Prof Lin Liu

Professor

School of Computer Science and Information Technology

College of Engineering and Information Technology


Professor Lin Liu's research interest is in the fields of machine learning and data mining, with the focus on developing robust machine learning/data mining algorithms by utilising causal relationships discovered from big data. Her resesarch is supported by the Australian Research Council (ARC) and the Cooperative Research Centre (CRC) program, as well as industry research funding. Lin also works closely with experts in other areas (e.g. cancer biology, marketing and eduction) to develop and apply data mining/machine learning and causal inference methods to solve real world problems.
Lin has been supervising PhD students in data mining, machine learning and bioinformatics. She also supervised PhD students in network security analysis in the past.
Since joining UniSA in 2002, Lin has taught a broad range of courses in computer science, including computer networking, databases, artificial intelligence, programming, software engineering and business processing modelling courses. Currently she is teaching a postgraduate data science course.

  • Data mining
  • machine learning
  • Causal inference and causal discovery
  • Bioinformatics

Language Competency
Achinese Can read, write, speak, understand spoken and peer review
English Can read, write, speak, understand spoken and peer review

Date Institution name Country Title
1999 - 2006 University of South Australia Australia PhD

Year Citation
2026 Huang, Z., Zhang, S., Cheng, D., Li, J., Liu, L., Lu, G., & Zhang, G. (2026). Learning instrumental variable representation for debiasing in recommender systems. Neural Networks, 193(107977), 1-13.
DOI Scopus1
2026 Zhang, Z., Zhou, J., Yao, J., Liu, L., Li, J., Li, L., & Wu, X. (2026). Learning label-specific features for multi-dimensional classification. Pattern Recognition, 172(112365), 1-14.
DOI
2026 Chen, Q., Deng, J., Cheng, D., Li, J., & Liu, L. (2026). Multi-view debiasing representation learning for recommender systems. Information Processing and Management, 63(2), 1-18.
DOI
2026 Cheng, D., Xu, Z., Li, J., Liu, L., Yu, K., Le, T. D., & Liu, J. (2026). Linking model intervention to causal interpretation in model explanation. Pattern Recognition, 173, 112814.
DOI
2026 Lu, S., Liu, L., Yu, K., Le, T. D., Liu, J., & Li, J. (2026). Dependency-based anomaly detection: A general framework and comprehensive evaluation. Expert Systems with Applications, 297(129249), 129249.
DOI
2025 Zhang, Y., Xu, T., Cheng, D., Li, J., Liu, L., Xu, Z., & Feng, Z. (2025). Data-driven learning optimal K values for K-nearest neighbour matching in causal inference. Data Mining And Knowledge Discovery, 39(4, article no. 35), 1-24.
DOI
2025 Deho, O. B., Bewong, M., Kwashie, S., Li, J., Liu, J., Liu, L., & Joksimovic, S. (2025). Is it still fair? A comparative evaluation of fairness algorithms through the lens of covariate drift. Machine Learning, 114(1), 1-19.
DOI Scopus1
2025 Yang, F., Liu, J., Li, J., Liu, L., Wang, S., Li, W., & Ni, S. (2025). Causal reinforcement learning for train scheduling on single-track railway networks. Transportation Research Part C Emerging Technologies, 178(105215), 105215.
DOI
2025 Cheng, D., Li, J., Liu, L., Xu, Z., Zhang, W., Liu, J., & Le, T. D. (2025). Disentangled Representation Learning for Causal Inference With Instruments. IEEE Transactions on Neural Networks and Learning Systems, 36(8), 14078-14091.
DOI Scopus4 WoS2
2025 Li, X., Liu, L., Li, J., & Le, T. D. (2025). Stable Breast Cancer Prognosis. IEEE Transactions on Computational Biology and Bioinformatics, 22(2), 721-731.
DOI
2025 Furqon, M. T., Pratama, M., Shiddiqi, A., Liu, L., Habibullah, H., & Dogancay, K. (2025). Time and frequency synergy for source-free time-series domain adaptations. Information Sciences, 695(121734), 20 pages.
DOI Scopus3 WoS1
2025 Peng, F., Little, K., & Liu, L. (2025). Human-centred design (HCD) in enhancing dementia care through assistive technologies: a scoping review. Digital, 5(4, article no. 51), 1-22.
DOI
2025 Huang, Z., Hu, Y., Cheng, D., Li, J., Liu, L., Zhang, G., & Zhang, S. (2025). Multi-cause deconfounding for recommender systems with latent confounders. Knowledge-Based Systems, 329(114345), 1-14.
DOI Scopus1
2025 Ma'sum, M. A., Pratama, M., Lughofer, E., Liu, L., Habibullah., & Kowalczyk, R. (2025). Few-shot continual learning via flat-to-wide approaches. IEEE Transactions on Neural Networks and Learning Systems, 36(5), 8966-8978.
DOI Scopus1 WoS3 Europe PMC1
2025 Lu, S., Liu, L., Li, J., Chambers, J., Cook, M. J., & Grayden, D. B. (2025). Leveraging channel coherence in long-term iEEG data for seizure prediction. IEEE Journal of Biomedical and Health Informatics, online(8), 1-8.
DOI Scopus1
2025 Zhang, G., Yuan, G., Cheng, D., Liu, L., Li, J., Xu, Z., & Zhang, S. (2025). Deconfounding representation learning for mitigating latent confounding effects in recommendation. Knowledge and Information Systems, 67(7), 5999-6020.
DOI Scopus8
2025 Zhang, G., Yuan, G., Cheng, D., Liu, L., Li, J., & Zhang, S. (2025). Mitigating propensity bias of large language models for recommender systems. ACM Transactions on Information Systems, 43(6, article no. 150), 1-26.
DOI Scopus15 WoS6
2025 Yang, J., Wang, X., Zhang, M., Liu, L., & Li, J. (2025). Meta-knowledge random attention update network for few-shot and anti-noise remaining useful life prediction. Advanced Engineering Informatics, 65(103358), 1-13.
DOI Scopus1 WoS1
2025 Yang, J., Wang, X., Zhang, M., Liu, L., & Li, J. (2025). Adaptive dynamic causal meta graph-task network for remaining useful life prediction with extreme long-tailed distribution condition. IEEE Transactions On Industrial Informatics, online(9), 1-11.
DOI
2025 Pinero, S., Li, X., Liu, L., Li, J., Lee, S. H., Winter, M., . . . Le, T. D. (2025). Integrative multi-omics framework for causal gene discovery in Long COVID. Plos Computational Biology, 21(12), e1013725.
DOI
2024 Ye, W., Li, C., Zhang, W., Li, J., Liu, L., Cheng, D., & Feng, Z. (2024). Predicting drug-target interactions by measuring confidence with consistent causal neighborhood interventions. Methods, 231, 15-25.
DOI Scopus2 WoS2 Europe PMC2
2024 Zhang, Z., Yao, J., Liu, L., Li, J., Li, L., & Wu, X. (2024). Partial label feature selection: an adaptive approach. IEEE Transactions on Knowledge and Data Engineering, 36(8), 4178-4191.
DOI Scopus8
2024 Guo, X., Yu, K., Liu, L., Li, J., Liang, J., Cao, F., & Wu, X. (2024). Progressive skeleton learning for effective local-to-global causal structure learning. IEEE Transactions on Knowledge and Data Engineering, 36(12), 9065-9079.
DOI Scopus6
2024 Zhang, G., Yuan, G., Cheng, D., Liu, L., Li, J., & Zhang, S. (2024). Disentangled contrastive learning for fair graph representations. Neural Networks, 181(106781), 1-11.
DOI Scopus31 WoS23 Europe PMC1
2024 Guo, X., Yu, K., Liu, L., Cao, F., & Li, J. (2024). Causal feature selection with dual correction. IEEE Transactions on Neural Networks and Learning Systems, 35(1), 938-951.
DOI Scopus16
2024 Yu, K., Ling, Z., Liu, L., Li, P., Wang, H., & Li, J. (2024). Feature selection for efficient local-to-global Bayesian network structure learning. ACM Transactions on Knowledge Discovery from Data, 18(2), 1-27.
DOI Scopus8 WoS2
2024 Furqon, M., Pratama, M., Liu, L., Habibullah, H., & Dogancay, K. (2024). Mixup domain adaptations for dynamic remaining useful life predictions. Knowledge-based Systems, 295(111783), 1-13.
DOI Scopus14 WoS14
2024 Zhang, J., Liu, L., Wei, X., Zhao, C., Luo, Y., Li, J., & Le, T. D. (2024). Scanning sample-specific miRNA regulation from bulk and single-cell RNA-sequencing data. BMC Biology, 22(1), 19 pages.
DOI Scopus3 WoS3 Europe PMC3
2024 Cheng, D., Li, J., Liu, L., Yu, K., Duy Le, T., & Liu, J. (2024). Discovering Ancestral Instrumental Variables for Causal Inference from Observational Data. IEEE Transactions on Neural Networks and Learning Systems, 35(8), 11542-11552.
DOI Scopus9 WoS8 Europe PMC2
2024 Deho, O. B., Liu, L., Li, J., Liu, J., Zhan, C., & Joksimovic, S. (2024). When the Past != The Future: Assessing the Impact of Dataset Drift on the Fairness of Learning Analytics Models. IEEE Transactions on Learning Technologies, 17, 1007-1020.
