalline (1,3)-β-D-glucans (Journal of Biological Chemistry (2002) 277 (30102-30111)). Journal of Biological Chemistry, 278(48), 48506.
DOI
2002 Hrmova, M., De Gori, R., Smith, B., Fairweather, J., Driguez, H., Varghese, J., & Fincher, G. (2002). Structural basis for broad substrate specificity in higher plant beta-D-glucan glucohydrolases. Plant Cell, 14(5), 1033-1052.
DOI Scopus89 WoS89 Europe PMC71
2002 Hrmova, M., Imai, T., Rutten, S., Fairweather, J., Pelosi, L., Bulone, V., . . . Fincher, G. (2002). Mutated Barley (1,3)-beta-D-Glucan Endohydrolases Synthesize Crystalline (1,3)-beta-D-Glucans. Journal of Biological Chemistry, 277(33), 30102-30111.
DOI Scopus92 WoS84 Europe PMC44
2001 Hrmova, M., Varghese, J., De Gori, R., Smith, B., Driguez, H., & Fincher, G. (2001). Catalytic mechanisms and reaction intermediates along the hydrolytic pathway of a plant beta-D-glucan glucohydrolase. Structure, 9(11), 1005-1016.
DOI Scopus72 WoS70 Europe PMC53
2001 Hrmova, M., & Fincher, G. (2001). Plant enzyme structure. Explaining substrate specificity and the evolution of function. Plant Physiology, 125(1), 54-57.
DOI Scopus22 WoS21 Europe PMC12
2001 Hrmova, M., & Fincher, G. (2001). Structure-function relationships of β- D-glucan endo- and exohydrolases from higher plants. Plant Molecular Biology, 47(1-2), 73-91.
DOI Scopus120 WoS111 Europe PMC82
2001 Harvey, A., Hrmova, M., & Fincher, G. (2001). Regulation of genes encoding beta-D-glucan glucohydrolases in barley (Hordeum vulgare). Physiologia Plantarum, 113(1), 108-120.
DOI Scopus16 WoS14
2001 Osmond, R., Hrmova, M., Fontaine, F., Imberty, A., & Fincher, G. (2001). Binding interactions between barley thaumatin-like proteins and (1,3)-β-D-glucans: Kinetics, specificity, structural analysis and biological implications. FEBS Journal, 268(15), 4190-4199.
DOI Scopus119 WoS110 Europe PMC72
2001 Lee, R., Burton, R., Hrmova, M., & Fincher, G. (2001). Barley arabinoxylan arabinofuranohydrolases: purification, characterization and determination of primary structures from cDNA clones. Biochemical Journal, 356(1), 181-189.
DOI Scopus91 WoS79 Europe PMC43
2000 Harvey, A., Hrmova, M., De Gori, R., Varghese, J., & Fincher, G. (2000). Comparative modeling of the three-dimensional structures of family 3 glycoside hydrolases. Proteins-Structure Function and Genetics, 41(2), 257-269.
DOI Scopus113 WoS110 Europe PMC92
1999 Varghese, J., Hrmova, M., & Fincher, G. (1999). Three-dimensional structure of a barley β-D-glucan exohydrolase, a family 3 glycosyl hydrolase. Structure, 7(2), 179-190.
DOI Scopus229 WoS215 Europe PMC168
1999 Burton, R., Zhang, X. Q., Hrmova, M., & Fincher, G. (1999). A single limit dextrinase gene is expressed both in the developing endosperm and in germinated grains of barley. Plant Physiology, 119(3), 859-871.
DOI Scopus66 WoS61 Europe PMC49
1998 Hrmova, M., Fincher, G., Viladot, J. L., Planas, A., & Driguez, H. (1998). Chemoenzymic synthesis of (1→3,1→4)-β-D-glucooligosaccharides for subsite mapping of (1→3,1→4)-β-D-glucan endohydrolases. Journal of Chemical Society Perkin Transactions 1, 21(21), 3571-3576.