DOI Scopus5 WoS2
2024 Cheng, D., Jiuyong, L. I., Liu, L., Liu, J., & Thuc Duy, L. E. (2024). Data-Driven Causal Effect Estimation Based on Graphical Causal Modelling: A Survey. ACM Computing Surveys, 56(5), 37 pages.
DOI Scopus32 WoS22
2024 Ma'sum, M. A., Sarkar, M. D. R., Pratama, M., Ramasamy, S., Anavatti, S., Liu, L., . . . Kowalczyk, R. (2024). Dynamic long-term time-series forecasting via meta transformer networks. IEEE Transactions on Artificial Intelligence, 5(8), 4258-4581.
DOI Scopus1
2024 Masum, M. A., Pratama, M., Ramasamy, S., Liu, L., & Habibullah, H. (2024). Unsupervised few-shot continual learning for remote sensing image scene classification. IEEE Transactions on Geoscience and Remote Sensing, 62(4707214), 1-14.
DOI Scopus3 WoS2
2024 Liu, J., Li, J., Liu, L., Le, T., Ye, F., & Li, G. (2024). Fairmod: making predictions fair in multiple protected attributes. Knowledge and Information Systems, 66(3), 1861-1884.
DOI Scopus3 WoS2
2023 Li, J., Liu, L., Zhang, S., Ma, S., Le, T. D., & Liu, J. (2023). Causal heterogeneity discovery by bottom-up pattern search for personalised decision making. Applied Intelligence, 53(7), 8180-8194.
DOI
2023 Tran, H. X., Le, T. D., Li, J., Liu, L., Liu, J., Zhao, Y., & Waters, T. (2023). Personalized Interventions to Increase the Employment Success of People With Disability. IEEE Transactions on Big Data, 9(6), 1561-1574.
DOI Scopus1 WoS1
2023 Cheng, D., Li, J., Liu, L., Zhang, J., Liu, J., & Le, T. D. (2023). Local Search for Efficient Causal Effect Estimation. IEEE Transactions on Knowledge and Data Engineering, 35(9), 8823-8837.
DOI Scopus16 WoS13
2023 Bewong, M., Wondoh, J., Kwashie, S., Liu, J., Liu, L., Li, J., . . . Kernot, D. (2023). DATM: A Novel Data Agnostic Topic Modeling Technique With Improved Effectiveness for Both Short and Long Text. IEEE Access, 11, 32826-32841.
DOI Scopus4 WoS3
2023 Deho, O. B., Joksimovic, S., Li, J., Zhan, C., Liu, J., & Liu, L. (2023). Should Learning Analytics Models Include Sensitive Attributes? Explaining the Why. IEEE Transactions on Learning Technologies, 16(4), 560-572.
DOI Scopus16 WoS11
2023 Cheng, D., Li, J., Liu, L., Yu, K., Le, T. D., & Liu, J. (2023). Toward unique and unbiased causal effect estimation from data with hidden variables. IEEE Transactions on Neural Networks and Learning Systems, 34(9), 1-13.
DOI Scopus23 WoS25 Europe PMC3
2023 Zhang, J., Liu, L., Wei, X., Zhao, C., Li, S., Li, J., & Le, T. D. (2023). Pan-cancer characterization of ncRNA synergistic competition uncovers potential carcinogenic biomarkers. Plos Computational Biology, 19(10 October), 28 pages.
DOI Scopus5 WoS4 Europe PMC5
2023 Guo, X., Yu, K., Liu, L., Li, P., & Li, J. (2023). Adaptive Skeleton construction for accurate DAG Learning. IEEE Transactions on Knowledge and Data Engineering, 35(10), 10536-10539.
DOI Scopus25
2023 Zhang, Z., Zhang, Z., Yao, J., Liu, L., Li, J., Wu, G., & Wu, X. (2023). Multi-label feature selection via adaptive label correlation estimation. ACM Transactions on Knowledge Discovery from Data, 17(9), 1-28.
DOI Scopus24 WoS13
2023 Zhang, Z., Liu, L., Li, J., & Wu, X. (2023). Integrating global and local feature selection for multi-label learning. ACM Transactions on Knowledge Discovery from Data, 17(1, article no. 4), 1-37.
DOI Scopus17 WoS12
2023 Yu, K., Cai, M., Wu, X., Liu, L., & Li, J. (2023). Multilabel feature selection: a local causal structure learning approach. IEEE Transactions on Neural Networks and Learning Systems, 34(6), 3044-3057.
DOI Scopus30 Europe PMC2
2023 Yang, S., Yu, K., Cao, F., Liu, L., Wang, H., & Li, J. (2023). Learning causal representations for robust domain adaptation. IEEE Transactions on Knowledge and Data Engineering, 35(3), 2750-2764.
DOI Scopus34 WoS30
2022 Zhang, W., Li, J., & Liu, L. (2022). A unified survey of treatment effect heterogeneity modelling and uplift modelling. ACM Computing Surveys, 54(8, article no. 162), 1-36.
DOI Scopus48
2022 Ling, Z., Yu, K., Liu, L., Li, J., Zhang, Y., & Wu, X. (2022). PSL: An algorithm for partial Bayesian network structure learning. ACM Transactions on Knowledge Discovery from Data, 16(5, article no. 93), 1-25.
DOI Scopus11
2022 Cifuentes Bernal, A. M., Pham, V. V. H., Li, X., Liu, L., Li, J., & Le, T. D. (2022). Dynamic cancer drivers: a causal approach for cancer driver discovery based on bio-pathological trajectories. Briefings in Functional Genomics, 21(6), 455-465.
DOI Scopus3 WoS3 Europe PMC3
2022 Li, X., Liu, L., Whitehead, C., Li, J., Thierry, B., Le, T. D., & Winter, M. (2022). Identifying preeclampsia-associated genes using a control theory method. Briefings in Functional Genomics, 21(4), 296-309.
DOI Scopus5 WoS6 Europe PMC9
2022 Deho, O. B., Zhan, C., Li, J., Liu, J., Liu, L., & Le, T. D. (2022). How do the existing fairness metrics and unfairness mitigation algorithms contribute to ethical learning analytics?. British Journal of Educational Technology, 53(4), 822-843.
DOI Scopus58 WoS40
2022 Zhang, J., Liu, L., Zhang, W., Li, X., Zhao, C., Li, S., . . . Le, T. D. (2022). MiRspongeR 2.0: An enhanced R package for exploring miRNA sponge regulation. Bioinformatics Advances, 2(1), 3 pages.
DOI Scopus3 WoS2 Europe PMC5
2022 Zhang, J., Liu, L., Xu, T., Zhang, W., Li, J., Rao, N., & Le, T. D. (2022). Time to infer miRNA sponge modules. Wiley Interdisciplinary Reviews RNA, 13(2), 21 pages.
DOI Scopus18 WoS17 Europe PMC18
2022 Liu, J., Li, J., & Liu, L. (2022). FastOPM—A practical method for partial match of time series. Pattern Recognition, 130(article no. 108808), 12 pages.
DOI
2022 Ling, Z., Yu, K., Zhang, Y., Liu, L., & Li, J. (2022). Causal learner: a toolbox for causal structure and Markov blanket learning. Pattern Recognition Letters, 163, 92-95.
DOI Scopus28
2022 Zamecnik, A., Kovanović, V., Joksimović, S., & Liu, L. (2022). Exploring non-traditional learner motivations and characteristics in online learning: A learner profile study. Computers and Education Artificial Intelligence, 3(100051), 100051.
DOI Scopus46
2022 Cheng, D., Li, J., Liu, L., Le, T. D., Liu, J., & Yu, K. (2022). Sufficient dimension reduction for average causal effect estimation. Data Mining and Knowledge Discovery, 36(3), 1174-1196.
DOI Scopus11 WoS10
2021 Li, J., Zhang, W., Liu, L., Yu, K., Le, T. D., & Liu, J. (2021). A general framework for causal classification. International Journal of Data Science and Analytics, 11(2), 127-139.
DOI Scopus6 WoS6
2021 Li, X., Truong, B., Xu, T., Liu, L., Li, J., & Le, T. D. (2021). Uncovering the roles of microRNAs/lncRNAs in characterising breast cancer subtypes and prognosis. BMC Bioinformatics, 22(1), 22 pages.
DOI Scopus5 WoS5 Europe PMC3
2021 Zhang, J., Liu, L., Xu, T., Zhang, W., Zhao, C., Li, S., . . . Le, T. D. (2021). miRSM: an R package to infer and analyse miRNA sponge modules in heterogeneous data. RNA Biology, 18(12), 2308-2320.
DOI Scopus10 WoS7 Europe PMC8
2021 Pham, V. V. H., Li, X., Truong, B., Nguyen, T., Liu, L., Li, J., & Le, T. D. (2021). The winning methods for predicting cellular position in the DREAM single-cell transcriptomics challenge. Briefings in Bioinformatics, 22(3), 4 pages.
DOI Scopus1 WoS2 Europe PMC4
2021 Cifuentes-Bernal, A. M., Pham, V. V., Li, X., Liu, L., Li, J., & Le, T. D. (2021). A pseudotemporal causality approach to identifying miRNA-mRNA interactions during biological processes. Bioinformatics, 37(6), 807-814.
DOI Scopus6 WoS3 Europe PMC3
2021 Zhang, J., Liu, L., Xu, T., Zhang, W., Zhao, C., Li, S., . . . Le, T. D. (2021). Exploring cell-specific miRNA regulation with single-cell miRNA-mRNA co-sequencing data. BMC Bioinformatics, 22(1), 19 pages.
DOI Scopus16 WoS14 Europe PMC16
2021 Pham, V. V. H., Liu, L., Bracken, C., Goodall, G., Li, J., & Le, T. D. (2021). Computational methods for cancer driver discovery: A survey. Theranostics, 11(11), 5553-5568.
DOI Scopus22 WoS21 Europe PMC13
2021 Pham, V. V. H., Liu, L., Bracken, C. P., Nguyen, T., Goodall, G. J., Li, J., & Le, T. D. (2021). pDriver: a novel method for unravelling personalized coding and miRNA cancer drivers. Bioinformatics, 37(19), 3285-3292.
DOI Scopus13 WoS13 Europe PMC10
2021 Yu, K., Liu, L., & Li, J. (2021). A unified view of causal and non-causal feature selection. ACM Transactions on Knowledge Discovery from Data, 15(4, article no. 3436891), 1-46.
DOI Scopus82 WoS72
2020 Yu, K., Guo, X., Liu, L., Li, J., Wang, H., Ling, Z., & Wu, X. (2020). Causality-based feature selection: methods and evaluations. ACM Computing Surveys, 53(5, article no. 111), 1-36.
DOI Scopus170 WoS151
2020 Yu, K., Liu, L., & Li, J. (2020). Learning Markov blankets from multiple interventional data sets. IEEE Transactions on Neural Networks and Learning Systems, 31(6), 2005-2019.
DOI Scopus24 WoS21 Europe PMC3
2020 Li, X., Liu, L., Goodall, G. J., Schreiber, A., Xu, T., Li, J., & Le, T. D. (2020). A novel single-cell based method for breast cancer prognosis. PLoS Computational Biology, 16(8), e1008133-1-e1008133-20.
DOI Scopus23 WoS18 Europe PMC20
2020 Pham, V. V. H., Liu, L., Bracken, C. P., Goodall, G. J., Li, J., & Le, T. D. (2020). DriverGroup: a novel method for identifying driver gene groups. Bioinformatics, 36(Supplement_2), i583-i591.
DOI Scopus6 WoS7 Europe PMC4
2020 Zhan, C., Roughead, E., Liu, L., Pratt, N., & Li, J. (2020). Detecting high-quality signals of adverse drug-drug interactions from spontaneous reporting data. Journal of Biomedical Informatics, 112(article no. 103603), 13 pages.
DOI Scopus14 WoS12 Europe PMC9
2020 Zhan, C., Roughead, E., Liu, L., Pratt, N., & Li, J. (2020). Detecting potential signals of adverse drug events from prescription data. Artificial Intelligence in Medicine, 104(101839), 14 pages.
DOI Scopus11 WoS9 Europe PMC9
2020 Zhang, J., Xu, T., Liu, L., Zhang, W., Zhao, C., Li, S., . . . Le, T. D. (2020). LMSM: A modular approach for identifying lncRNA related miRNA sponge modules in breast cancer. Plos Computational Biology, 16(4), e1007851.
DOI Scopus22 Europe PMC22
2020 Yu, K., Liu, L., Li, J., Ding, W., & Le, T. D. (2020). Multi-Source Causal Feature Selection. IEEE Transactions on Pattern Analysis and Machine Intelligence, 42(9), 2240-2256.
DOI Scopus112 WoS92 Europe PMC8
2020 Li, J., Liu, L., Le, T. D., & Liu, J. (2020). Accurate data-driven prediction does not mean high reproducibility. Nature Machine Intelligence, 2(1), 13-15.
DOI Scopus38 WoS38
2020 Zhang, J., Pham, V. V. H., Liu, L., Xu, T., Truong, B., Li, J., . . . Le, T. D. (2020). Correction: Identifying mirna synergism using multiple-intervention causal inference (BMC Bioinformatics (2019) 20 (613) DOI: 10.1186/s12859-019-3215-5). BMC Bioinformatics, 21(1), 2 pages.
DOI
2020 Ansah, J., Liu, L., Kang, W., Liu, J., & Li, J. (2020). Leveraging burst in twitter network communities for event detection. World Wide Web, 23(5), 2851-2876.
DOI Scopus20 WoS15
2019 Bewong, M., Liu, J., Liu, L., & Li, J. (2019). Privacy preserving serial publication of transactional data. Information Systems, 82, 53-70.
DOI Scopus12
2019 Le, T. D., Zhao, Y., Wong, S., Jin, W. H., Ong, K. L., Liu, L., & Williams, G. (2019). Preface. Communications in Computer and Information Science, 1127 CCIS, v-vi.
2019 Ma, S., Li, J., Liu, L., & Le, T. D. (2019). Discovering context specific causal relationships. Intelligent Data Analysis, 23(4), 917-931.
DOI
2019 Ma, S., Liu, L., Li, J., & Le, T. D. (2019). Data-driven discovery of causal interactions. International Journal of Data Science and Analytics, 8(3), 285-297.
DOI Scopus2 WoS3
2019 Zhang, J., Liu, L., Xu, T., Xie, Y., Zhao, C., Li, J., & Le, T. D. (2019). MiRspongeR: An R/Bioconductor package for the identification and analysis of miRNA sponge interaction networks and modules. BMC Bioinformatics, 20(1), 12 pages.
DOI Scopus34 WoS27 Europe PMC29
2019 Zhang, J., Pham, V. V. H., Liu, L., Xu, T., Truong, B., Li, J., . . . Le, T. D. (2019). Identifying miRNA synergism using multiple-intervention causal inference. BMC Bioinformatics, 20(1), 11 pages.
DOI Scopus14 WoS14 Europe PMC15
2019 Choobdar, S., Ahsen, M. E., Crawford, J., Tomasoni, M., Fang, T., Lamparter, D., . . . Müller, F. (2019). Assessment of network module identification across complex diseases. Nature Methods, 16(9), 843-852.
DOI Scopus206 WoS199 Europe PMC212
2019 Bewong, M., Liu, J., Liu, L., Li, J., & Choo, K. K. R. (2019). A relative privacy model for effective privacy preservation in transactional data. Concurrency and computation: practice and experience, 31(23, article no. e4923), 1-13.
DOI Scopus8
2019 Pham, V. V. H., Liu, L., Bracken, C. P., Goodall, G. J., Long, Q., Li, J., & Le, T. D. (2019). CBNA: a control theory based method for identifying coding and non-coding cancer drivers. PLoS computational biology, 15(12), e1007538.
DOI Scopus29 WoS30 Europe PMC17
2019 Pham, V. V., Zhang, J., Liu, L., Truong, B., Xu, T., Nguyen, T. T., . . . Le, T. D. (2019). Identifying miRNA-mRNA regulatory relationships in breast cancer with invariant causal prediction. BMC Bioinformatics, 20(1, article no. 143), 1-12.
DOI Scopus20 WoS23 Europe PMC18
2019 Ling, Z., Yu, K., Wang, H., Liu, L., Ding, W., & Wu, X. (2019). BAMB: A balanced markov blanket discovery approach to feature selection. ACM transactions on intelligent systems and technology, 10(5, article no. 52), 1-25.
DOI Scopus60 WoS52
2018 Yu, K., Liu, L., Li, J., & Chen, H. (2018). Mining Markov blankets without causal sufficiency. IEEE Transactions on neural networks and learning systems, 29(12), 6333-6347.
DOI Scopus41 Europe PMC6
2018 Zhang, Z., Liu, L., Wang, H., Li, J., Hu, D., Yan, J., . . . Meierer, M. (2018). Collective behavior learning by differentiating personal preference from peer influence. Knowledge-based systems, 159, 233-243.
DOI Scopus6 WoS5
2018 Boo, Y. L., Stirling, D., Chi, L., Liu, L., Ong, K. L., & Williams, G. (2018). Preface. Communications in Computer and Information Science, 845, v-vi.
2018 Liu, L., Li, J., Zhang, K., Kıcıman, E., & Kiyavash, N. (2018). Guest editorial: special issue on causal discovery 2017. International Journal of Data Science and Analytics, 6(1), 1-2.
DOI Scopus1 WoS16
2018 Zhan, C., Roughead, E., Liu, L., Pratt, N., & Li, J. (2018). A data-driven method to detect adverse drug events from prescription data. Journal of Biomedical Informatics, 85, 10-20.
DOI Scopus9 WoS8 Europe PMC6
2018 Helal, S., Li, J., Liu, L., Ebrahimie, E., Dawson, S., Murray, D., & Long, Q. (2018). Predicting academic performance by considering student heterogeneity. Knowledge-Based Systems, 161, 134-146.
DOI Scopus164 WoS111
2018 Helal, S., Li, J., Liu, L., Ebrahimie, E., Dawson, S., & Murray, D. J. (2018). Identifying key factors of student academic performance by subgroup discovery. International Journal of Data Science and Analytics, 7(3), 227-245.
DOI Scopus39 WoS29
2018 Thuyen, T., Suriyanarayanan, T., Zeng, G., Le, T. D., Liu, L., Li, J., . . . Seneviratne, C. J. (2018). Use of haploid model of Candida albicans to uncover mechanism of action of a novel antifungal agent. Frontiers In cellular and infection microbiology, 8(164), 1-14.
DOI Scopus15 WoS14 Europe PMC12
2018 Xu, T., Su, N., Liu, L., Zhang, J., Wang, H., Zhang, W., . . . Le, T. D. (2018). miRBaseConverter: an R/Bioconductor package for converting and retrieving miRNA name, accession, sequence and family information in different versions of miRBase. BMC Bioinformatics, 19(514), 1-10.
DOI Scopus60 WoS53 Europe PMC64
2018 Zhang, J., Liu, L., Li, J., & Le, T. D. (2018). LncmiRSRN: identification and analysis of long non-coding RNA related miRNA sponge regulatory network in human cancer. Bioinformatics (Oxford, England), 34(24), 4232-4240.
DOI Scopus60 WoS55 Europe PMC53
2018 Le, T., Hoang, T., Li, J., Liu, L., Liu, H., & Hu, S. (2018). A fast PC algorithm for high dimensional causal discovery with multi-core PCs. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 16(5), 1483-1495.
DOI Scopus106 WoS91 Europe PMC17
2018 Zhang, Z., Wang, H., Liu, L., & Li, J. (2018). Multi-label relational classification via node and label correlation. Neurocomputing, 292, 72-81.
DOI Scopus10 WoS9
2018 Zhang, J., Le, T. D., Liu, L., & Li, J. (2018). Inferring and analyzing module-specific lncRNA-mRNA causal regulatory networks in human cancer. Briefings in Bioinformatics, 20(4), 1403-1419.
DOI Scopus45 WoS41 Europe PMC38
2018 Zhang, W., Le, T. D., Liu, L., & Li, J. (2018). Estimating heterogeneous treatment effect by balancing heterogeneity and fitness. BMC Bioinformatics, 19(Suppl 19), 12 pages.
DOI Scopus5 WoS4 Europe PMC1