DOI Scopus14 WoS15
1998 Hrmova, M., MacGregor, E., Biely, P., Stewart, R., & Fincher, G. (1998). Substrate binding and catalytic mechanism of a barley b-D-glucosidase (1,4)-b-D-glucan exohydrolase. Journal of Biological Chemistry, 273(18), 11134-11143.
DOI Scopus93 WoS88 Europe PMC62
1998 Hrmova, M., & Fincher, G. (1998). Barley b-D-glucan exohydrolases. Substrate specificity and kinetic properties. Carbohydrate Research, 305(2), 209-221.
DOI Scopus64 WoS60
1998 Hrmova, M., Varghese, J., Hoj, P., & Fincher, G. (1998). Crystallization and preliminary X-ray analysis of β-glucan exohydrolase isoenzyme Exol from barley (Hordeum vulgare). Acta Crystallographica Section D, Biological Crystallography, D54(4), 687-689.
DOI Scopus19 WoS18 Europe PMC15
1997 Hrmova, M., Banik, M., Harvey, A., Garrett, T., Varghese, J., Hoj, P., & Fincher, G. (1997). Polysaccharide hydrolases in germinated barley and their role in the depolymerization of plant and fungal cell walls. International Journal of Biological Macromolecules, 21(1-2), 67-72.
DOI Scopus45 WoS37 Europe PMC24
1997 Akiyama, T., Shibuya, N., Hrmova, M., & Fincher, G. (1997). Purification and characterization of a (1-3)-B-D-glucan endohydrolase from rice (Oryza sativa) bran. Carbohydrate Research, 297(4), 365-374.
DOI Scopus24 WoS22 Europe PMC13
1996 Hrmova, M., Harvey, A., Wang, J., Shirley, N., Jones, G., Stone, B., . . . Fincher, G. (1996). Barley β-D-glucan exohydrolases with β-D-glucosidase activity. Journal of Biological Chemistry, 271(9), 5277-5286.
DOI
1996 Hrmova, M., Harvey, A. J., Wang, J., Shirley, N. J., Jones, G. P., Stone, B. A., . . . Fincher, G. B. (1996). Barley β-D-glucan exohydrolases with β-D-glucosidase activity: Purification, characterization, and determination of primary structure from a cDNA clone. Journal of Biological Chemistry, 271(9), 5277-5286.
DOI Scopus143 WoS139 Europe PMC103
1995 Hrmova, M., Garrett, T., & Fincher, G. (1995). Subsite affinities and disposition of catalytic amino acids in the substrate-binding region of barley 1,3-β-glucanases. Implications in plant-pathogen interactions. Journal of Biological Chemistry, 270(24), 14556-14563.
DOI Scopus34 WoS32 Europe PMC25
1993 Hrmova, M., & Fincher, G. B. (1993). Purification and properties of three (1→3)-β-D-glucanase isoenzymes from young leaves of barley (Hordeum vulgare). Biochemical Journal, 289(2), 453-461.
DOI Scopus108 WoS105 Europe PMC69
1993 Trnovec, T., & Hrmová, M. (1993). Immunomodulator polysaccharides: Chemistry, disposition and metabolism. Biopharmaceutics Drug Disposition, 14(3), 187-198.
DOI Scopus15 WoS13 Europe PMC7
1991 Hrmova, M., Petrakova, E., & Biely, P. (1991). Induction of cellulose- and xylan-degrading enzyme systems in Aspergillus terreus by homo- and heterodisaccharides composed of glucose and xylose. Journal of General Microbiology, 137(3), 541-547.
DOI Scopus91 WoS79 Europe PMC40
1990 Sulova, Z., Hrmova, M., & Farkas, V. (1990). Photostimulated oxygen uptake in trichoderma viride. Journal of General Microbiology, 136(11), 2287-2290.