2018 Kwashie, S., Liu, J., Li, J., Liu, L., Stumptner, M., & Yang, L. (2018). Certus: An effective entity resolution approach with graph differential dependencies (GDDs). Proceedings of the VLDB Endowment, 12(6), 653-666.
DOI Scopus36 WoS29
2017 Liu, H., Liu, L., Le, T. D., Lee, I., Sun, S., & Li, J. (2017). Nonparametric Sparse Matrix Decomposition for Cross-View Dimensionality Reduction. IEEE Transactions on Multimedia, 19(8), 1848-1859.
DOI Scopus18 WoS18
2017 Xu, T., Le, T. D., Liu, L., Su, N., Wang, R., Sun, B., . . . Li, J. (2017). CancerSubtypes: An R/Bioconductor package for molecular cancer subtype identification, validation and visualization. Bioinformatics, 33(19), 3131-3133.
DOI Scopus191 WoS189 Europe PMC178
2017 Zhang, W., Le, T. D., Liu, L., Zhou, Z. H., & Li, J. (2017). Mining heterogeneous causal effects for personalized cancer treatment. Bioinformatics, 33(15), 2372-2378.
DOI Scopus35 WoS33 Europe PMC9
2017 Zhang, J., Le, T. D., Liu, L., & Li, J. (2017). Inferring miRNA sponge co-regulation of protein-protein interactions in human breast cancer. BMC Bioinformatics, 18(1), 12 pages.
DOI Scopus23 WoS20 Europe PMC15
2017 Zhang, J., Le, T. D., Liu, L., & Li, J. (2017). Identifying miRNA sponge modules using biclustering and regulatory scores. BMC Bioinformatics, 18(Suppl 3), 12 pages.
DOI Scopus18 WoS16 Europe PMC12
2017 Li, J., Ma, S., Le, T., Liu, L., & Liu, J. (2017). Causal Decision Trees. IEEE transactions on knowledge and data engineering, 29(2), 257-271.
DOI Scopus57 WoS41
2017 Le, T. D., Zhang, J., Liu, L., & Li, J. (2017). Computational methods for identifying miRNA sponge interactions. Briefings in Bioinformatics, 18(4), 577-590.
DOI Scopus76 WoS67 Europe PMC70
2017 Li, J., Liu, L., Liu, J., & Green, R. (2017). Building Diversified Multiple Trees for classification in high dimensional noisy biomedical data. Health information science and systems, 5(5), 1-10.
DOI Scopus5 WoS4 Europe PMC2
2017 Azfar, A., Choo, K. K. R., & Liu, L. (2017). Forensic taxonomy of Android social apps. Journal of forensic sciences, 62(2), 435-456.
DOI Scopus22 WoS18 Europe PMC2
2017 Li, J., & Zhang, K. (2017). Guest Editorial: Special Issue on Causal Discovery 2017. International journal of data science and analytics, 3(2), 79-80.
DOI
2017 Azfar, A., Choo, K. K. R., & Liu, L. (2017). Forensic taxonomy of android productivity apps. Multimedia tools and applications, 76(3), 3313-3341.
DOI WoS19
2016 Azfar, A., Choo, K. K. R., & Liu, L. L. (2016). An android communication app forensic taxonomy. Journal of forensic sciences, 61(5), 1337-1350.
DOI WoS32 Europe PMC6
2016 Azfar, A., Choo, R., & Liu, L. (2016). Android mobile VoIP apps: a survey and examination of their security and privacy. Electronic commerce research, 16(1), 73-111.
DOI
2016 Zhang, W., Le, T. D., Liu, L., Zhou, Z. H., & Li, J. (2016). Predicting miRNA targets by integrating gene Regulatory knowledge with Expression profiles. Plos One, 11(4), 19 pages.
DOI Scopus16 WoS22 Europe PMC11
2016 Xu, T., Le, T. D., Liu, L., Wang, R., Sun, B., & Li, J. (2016). Identifying cancer subtypes from miRNA-TFmRNA regulatory networks and expression data. Plos One, 11(4), 20 pages.
DOI Scopus64 WoS52 Europe PMC39
2016 Masud Karim, S. M., Liu, L., Le, T. D., & Li, J. (2016). Identification of miRNA-mRNA regulatory modules by exploring collective group relationships. BMC Genomics, 17(1), 14 pages.
DOI Scopus27 WoS22 Europe PMC17
2016 Zhang, J., Le, T. D., Liu, L., He, J., & Li, J. (2016). A novel framework for inferring condition-specific TF and miRNA co-regulation of protein-protein interactions. Gene, 577(1), 55-64.
DOI Scopus9 WoS10 Europe PMC8
2016 Li, J., Le, T. D., Liu, L., Liu, J., Jin, Z., Sun, B., & Ma, S. (2016). From observational studies to causal rule mining. ACM transactions on intelligent systems and technology, 7(2, article no. 14), 1-27.
DOI Scopus39 WoS16
2016 Ma, S., Li, J., Liu, L., & Le, T. D. (2016). Mining combined causes in large data sets. Knowledge Based Systems, 92, 104-111.
DOI Scopus18 WoS13
2016 Zhang, J., Duy Le, T., Liu, L., He, J., & Li, J. (2016). Identifying miRNA synergistic regulatory networks in heterogeneous human data via network motifs. Molecular Biosystems, 12(2), 454-463.
DOI Scopus11 WoS10 Europe PMC11
2015 Le, T. D., Zhang, J., Liu, L., & Li, J. (2015). Ensemble methods for miRNA target prediction from expression data. Plos One, 10(6), 19 pages.
DOI Scopus27 WoS21 Europe PMC23
2015 Le, T. D., Zhang, J., Liu, L., Liu, H., & Li, J. (2015). miRLAB: An R Based Dry Lab for Exploring miRNA-mRNA Regulatory Relationships. PLOS One, 10(12), 1-15.
DOI Scopus28 WoS23 Europe PMC22
2014 Zhang, J., Thuc, D., Liu, L., Liu, B., He, J., Goodall, G., & Li, J. (2014). Identifying direct miRNA-mRNA causal regulatory relationships in heterogeneous data. Journal of Biomedical Informatics, 52, 438-447.
DOI Scopus27 WoS25 Europe PMC24
2014 Zhang, J., Thuc, D., Liu, L., Liu, B., He, J., Goodall, G., & Li, J. (2014). Inferring condition-specific miRNA activity from matched miRNA and mRNA expression data. Bioinformatics, 30(21), 3070-3077.
DOI Scopus22 WoS19 Europe PMC18
2014 Le, T. D., Liu, L., Zhang, J., Liu, B., & Li, J. (2014). From miRNA regulation to miRNA-TF co-regulation: Computational approaches and challenges. Briefings in Bioinformatics, 16(3), 475-496.
DOI Scopus39 WoS34 Europe PMC26
2014 Irwin, A. S. M., Slay, J., Choo, K. K. R., & Lui, L. (2014). Money laundering and terrorism financing in virtual environments: a feasibility study. Journal of money laundering control, 17(1), 50-75.
DOI
2013 Irwin, A. S. M., Slay, J., Choo, K. K. R., & Liu, L. (2013). Are the financial transactions conducted inside virtual environments truly anonymous?: An experimental research from an Australian perspective. Journal of money laundering control, 16(1), 6-40.
DOI Scopus12 WoS5
2013 Liu, H., Li, J., Liu, L., Liu, J., Lee, I., & Zhao, J. (2013). Exploring groups from heterogeneous data via sparse learning. Lecture notes in computer science, 7818 LNAI(PART 1), 556-567.
DOI Scopus1
2013 Liu, B., Liu, L., Tsykin, A., Goodall, G., Cairns, M., & Li, J. (2013). Discovering functional microRNAmRNA regulatory modules in heterogeneous data. Advances in Experimental Medicine and Biology, 774, 267-290.
DOI Scopus3
2013 Le, T., Liu, L., Liu, B., Tsykin, A., Goodall, G., Satou, K., & Li, J. (2013). Inferring microRNA and transcription factor regulatory networks in heterogeneous data. BMC Bioinformatics, 14(article no. 92), 1-13.
DOI Scopus39 WoS40 Europe PMC32
2013 Le, T., Liu, L., Tsykin, A., Goodall, G., Liu, B., Sun, B., & Li, J. (2013). Inferring microRNA-mRNA causal regulatory relationships from expression data. Bioinformatics, 29(6), 765-771.
DOI Scopus72 WoS70 Europe PMC50
2012 Irwin, A. S. M., Choo, K. K. R., & Liu, L. (2012). Modelling of money laundering and terrorism financing typologies. Journal of money laundering control, 15(3), 316-335.
DOI Scopus24 WoS15
2012 Irwin, A. S. M., Choo, K. K., & Liu, L. (2012). An analysis of money laundering and terrorism financing typologies. Journal of money laundering control, 15(1), 85-111.
DOI WoS33
2011 Zhang, Z., Liu, L., Li, J., & Zhang, Z. (2011). Spectral representation of protein sequences. Journal of computational and theoretical nanoscience, 8(7), 1335-1339.
DOI Scopus7 WoS6
2010 Liu, B., Liu, L., Tsykin, A., Goodall, G., Green, J., Zhu, M., . . . Li, J. (2010). Identifying functional miRNA-mRNA regulatory module with correspondence latent dirichlet allocation. Bioinformatics, 26(24), 3105-3111.
DOI Scopus88 WoS84 Europe PMC50
2009 Liu, B., Li, J., Tsykin, A., Liu, L., Gaur, A., & Goodall, G. (2009). Exploring complex miRNA-mRNA interactions with Bayesian networks by splitting-averaging strategy. BMC Bioinformatics, 10(408), 1-19.
DOI Scopus74 WoS60 Europe PMC61
2008 Liu, L., Cozzolino, D., Cynkar, W., Dambergs, R., Janik, L., O'Neill, B., . . . Gishen, M. (2008). Preliminary study on the application of visible-near infrared spectroscopy and chemometrics to classify Riesling wines from different countries. Food Chemistry, 106(2), 781-786.
DOI Scopus124 WoS113
2007 Liu, L., & Billington, J. (2007). Verification of the Capability Exchange Signalling protocol. International journal on software tools for technology transfer, 9(3-4), 305-326.
DOI

Year Citation
2025 Gao, W., Xu, Z., Li, J., Liu, L., Liu, J., Le, T. D., . . . Chen, Y. (2025). TSI: A Multi-view Representation Learning Approach for Time Series Forecasting. In M. Gong, Y. Song, Y. S. Koh, W. Xiang, & D. Wang (Eds.), Event/exhibition information: 37th Australasian Joint Conference on Artificial Intelligence, AI 2024, Melbourne, Australia, 25/11/2024-29/11/2024
Source details - Title: AI 2024: Advances in Artificial Intelligence (Vol. 15442 LNAI, pp. 291-302). Singapore: SPRINGER-VERLAG SINGAPORE PTE LTD.

DOI
2025 Dzakpasu, D. Q., Liu, J., Li, J., & Liu, L. (2025). Improving Intersectional Group Fairness Using Conditional Generative Adversarial Network and Transfer Learning. In Event/exhibition information: 37th Australasian Joint Conference on Artificial Intelligence, AJCAI 2024, Melbourne, Australia, 25/11/2024-29/11/2024
Source details - Title: AI 2024: Advances in Artificial Intelligence (Vol. 15442 LNAI, pp. 139-153). Singapore: Springer Nature Singapore.

DOI
2024 Park, J. Y., Liu, L., Liu, J., & Li, J. (2024). Causal Disentanglement for Adversarial Defense. In Event/exhibition information: 36th Australasian Joint Conference on Artificial Intelligence, AJCAI 2023, Brisbane, Australia, 28/11/2023 - 01/12/2023
Source details - Title: Australasian Joint Conference on Artificial Intelligence AI 2023: AI 2023: Advances in Artificial Intelligence (Vol. 14471 LNAI, pp. 315-327). Singapore: Springer Nature Singapore.

DOI
2023 Xu, Z., Liu, J., Cheng, D., Li, J., Liu, L., & Wang, K. (2023). Disentangled Representation with Causal Constraints for Counterfactual Fairness. In Event/exhibition information: 27th Pacific-Asia Conferenceon Knowledge Discovery and Data Mining (PAKDD 2023), Osaka, Japan, 25/05/2023-28/05/2023
Source details - Title: Pacific-Asia Conference on Knowledge Discovery and Data Mining: PAKDD 2023: Advances in Knowledge Discovery and Data Mining (Vol. 13935 LNCS, pp. 471-482). Switzerland: Springer.

DOI Scopus8
2023 Xu, T., Zhang, Y., Li, J., Liu, L., Xu, Z., Cheng, D., & Feng, Z. (2023). A data-driven approach to finding K for K nearest neighbor matching in average causal effect estimation. In F. Zhang (Ed.), Event/exhibition information: Web Information Systems Engineering – WISE 2023, Melbourne, 25/10/2023-27/10/2023
Source details - Title: Web Information Systems Engineering –WISE 202324th International Conference Melbourne, VIC, Australia, October 25–27, 2023 Proceedings (Vol. 14306 LNCS, pp. 723-732). Singapore: Springer.

DOI Scopus1
2023 Tabassum, F., Mubarak, S., Liu, L., & Du, J. T. (2023). How many features do we need to identify bots on Twitter?. In Event/exhibition information: 18th International Conference, iConference 2023, Virtual, onine, 13/03/2023-17/03/2023
Source details - Title: Information for a Better World: Normality, Virtuality, Physicality, Inclusivity (pp. 312-327). Singapore: Springer.

DOI
2022 Tran, H. X., Le, T. D., Li, J., Liu, L., Liu, J., Zhao, Y., & Waters, T. (2022). Recommending personalized interventions to increase employability of disabled jobseekers. In J. Gama (Ed.), Event/exhibition information: 26th Pacific-Asia Conference, PAKDD 2022, Chengdu, China, 16/05/2022-19/05/2022
Source details - Title: Advances in Knowledge Discovery and Data Mining: 26th Pacific-Asia Conference, PAKDD 2022, Chengdu, China, May 16–19, 2022, Proceedings, Part III (Vol. 13282 LNAI, pp. 92-104). Switzerland: Springer.

DOI Scopus3 WoS2
2020 Zhang, J., Nguyen, T., Truong, B., Liu, L., Li, J., & Le, T. D. (2020). Computational Methods for Predicting Autism Spectrum Disorder from Gene Expression Data. In X. Yang, C. D. Wang, M. S. Islam, & Z. Zhang (Eds.), Event/exhibition information: 16th International Conference on Advanced Data Mining and Applications, ADMA 2020, Foshan, China, 12/11/2020-14/11/2020
Source details - Title: ADMA 2020: Advanced Data Mining and Applications (Vol. 12447 LNAI, pp. 395-409). Singapore: SPRINGER INTERNATIONAL PUBLISHING AG.

DOI WoS1
2019 Le, T. D., Ong, K. L., Zhao, Y., Jin, W. H., Wong, S., Liu, L., & Williams, G. (2019). Preface - Data mining: AusDM: Australasian Conference on Data Mining. In Event/exhibition information: 17th Australasian Conference on Data Mining, AusDM 2019, Adelaide, Australia, 02/12/2019-05/12/2019
Source details - Title: Data mining: AusDM: Australasian Conference on Data Mining (pp. v-vi). Singapore: Springer Nature.

DOI
2014 Liu, L., & Li, J. (2014). Building Naïve Bayes Classifiers with high-dimensional and small-sized datasets. In A. Agah (Ed.), Source details - Title: Medical applications of artificial intelligence (pp. 115-135). Boca Raton, Florida: CRC Press.
DOI
2013 Liu, L., & Li, J. (2013). Building Naïve Bayes Classifiers with High-Dimensional and Small-Sized Data Sets. In Medical Applications of Artificial Intelligence (pp. 115-135).
DOI Scopus1
2013 Liu, B., Liu, L., Tsykin, A., Goodall, G., Cairns, M., & Li, J. (2013). Discovering functional microRNA-mRNA regulatory modules in heterogeneous data. In U. Schmitz, O. Wolkenhauer, & J. Vera (Eds.), MicroRNA cancer regulation: advanced concepts, bioinformatics and systems biology tools (Vol. 774, pp. 267-290). Springer.
DOI WoS2 Europe PMC3
2013 Liu, B., Liu, L., Tsykin, A., Goodall, G., Cairns, M. J., & Li, J. (2013). Discovering the functional microRNA-mRNA regulatory modules in heterogeneous data. In U. Schmitz, O. Wolkenhauer, & J. Vera (Eds.), Source details - Title: MicroRNA cancer regulation : advanced concepts, bioinformatics and systems biology tools (pp. 267-289). UK: Springer.
DOI
2009 Liu, L., & Billington, J. (2009). Recursive parametric automata and ε-removal. In L. Lee, & D. David (Eds.), Event/exhibition information: 11th International Conference on Formal Methods for Open Object-Based Distributed Systems, Lisbon, Portugal, 09/06/2009-11/06/2009
Source details - Title: Formal techniques for distributed systems : Joint 11th IFIP WG 6.1 International Conference FMOODS 2009 and 29th IFIP WG 6.1 International Conference FORTE 2009 : proceedings (pp. 90-105). Heidelberg, Germany: Springer.