DOI Scopus9 WoS9
1989 Jabri, E., Quigley, D. R., Alders, M., Hrmova, M., Taft, C. S., Phelps, P., & Selitrennikoff, C. P. (1989). (1-3)-β-Glucan synthesis of Neurospora crassa. Current Microbiology, 19(3), 153-161.
DOI Scopus18 WoS21
1989 Hrmová, M., Biely, P., & Vršanská, M. (1989). Cellulose- and xylan-degrading enzymes of Aspergillus terreus and Aspergillus niger. Enzyme and Microbial Technology, 11(9), 610-616.
DOI Scopus76 WoS68
1989 Hrmova, M., Taft, C. S., & Selitrennikoff, C. P. (1989). 1,3-β-d-Glucan synthase of Neurospora crassa: Partial purification and characterization of solubilized enzyme activity. Experimental Mycology, 13(2), 129-139.
DOI Scopus16 WoS15
1988 Quigley, D. R., Hrmova, M., & Selitrennikoff, C. P. (1988). β(1-3)Glucan synthase of Neurospora crassa: Solubilization and partial characterization. Experimental Mycology, 12(2), 141-150.
DOI Scopus10 WoS14
1987 Hrmova, M., & Selitrennikoff, C. P. (1987). Protoplast formation of Neurospora crassa by an inducible enzyme system of Arthrobacter GJM-1. Current Microbiology, 16(1), 33-38.
DOI Scopus4 WoS3
1986 Hrmová, M., Biely, P., & Vršanská, M. (1986). Specificity of cellulase and β-xylanase induction in Trichoderma reesei QM 9414. Archives of Microbiology, 144(3), 307-311.
DOI Scopus82 WoS89
1985 VRSANSKA, M., BIELY, P., & HRMOVA, M. (1985). PRODUCTION OF YEAST-LYSING ENZYMES BY MICROORGANISMS ON YEAST-CELL WALLS. BIOLOGIA, 40(3), 259-265.
1984 Hrmová, M., Biely, P., Vršanská, M., & Petráková, E. (1984). Induction of cellulose- and xylan-degrading enzyme complex in the yeast Trichosporon cutaneum. Archives of Microbiology, 138(4), 371-376.
DOI Scopus54 WoS50
1984 Hrmová, M., Farkaš, V., & Kopecká, M. (1984). Isolation of anucleated yeast protoplasts by means of density gradient centrifugation. Journal of Microbiological Methods, 2(5), 257-263.
DOI Scopus4 WoS2

Year Citation
2023 Stratilová, B., Kozmon, S., Stratilová, E., & Hrmova, M. (2023). Glycoside hydrolase family 16-Xyloglucan:xyloglucosyl transferases and their roles in plant cell wall structure and mechanics. In Goyal A, & Sharma K (Eds.), Glycoside Hydrolases: Biochemistry, Biophysics, and Biotechnology (1 ed., pp. 213-242). London, United Kingdom: Academic Press, Elsevier.
DOI
2017 Luang, S., & Hrmova, M. (2017). Structural basis of the permeation function of plant aquaporins. In F. Chaumont, & S. Tyerman (Eds.), Plant Aquaporins: From Transport to Signalling (pp. 1-28). Switzerland: Springer.
DOI
2014 Hrmova, M., & Lopato, S. (2014). Enhancing abiotic stress tolerance in plants by modulating properties of stress responsive transcription factors. In R. Tuberosa, A. Graner, & E. Frison (Eds.), Genomics of plant genetic resources. Volume 2. Crop productivity, food security and nutritional quality (Vol. 2, pp. 291-316). Netherlands: Springer Netherlands.
DOI Scopus14
2011 Stone, B., Jacobs, A., Hrmova, M., Burton, R., & Fincher, G. (2011). Biosynthesis of plant cell wall and related polysaccharides by enzymes of the GT2 and GT48 families. In Peter Ulvskov (Ed.), Annual Plant Reviews, Volume 41, Plant Polysaccharides: Biosynthesis and Bioengineering (Vol. 41, pp. 109-165). United Kingdom: Wiley.