DOI

Year Citation
2025 Ma'sum, M. A., Pratama, M., Liu, L., Habibullah, H., & Kowalczyk, R. (2025). Federated few-shot class-incremental learning. In The Thirteenth International Conference on Learning Representations (ICLR 2025) (pp. 1-30). US: ICLR.
2025 Du, X., Li, J., Cheng, D., Liu, L., Gao, W., Chen, X., & Xu, Z. (2025). Telling Peer Direct Effects from Indirect Effects in Observational Network Data. In Proceedings of the 42nd International Conference on Machine Learning, PMLR 267, 2025. (pp. 1-17). US: ICML.
2025 Huang, Z., Cheng, D., Liu, L., Li, J., Lu, G., & Zhang, S. (2025). Interaction-Data-guided Conditional Instrumental Variables for Debiasing Recommender Systems. In Proceedings of the Thirty-Fourth International Joint Conference on Artificial Intelligence (pp. 2955-2963). Canada: International Joint Conferences on Artificial Intelligence Organization.
DOI
2025 Masum, M. A., Pratama, D., Ramasamy, S., Liu, L., Habibullah, H., & Kowalczyk, R. (2025). PROL: Rehearsal Free Continual Learning in Streaming Data via Prompt Online Learning. In IEEE/CVF International Conference on Computer Visions (ICCV 2025) (pp. 1-11). US: IEEE/CVF.
2025 Gao, W., Li, J., Liu, L., Le, T. D., Chen, X., Du, X., . . . Chen, Y. (2025). From Noise to Precision: A Diffusion-Driven Approach to Zero-Inflated Precipitation Prediction. In Frontiers in Artificial Intelligence and Applications Vol. 413 (pp. 1107-1114). IOS Press.
DOI
2025 Ma'sum, M. A., Pratama, M., Ramasamy, S., Liu, L., Habibullah, H., & Kowalczyk, R. (2025). Vision and language synergy for rehearsal free continual learning. In The Thirteenth International Conference on Learning Representations (ICLR 2025) (pp. 1-31). US: ICLR.
2025 Deng, J., Chen, Q., Cheng, D., Du, X., Li, J., & Liu, L. (2025). Mitigating Latent Confounding Bias in Recommender Systems. In Cikm 2025 Proceedings of the 34th ACM International Conference on Information and Knowledge Management (pp. 531-541). ACM.
DOI
2025 Du, X., Li, J., Cheng, D., Liu, L., Gao, W., Chen, X., & Xu, Z. (2025). Telling Peer Direct Effects from Indirect Effects in Observational Network Data. In Proceedings of Machine Learning Research Vol. 267 (pp. 14562-14578).
2025 Ma'sum, M. A., Pratama, M., Liu, L., Habibullah, H., & Kowalczyk, R. (2025). FEDERATED FEW-SHOT CLASS-INCREMENTAL LEARNING. In 13th International Conference on Learning Representations Iclr 2025 (pp. 101524-101553).
Scopus1
2025 Ma'Sum, M. A., Pratama, M., Ramasamy, S., Liu, L., Habibullah, H., & Kowalczyk, R. (2025). VISION AND LANGUAGE SYNERGY FOR REHEARSAL FREE CONTINUAL LEARNING. In 13th International Conference on Learning Representations Iclr 2025 (pp. 15997-16027).
2025 Chen, X., Li, J., Liu, J., Liu, L., Peters, S., Le, T. D., . . . Walsh, A. (2025). Diffusion Models for Attribution. In T. Walsh, J. Shah, & Z. Kolter (Eds.), Proceedings of the Aaai Conference on Artificial Intelligence Vol. 39 (pp. 2266-2274). US: ASSOC ADVANCEMENT ARTIFICIAL INTELLIGENCE.
DOI
2025 Wang, H., Liu, L., Li, J., Xu, Z., Liu, J., Cao, Z., & Cheng, D. (2025). Off-policy Evaluation for Multiple Actions in the Presence of Unobserved Confounders. In Www 2025 Proceedings of the ACM Web Conference (pp. 413-424). US: ACM.
DOI
2025 Gao, W., Li, J., Cheng, D., Liu, L., Liu, J., Le, T., . . . Zhao, Y. (2025). Deconfounding Multi-Cause Latent Confounders: A Factor-Model Approach to Climate Model Bias Correction. In Ijcai International Joint Conference on Artificial Intelligence (pp. 9638-9646). Canada: International Joint Conferences on Artificial Intelligence Organization.
DOI
2024 Cheng, D., Xu, Z., Li, J., Liu, L., Liu, J., & Le, T. D. (2024). Conditional instrumental variable regression with representation learning for causal inference. In 12th International Conference on Learning Representations, ICLR 2024 (pp. 1-17). US: International Conference on Learning Representations (ICLR).
Scopus4
2024 Dzakpasu, D. Q., Liu, J., Li, J., & Liu, L. (2024). Integrating Fair Representation Learning with Fairness Regularization for Intersectional Group Fairness. In International Conference on Information and Knowledge Management Proceedings (pp. 560-569). US: ACM.
DOI WoS1
2024 Cheng, D., Xu, Z., Li, J., Liu, L., Liu, J., Gao, W., & Le, T. D. (2024). Instrumental Variable Estimation for Causal Inference in Longitudinal Data with Time-Dependent Latent Confounders. In M. Wooldridge, J. Dy, & S. Natarajan (Eds.), Proceedings of the Aaai Conference on Artificial Intelligence Vol. 38 (pp. 11480-11488). US: ASSOC ADVANCEMENT ARTIFICIAL INTELLIGENCE.
DOI Scopus9 WoS6
2024 Guo, X., Yu, K., Liu, L., & Li, J. (2024). FedCSL: a scalable and accurate approach to federated causal structure learning. In M. Wooldridge, J. Dy, & S. Natarajan (Eds.), Proceedings of the AAAI Conference on Artificial Intelligence Vol. 38 (pp. 12235-12243). US: AAAI Press.
DOI Scopus14 WoS8
2024 Chen, Q., Wei, B., Cheng, D., Li, J., Liu, L., & Zhang, S. (2024). Novel shadow variable catcher for addressing selection bias in recommendation systems. In Proceedings - IEEE International Conference on Data Mining, ICDM (pp. 71-80). US: IEEE.
DOI Scopus1
2024 Ma'sum, M. A., Pratama, M., Ramasamy, S., Liu, L., Habibullah, H., & Kowalczyk, R. (2024). PIP: prototypes-injected prompt for Federated Class Incremental Learning. In CIKM ’24 Proceedings of the 33rd ACM International Conference on Information and Knowledge Management (pp. 1670-1679). US: Association for Computing Machinery.
DOI Scopus2
2024 Xu, Z., Cheng, D., Li, J., Liu, J., Liu, L., & Yu, K. (2024). CAUSAL INFERENCE WITH CONDITIONAL FRONT-DOOR ADJUSTMENT AND IDENTIFIABLE VARIATIONAL AUTOENCODER. In 12th International Conference on Learning Representations Iclr 2024 (pp. 1-22). US: International Conference on Learning Representations (ICLR).
Scopus10
2023 Cheng, D., Xu, Z., Li, J., Liu, L., Liu, J., & Le, T. D. (2023). Causal Inference with Conditional Instruments Using Deep Generative Models. In B. Williams, Y. Chen, & J. Neville (Eds.), Proceedings of the 37th Aaai Conference on Artificial Intelligence Aaai 2023 Vol. 37 (pp. 7122-7130). US: ASSOC ADVANCEMENT ARTIFICIAL INTELLIGENCE.
DOI Scopus17 WoS8
2023 Tran, H. X., Le, T. D., Li, J., Liu, L., Li, X., Liu, J., & Waters, T. (2023). Stabilising Job Survival Analysis for Disability Employment Services in Unseen Environments. In Proceedings of the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (pp. 4970-4980). US: ASSOC COMPUTING MACHINERY.
DOI Scopus1 WoS1
2023 Deho, O. B., Joksimovic, S., Liu, L., Li, J., Zhan, C., & Liu, J. (2023). Assessing the Fairness of Course Success Prediction Models in the Face of (Un)equal Demographic Group Distribution. In Proceedings of the 10th ACM Conference on Learning @ Scale (L@S 2023) (pp. 48-58). New York, NY, USA: Association for Computing Machinery (ACM).
DOI Scopus8 WoS7
2023 Cheng, D., Xie, Y., Xu, Z., Li, J., Liu, L., Liu, J., . . . Feng, Z. (2023). Disentangled Latent Representation Learning for Tackling the Confounding M-Bias Problem in Causal Inference. In Proceedings IEEE International Conference on Data Mining Icdm (pp. 51-60). US: IEEE.
DOI Scopus4 WoS2
2023 Xu, Z., Cheng, D., Li, J., Liu, J., Liu, L., & Wang, K. (2023). Disentangled Representation for Causal Mediation Analysis. In Proceedings of the 37th Aaai Conference on Artificial Intelligence Aaai 2023 Vol. 37 (pp. 10666-10674). US: Association for the Advancement of Artificial Intelligence.
DOI Scopus10
2023 Chen, X., Li, J., Liu, J., Peters, S., Liu, L., Le, T. D., & Walsh, A. (2023). Improve interpretability of Information Bottlenecks for Attribution with Layer-wise Relevance Propagation. In Proceedings 2023 IEEE International Conference on Big Data Bigdata 2023 (pp. 1064-1069). US: IEEE.
DOI
2023 Cheng, D., Xu, Z., Li, J., Liu, L., Le, T. D., & Liu, J. (2023). Learning Conditional Instrumental Variable Representation for Causal Effect Estimation. In D. Koutra, C. Plant, M. G. Rodriguez, E. Baralis, & F. Bonchi (Eds.), Lecture Notes in Computer Science Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics Vol. 14169 LNAI (pp. 525-540). Switzerland: SPRINGER INTERNATIONAL PUBLISHING AG.
DOI Scopus6 WoS3
2022 Le, T. D., Liu, L., Kiciman, E., Triantafyllou, S., & Liu, H. (2022). The KDD 2022 Workshop on Causal Discovery (CD2022). In Proceedings of the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (pp. 4884-4885). US: ASSOC COMPUTING MACHINERY.
DOI