DOI Scopus24
2009 Farrokhi, N., Hrmova, M., Burton, R., & Fincher, G. (2009). Heterologous and cell-free protein expression systems. In D. Somers, J. Gustafson, & P. Langridge (Eds.), Plant genomics: Methods and Protocols (Vol. 513, pp. 175-198). United States: Humana Press.
DOI Scopus19 Europe PMC15
2009 Hrmova, M., & Fincher, G. (2009). Plant and microbial enzymes involved in the depolymerization of (1,3)-β-d-glucans and related polysaccharides. In A. Bacic, G. Fincher, & B. Stone (Eds.), Chemisty, Biochemistry, and Biology of the (1,3)-B-D-Glucans and related Polysaccharides (pp. 119-170). USA: Academic Press.
DOI Scopus13
2009 Hrmova, M., & Fincher, G. (2009). Functional genomics and structural biology in the definition of gene function. In D. Somers, P. Langridge, & J. Gustafson (Eds.), Plant genomics: Methods and Protocols (Vol. 513, pp. 199-227). United States: Humana Press.
DOI Scopus16 Europe PMC7
2003 Hrmova, M., & Fincher, G. (2003). Enzymic Hydrolysis of Cereal (1-3, 1-4)-beta-Glucans. In Handbook of Food Enzymology (pp. 943-960). New York: Marcel Dekker Inc.
2001 Hrmova, M., & Fincher, G. (2001). Structure function relationships of β-D-glucan endo- and exohydrolases from higher plants. In N. Carpita, M. Campbell, & M. Tierney (Eds.), Plant cell walls (pp. 73-91). Dodrecht ; Boston: Kluwer Academic Publishers.
DOI

Year Citation
2007 Hrmova, M., Farkas, V., Harvey, A., & Fincher, G. (2007). Structure-function studies of xyloglucan transglycosylases/hydrolases. In Cell Wall Polysaccharides. International fungal / plant cell wall meeting, Biarritz, France. Biarritz, France.
2005 Eariss, G., Hrmova, M., Fincher, G., & Catcheside, D. (2005). Diversification of barley beta-D-glucan endohydrolases in Neurospora crassa.. In Diversification of barley beta-D-glucan endohydrolases in Neurospora crassa..
2000 Harvey, A., Hrmova, M., & Fincher, G. (2000). Regulation of Genes Encoding b-Glucan Exohydrolases in Barley (Hordeum vulgare L.). In D. S. J. Logue (Ed.), Barley Genetics VIII - Proceedings of the 8th International Barley Genetics Symposium (pp. 217-220). Adelaide, Australia: Dept Plant Science, Adelaide University.
DOI
2000 Lee, R., Burton, R., Hrmova, M., & Fincher, G. (2000). a-L-Arabinofuranosidases and a b-D-Xylosidases From Germinated Barley. In D. Logue (Ed.), Barley Genetics VIII - Proceedings of the 8th International Barley Genetics Symposium (pp. 224-226). Adelaide, Australia: Dept Plant Science, Adelaide University.
2000 Hrmova, M., Varghese, J., Harvey, A., Stewart, R., & Fincher, G. (2000). Enzymic Hydrolysis of Barley (13,14)-b-Glucans. In D. Logue (Ed.), Barley Genetics VIII - Proceedings of the 8th International Genetics Symposium (pp. 249-251). Adelaide, Australia: Dept Plant Science, Adelaide University.
2000 Harvey, A., Hrmova, M., De Gori, R., Varghese, J., & Fincher, G. (2000). Comparative Modeling of the Three-Dimensional Structures and Phylogenetic Analysis of Family 3 Glycoside Hydrolases. In D. Logue (Ed.), Barley Genetics VIII - Proceedings of the 8th International Barley Genetics Symposium (pp. 103-106). Adelaide, Australia: Dept Plant Science, Adelaide University.