2022 Cheng, D., Li, J., Liu, L., Zhang, J., Le, T. D., & Liu, J. (2022). Ancestral instrument method for causal inference without complete knowledge. In L. Raedt (Ed.), Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (pp. 4843-4849). US: International Joint Conferences on Artificial Intelligence Organization.
DOI Scopus8 WoS3
2022 Tran, H. X., Le, T. D., Li, J., Liu, L., Liu, J., Zhao, Y., & Waters, T. (2022). What is the most effective intervention to increase job retention for this disabled worker?. In KDD '22: Proceedings of the 28th ACM SIGKDD Conference on Knowledge Discovery and Data Mining (pp. 3981-3991). US: ACM - Association for Computing Machinery Inc.
DOI Scopus4 WoS2
2022 Le, T. D., Liu, L., Kıcıman, E., Triantafyllou, S., & Liu, H. (2022). Preface: the 2022 ACM SIGKDD workshop on causal discovery. In Proceedings of Machine Learning Research Vol. 185 (pp. 1-2). US: ML Research Press.
2022 Xuan Tran, H., Duy Le, T., Li, J., Liu, L., Liu, J., Zhao, Y., & Waters, T. (2022). Decision Support for Disability Employment using Counterfactual Survival Analysis. In Proceedings 2022 IEEE International Conference on Big Data Big Data 2022 (pp. 2103-2112). US: IEEE.
DOI Scopus1
2022 Xu, Z., Xu, Z., Liu, J., Cheng, D., Li, J., Liu, L., & Wang, K. (2022). Assessing Classifier Fairness with Collider Bias. In J. Gama, T. Li, Y. Yu, E. Chen, Y. Zheng, & F. Teng (Eds.), Pacific-Asia Conference on Knowledge Discovery and Data Mining: PAKDD 2022: Advances in Knowledge Discovery and Data Mining Vol. 13281 LNAI (pp. 262-276). Switzerland: SPRINGER INTERNATIONAL PUBLISHING AG.
DOI Scopus4 WoS4
2022 Park, J. Y., Liu, L., Liu, J., & Li, J. (2022). Randomize Adversarial Defense in a Light Way. In Proceedings 2022 IEEE International Conference on Big Data Big Data 2022 (pp. 1080-1089). US: IEEE.
DOI Scopus2
2022 Deho, O. B., Liu, L., Joksimovic, S., Li, J., Zhan, C., & Liu, J. (2022). Assessing the Causal Impact of Online Instruction due to COVID-19 on Students' Grades and its aftermath on Grade Prediction Models. In ACM International Conference Proceeding Series (pp. 32-38). US: Association for Computing Machinery.
DOI Scopus5
2021 Park, J. Y., Liu, L., Li, J., & Liu, J. (2021). Training Neural Networks with Random Noise Images for Adversarial Robustness. In International Conference on Information and Knowledge Management Proceedings (pp. 3358-3362). US: ASSOC COMPUTING MACHINERY.
DOI Scopus1 WoS1
2021 Tran, H. X., Le, T. D., Li, J., Liu, L., Liu, J., Zhao, Y., & Waters, T. (2021). Recommending the most effective intervention to improve employment for job seekers with disability. In KDD '21: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining (pp. 3616-3626). US: Association for Computing Machinery.
DOI Scopus14 WoS10
2021 Lu, S., Liu, L., Li, J., Le, T. D., & Liu, J. (2021). Divide and conquer: targeted adversary detection using proximity and dependency. In Z. Gong, X. Li, S. G. Oguducu, L. Chen, B. F. Manjon, & X. Wu (Eds.), Proceedings - 12th IEEE International Conference on Big Knowledge, ICBK 2021 (pp. 125-132). US: IEEE.
DOI Scopus1
2021 Zhang, W., Liu, L., & Li, J. (2021). Treatment effect estimation with disentangled latent factors. In Proceedings from the 35th AAAI conference of artificial intelligence Vol. 12B (pp. 10923-10930). US: Association for the Advancement of Artificial Intelligence.
DOI Scopus64
2020 Zhang, W., Liu, L., & Li, J. (2020). Robust multi-instance learning with stable instances. In G. Giacomo (Ed.), ECAI 2020: 24th European Conference on Artificial Intelligence, 29 August–8 September 2020, Santiago de Compostela, Spain, Proceedings Vol. 325 (pp. 1682-1689). Netherlands: IOS Press.
DOI Scopus14
2020 Le, T. D., Liu, L., Zhang, K., Kıcıman, E., Cui, P., & Hyvarinen, A. (2020). Preface: The 2020 ACM SIGKDD Workshop on Causal Discovery. In Proceedings of Machine Learning Research Vol. 127 (pp. 1-3). US: ML Research Press.
2020 Lu, S., Liu, L., Li, J., Le, T. D., & Liu, J. (2020). LoPAD: A local prediction approach to anomaly detection. In H. W. Lauw, R. C. W. Wong, A. Ntoulas, E. P. Lim, S. K. Ng, & S. J. Pan (Eds.), Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) Vol. 12085 (pp. 660-673). Singapore: Springer.
DOI Scopus4 WoS3
2020 Xuan Tran, H., Duy Le, T., Li, J., Liu, L., Liu, J., Zhao, Y., & Waters, T. (2020). Intervention Recommendation for Improving Disability Employment. In X. T. Wu, C. Jermaine, L. Xiong, X. H. Hu, O. Kotevska, S. Y. Lu, . . . J. Saltz (Eds.), Proceedings 2020 IEEE International Conference on Big Data Big Data 2020 (pp. 1671-1680). US: IEEE.
DOI Scopus5 WoS5
2020 Cheng, D., Li, J., Liu, L., Liu, J., Yu, K., & Le, T. D. (2020). Causal query in observational data with hidden variables. In G. DeGiacomo, A. Catala, B. Dilkina, M. Milano, S. Barro, A. Bugarin, & J. Lang (Eds.), Frontiers in Artificial Intelligence and Applications Vol. 325 (pp. 2551-2558). Netherlands: IOS PRESS.
DOI Scopus10 WoS7
2020 Islam, M. Z., Liu, J., Li, J., Liu, L., & Kang, W. (2020). Evidence Weighted Tree Ensembles for Text Classification. In SIGIR 2020 Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval (pp. 1737-1740). US: ACM.
DOI Scopus1
2020 Liu, J., Li, J., Ye, F., Liu, L., Le, T., Xiong, P., & Liu, H. C. (2020). Building fair predictive models. In M. Gallagher, N. Moustafa, & E. Lakshika (Eds.), 33rd Australasian Joint Conference on Artificial Intelligence, AI 2020 Proceedings Vol. 12576 LNAI (pp. 216-229). Switzerland: Springer Nature.
DOI Scopus1
2019 Lu, S., Liu, L., Li, J., & Le, T. D. (2019). Effective outlier detection based on Bayesian Network and Proximity. In N. Abe, H. Liu, C. Pu, X. Hu, N. Ahmed, M. Qiao, . . . J. Saltz (Eds.), Proceedings - 2018 IEEE International Conference on Big Data, Big Data 2018 (pp. 134-139). US: IEEE.
DOI Scopus5 WoS4
2019 Islam, M. Z., Liu, J., Li, J., Liu, L., & Kang, W. (2019). A semantics aware random forest for text classification. In International Conference on Information and Knowledge Management Proceedings (pp. 1061-1070). China: ASSOC COMPUTING MACHINERY.
DOI Scopus72 WoS41
2019 Islam, M. Z., Liu, J., Liu, L., Li, J., & Kang, W. (2019). Semantic explanations in ensemble learning. In Q. Yang, Z. H. Zhou, Z. Gong, M. L. Zhang, & S. J. Huang (Eds.), Advances in Knowledge Discovery and Data Mining: 23rd Pacific-Asia Conference, PAKDD 2019, Macau, China, April 14–17, 2019, Proceedings, Part I Vol. 11439 LNAI (pp. 29-41). Switzerland: SPRINGER INTERNATIONAL PUBLISHING AG.
DOI Scopus5 WoS3
2019 Liu, J., Kwashie, S., Li, J., Liu, L., & Bewong, M. (2019). Linking graph entities with multiplicity and provenance. In Ceur Workshop Proceedings Vol. 2446 (pp. 1-7). Germany: Rheinisch-Westfaelische Technische Hochschule Aachen Lehrstuhl Informatik V.
2019 Ansah, J., Kwashie, S., Liu, L., Liu, J., Kang, W., & Li, J. (2019). A graph is worth a thousand words: Telling event stories using timeline summarization graphs. In Web Conference 2019 Proceedings of the World Wide Web Conference Www 2019 (pp. 2565-2571). US: ACM Digital Library.
DOI Scopus28
2019 Le, T. D., Li, J., Zhang, K., Kıcıman, E., Cui, P., & Hyvärinen, A. (2019). Preface: The 2019 ACM SIGKDD Workshop on Causal Discovery. In Proceedings of Machine Learning Research Vol. 104 (pp. 1-3). US: ML Research Press.
Scopus1
2018 Le, T. D., Zhang, K., Kıcıman, E., Hyvarinen, A., & Liu, L. (2018). Preface: The 2018 ACM SIGKDD Workshop on Causal Discovery. In Proceedings of Machine Learning Research Vol. 92 (pp. 1-3). US: ML Research Press.
2018 Le, T. D., Xu, T., Liu, L., Shu, H., Hoang, T., & Li, J. (2018). ParallelPC: An R package for efficient causal exploration in genomic data. In M. Ganji, L. Rashidi, B. C. M. Fung, & C. Wang (Eds.), Lecture Notes in Computer Science Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics Vol. 11154 LNAI (pp. 207-218). Switzerland: SPRINGER INTERNATIONAL PUBLISHING AG.
DOI Scopus9 WoS3
2018 Ansah, J., Kang, W., Liu, L., Liu, J., & Li, J. (2018). Information propagation trees for protest event prediction. In Lecture Notes in Computer Science Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics Vol. 10939 LNAI (pp. 777-789). Switzerland: Springer International Publishing.
DOI Scopus9
2018 Ansah, J., Kang, W., Liu, L., Liu, J., & Li, J. (2018). SensorTree: Bursty Propagation Trees as Sensors for Protest Event Detection. In H. Hacid, W. Cellary, H. Wang, H. Y. Paik, & R. Zhou (Eds.), Web Information Systems Engineering – WISE 2018 19th International Conference Vol. 11233 LNCS (pp. 281-296). Switzerland: SPRINGER INTERNATIONAL PUBLISHING AG.