2000 Hrmova, M., Rutten, S., Fincher, G., & Driguez, H. (2000). Wild Type and Mutant (13)-b-Glucan Endohyrolases From Barley are Efficient Tools for Synthesis (13)-b Linked Oligo- and Polysaccharides. In D. Logue (Ed.), Barley Genetics VIII - Proceedings of the 8th International Barley Genetics Symposium (pp. 221-223). Adelaide, Australia: Dept Plant Science, Adelaide University.
2000 Rutten, S., Hrmova, M., Burton, R., & Fincher, G. (2000). Altering the Substrate Specificity of Barley (13)-b-Glucan Endohydrolase Isoenzyme GII. In D. Logue (Ed.), Barley Genetics VIII - Proceedings of the 8th International Barley Genetics Symposium (pp. 123-125). Adelaide, Australia: Dept Plant Science, Adelaide University.
2000 Hrmova, M., Harvey, A., Lee, R., Banik, M., Varghese, J., & Fincher, G. (2000). Cell wall degrading enzymes in barley. In T. Simoinen, & M. Tenkanen (Eds.), 2nd European Symposium on Enzymes in Grain Processing: ESEGP-2 Vol. 207 (pp. 63-73). Helsinki, Finland: Technical Research Centre of Finland.
Scopus3 WoS3
1999 Hrmova, M., Stewart, R. J., Varghese, J. N., Hoj, P. B., & Fincher, G. B. (1999). Three-dimensional structures, catalytic mechanisms and protein engineering of β-glucan hydrolases from barley. In H. J. Gilbert, G. J. Davies, B. Henrissat, & B. Svensson (Eds.), RECENT ADVANCES IN CARBOHYDRATE BIOENGINEERING (pp. 124-131). ENGLAND, UNIV NEWCASTLE UPON TYNE, NEWCASTLE TYNE: ROYAL SOC CHEMISTRY.
1997 Xu, X. Y., Bewley, J. D., Greenwood, J. S., Dalton, M., Hrmova, M., & Fincher, G. B. (1997). An 18 kD protein in dandelion (Taraxacum officinale Weber) root which has allergen and PR-protein homologies.. In PLANT PHYSIOLOGY Vol. 114 (pp. 1361). AMER SOC PLANT PHYSIOLOGISTS.
1993 HOJ, P. B., CHEN, L., XU, P. L., MIRABILE, P., HRMOVA, M., & FINCHER, G. B. (1993). EVOLUTION OF BETA-GLUCAN ENDOHYDROLASE FUNCTION. In JOURNAL OF CELLULAR BIOCHEMISTRY (pp. 10). WILEY-LISS.
WoS1

Year Citation
2016 Singh, A., Nagarajan, Y., Hrmova, M., & Yingling, Y. (2016). When in silico meets in vitro: Molecular basis of function of an anion-permeable efflux transporter from barley (Hordeum vulgare L.). Poster session presented at the meeting of ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY. AMER CHEMICAL SOC.

Year Citation
2015 Waters, S., Gilliham, M., & Hrmova, M. (2015). Micro-biomachines helping plants survive salt (No. Of Pieces: 1-2) [Exhibition]. University of Adelaide: E-Science Magazine of the University of Adelaide.
2011 Hrmova, M. (2011). Two centenaries (No. Of Pieces: 1 page) [Exhibition]. 13th issue of the ACPFG Vector magazine..
2010 Hrmova, M. (2010). A new ‘Protein Structure/Function Focus Group’ at the ACPFG is up and running' (No. Of Pieces: 1 page) [Exhibition]. 11th issue of the ACPFG Vector magazine.
2010 Hrmova, M. (2010). The Bragg crystallography facility is up and running (No. Of Pieces: 1 pagw) [Exhibition]. Adelaidean; October issue, News from the University of Adelaide (UoA).
2009 Hrmova, M. (2009). Small but significant. Adelaide’s Advertiser, section ‘Education Now’ (No. Of Pieces: 1 page) [Exhibition]. Adelaide’s Advertiser, section ‘Education Now’.
2009 Hrmova, M. (2009). Unravelling protein structures through molecular modelling (No. Of Pieces: 2 pages) [Exhibition]. 9th issue of the ACPFG Vector magazine.
2007 Hrmova, M. (2007). The beauty of discovery is in simplicity (No. Of Pieces: 4 pages) [Exhibition]. Newspaper ‘Pravda’ in Bratislava (capital of Slovakia).
2006 Hrmova, M. (2006). Hrmova M (2006) Crystal gazing. Adelaide’s Saturday Advertiser, section Can you believe it? (No. Of Pieces: 1 page) [Exhibition]. Saturday Advertiser, section Can you believe it?.
2006 Hrmova, M. (2006). Hrmova M (2006) X-Ray crystallography gazes into the unknown world of proteins (No. Of Pieces: 1 page) [Exhibition]. Spring issue of the ACPFG Vector magazine.
2006 Hrmova, M. (2006). Hrmova M (2006) X-Ray crystallography gazes into the unknown world of proteins (No. Of Pieces: 1 page) [Exhibition]. Spring issue of the ACPFG Vector magazine.

Year Citation
2024 Henderson, S., Nourmohammadi, S., & Hrmova, M. (2024). Protein modelling and thermodynamics reveal that plant cation-chloride cotransporters mediate potassium-chloride symport.
DOI
2023 Venkataraghavan, A., Kim, H., Schwerdt, J., Gulyuk, A., Singh, A., Yingling, Y., . . . Hrmova, M. (2023). Barley HvNIP2;1 aquaporin permeates water, metalloids, saccharides, and ion pairs due to structural plasticity and diversification.
DOI

Research in my laboratory has been funded by grants from the Australian Research Council, by the Grains Research & Development Corporation, the South Australian Government, the Waite Research Institute of the University of Adelaide, DuPont Pioneer and by the Australian Synchrotron Research Program. The latter is supported by the Commonwealth of Australia under the Major National Research Facilities Program.

I have successfully completed supervisions of 25 doctoral (PhD), masters (MSc) and honours (BSc) candidatures by research. My students have received a variety of awards: Best Presentation in Plant Science and runner up for the Max Tate Award (in-house Annual Postgraduate Symposium), People’s Choice (3-minute PhD thesis competition), Travelling Scholarship to Cambridge University (Barr Smith Foundation), the KP Barley Prize for PhD thesis excellence (Faculty of Sciences), and CJ Everald and GRDC top-up scholarships.

Date Role Research Topic Program Degree Type Student Load Student Name
2012 - 2016 Co-Supervisor Characterization of Wheat Cuticle and Wheat Cuticle-Related Transcription Factor Genes in Relation to Drought Doctor of Philosophy Doctorate Full Time Miss Huihui Bi
2011 - 2015 Principal Supervisor Structural and functional properties of a borate efflux transporter from barley Doctor of Philosophy Doctorate Full Time Dr Yagnesh Nagarajan
2008 - 2017 Co-Supervisor The Evolutionary History and Dynamics of the Cellulose Synthase Superfamily Doctor of Philosophy Doctorate Full Time Dr Julian Schwerdt
2004 - 2008 Co-Supervisor Characterisation of PpMDHARs and PpENA1 From the Moss, Physcomitrella patens Doctor of Philosophy Doctorate Full Time Mr Damian Drew
1997 - 2002 Co-Supervisor Biochemistry and Molecular Biology of Arabinoxylan Metabolism in Barley Doctor of Philosophy Doctorate Full Time Mr Robert Lee