DOI Scopus6 WoS6
2018 Zhang, Z., Li, J., Wang, H., Liu, L., & Liu, J. (2018). Which type of classifier to use for networked data, connectivity based or feature based?. In H. Hacid (Ed.), Web Information Systems Engineering – WISE 2018 proceedings Vol. 11233 LNCS (pp. 364-380). Germany: Springer.
DOI
2017 Liu, J., Liu, L., & Chen, T. (2017). Evaluating and improving SIP non-INVITE transaction to alleviate the losing race problem. In W. Aalst, & E. Best (Eds.), Application and Theory of Petri Nets and Concurrency Vol. 10258 LNCS (pp. 57-77). Switzerland: Springer.
DOI Scopus2 WoS2
2017 Bewong, M., Liu, J., Liu, L., & Li, J. (2017). Utility aware clustering for publishing transactional data. In J. Kim, K. Shim, L. Cao, J. G. Lee, X. Lin, & Y. S. Moon (Eds.), Advances in Knowledge Discovery and Data Mining: 21st Pacific-Asia Conference, PAKDD 2017, Jeju, South Korea, May 23–26, 2017, Proceedings, Part II Vol. 10235 LNAI (pp. 481-494). Switzerland: SPRINGER INTERNATIONAL PUBLISHING AG.
DOI Scopus8 WoS9
2017 Bewong, M., Liu, J., Liu, L., Li, J., & Choo, K. K. R. (2017). A relative privacy model for effective privacy preservation in transactional data. In Proceedings 16th IEEE International Conference on Trust Security and Privacy in Computing and Communications 11th IEEE International Conference on Big Data Science and Engineering and 14th IEEE International Conference on Embedded Software and Systems Trustcom Bigdatase Icess 2017 (pp. 394-401). US: IEEE.
DOI Scopus6
2017 Kang, W., Chen, J., Li, J., Liu, J., Liu, L., Osborne, G., . . . Neale, G. (2017). Carbon: Forecasting civil unrest events by monitoring news and social media. In Lecture Notes in Computer Science Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics Vol. 10604 LNAI (pp. 859-865). Singapore: Springer.
DOI Scopus11 WoS8
2017 Le, T. D., Zhang, J., Liu, L., Thanh Truong, B. M., Hu, S., Xu, T., & Li, J. (2017). Identifying microRNA targets in epithelial-mesenchymal transition using joint-intervention causal inference. In ACM International Conference Proceeding Series (pp. 34-41). US: ASSOC COMPUTING MACHINERY.
DOI Scopus2 WoS1
2017 Li, J., Liu, J., Liu, L., Le, T. D., Ma, S., & Han, Y. (2017). Discrimination detection by causal effect estimation. In J. Y. Nie, Z. Obradovic, T. Suzumura, R. Ghosh, R. Nambiar, C. Wang, . . . M. Toyoda (Eds.), Proceedings 2017 IEEE International Conference on Big Data Big Data 2017 Vol. 2018-January (pp. 1087-1094). US: IEEE.
DOI Scopus12 WoS11
2016 Chen, J., Kang, W., Li, J., Liu, J., Liu, L., Cooper, B., . . . Moschou, T. (2016). A temporal classification based predictive model of recurring societal events. In 14th Australasian Data Mining Conference Ausdm 2016 (pp. 93-99). Australia: Australian Computer Society.
2016 Le, T. D., Hoang, T., Li, J., Liu, L., & Liu, H. (2016). A fast PC algorithm for high dimensional causal discovery for multi-core PCs. In International workshop on data mining in bioinformatics (pp. 1-10). US: IEEE.
2016 Azfar, A., Choo, K. K. R., & Liu, L. (2016). An android social app forensics adversary model. In Proceedings of the Annual Hawaii International Conference on System Sciences Vol. 2016 (pp. 5597-5606). US: IEEE.
DOI WoS25
2015 Azfar, A., Choo, K. K. R., & Liu, L. (2015). Forensic taxonomy of popular Android mHealth apps. In AMCIS 2015 Proceedings: Healthcare Information Systems and Technology (SIGHealth) (pp. 1-19). US: Association for Information Systems.
Scopus29 WoS4
2014 Liu, J., & Liu, L. (2014). A coloured petri net approach to the functional and performance analysis of SIP non-INVITE transaction. In M. Koutny, S. Haddad, & A. Yakovlev (Eds.), Transactions on Petri Nets and Other Models of Concurrency IX Vol. 8910 (pp. 147-177). Germany: Springer.
DOI Scopus5
2014 Karim, M. S. M., Liu, L., & Li, J. (2014). Discovering collective group relationships. In E. Burke, & M. Trick (Eds.), Databases Theory and Applications: 25th Australasian Database Conference, ADC 2014, Brisbane, QLD, Australia, July 14-16, 2014. Proceedings Vol. 8506 LNCS (pp. 110-121). Switzerland: Springer.
DOI Scopus2
2014 Azfar, A., Choo, K. K. R., & Liu, L. (2014). A study of ten popular Android mobile VoIP applications: are the communications encrypted?. In R. H. Sprague (Ed.), Proceedings of the 47th Annual Hawaii International Conference on System Sciences (pp. 4858-4867). US: IEEE.
DOI
2013 Li, J., Le, T. D., Liu, L., Liu, J., Jin, Z., & Sun, B. (2013). Mining causal association rules. In W. Ding, T. Washio, H. Xiong, G. Karypis, B. Thuraisingham, D. Cook, & X. Wu (Eds.), IEEE 13th International Conference on Data Mining Workshops 2013 proceedings (pp. 114-123). US: IEEE Press.
DOI Scopus42 WoS31
2013 Li, J., Zhang, K., Pei, J., Liu, L., Lu, Z. H., & Zhang, J. (2013). Preface to the first IEEE ICDM workshop on causal discovery. In Proceedings - IEEE 13th International Conference on Data Mining Workshops, ICDMW 2013 (pp. 1-2). US: IEEE.
DOI
2012 Jin, Z., Li, J., Liu, L., Le, T. D., Sun, B., & Wang, R. (2012). Discovery of causal rules using partial association. In M. J. Zaki, A. Siebes, J. X. Yu, B. Goethals, G. Webb, & X. Wu (Eds.), Proceedings IEEE International Conference on Data Mining Icdm (pp. 309-318). US: IEEE.
DOI Scopus29 WoS22
2011 Zhang, Z., Liu, L., Li, J., & Zhang, Z. (2011). Spectral representation of DNA sequences and its application. In Proceedings 2010 IEEE fifth international conference on bio-inspired computing : theories and applications (pp. 1023-1027). US: IEEE.
DOI Scopus6
2011 Wang, Y., & Liu, L. (2011). Controller design using coloured Petri nets: with a case study of the papermaking process control. In Proceedings of the 2011 International Conference on Modelling, Identification and Control (pp. 415-421). Shanghai: IEEE.
DOI Scopus2
2011 Liu, L. (2011). Uncovering SIP vulnerabilities to DoS attacks using coloured Petri nets. In Proceedings of the 10th IEEE International conference on trust, security and privacy in computing and communications (pp. 29-36). US: IEEE.
DOI Scopus7
2010 Liu, L. (2010). Security analysis of session initiation protocol : a methodology based on coloured petri nets. In V. Valli, & C. Craig (Eds.), Proceedings of the 1st International Cyber Resilience Conference. Perth, Western Australia: Security Research Centre, School of Computer and Security Science, Edith Cowan University.
2010 Liu, L., Li, Y., Liu, B., & Li, J. (2010). A simple yet effective data integration approach to tree-based microarray data classification. In 32nd annual international conference of the IEEE engineering in medicine and biology society Vol. 2010 (pp. 1503-1506). US: IEEE.
DOI Scopus1
2009 Liu, L. (2009). Verification of the SIP transaction using coloured petri nets. In M. Mans, & B. Bernard (Eds.), Proceedings of the 32nd Australasian Computer Science Conference (ACSC 2009) Vol. 91 (pp. 75-84). Sydney, Australia: Austrailan Computer Society.
Scopus4
2008 Ding, L. G., & Liu, L. (2008). Modelling and analysis of the INVITE transaction of the session initiation protocol using coloured petri nets. In Proceedings of the 29th International conference on applications and theory of petri nets, PETRI NETS 2008. Applications and theory of petri nets, LNCS series 5062 (pp. 132-151). Berlin: Springer.
DOI
2007 Liu, L., & Billington, J. (2007). Symbolic language representations for parametric verification of the revised capability exchange signalling protocol. In M. Munro, & D. D (Eds.), Proceedings of the Eighth International Conference on Parallel and Distributed Computing, Applications and Technologies (pp. 480-487). USA: IEEE Computer Society.
DOI
2005 Liu, L., & Billington, J. (2005). Enhancing the CES protocol and its verification. In Proceedings of the Sixth Workshop and Tutorial on Practical Use of Coloured Petri Nets and the CPN Tools. Denmark: University of Aarhus.
2004 Liu, L., Liu, L., & Billington, J. (2004). Obtaining the service language for H.245's multimedia capability exchange signalling protocol: the final step. In 10th international multimedia modelling conference (MMM 2004) (pp. 323-328). Los Alamitos, Calif. USA: IEEE Computer Society.
DOI
2004 Liu, L., & Billington, J. (2004). Reducing parametric automata : a multimedia protocol service case study. In Automated Technology for Verification and Analysis. Berlin, Germany: Springer-Verlag.
DOI
2004 Liu, L., & Billington, J. (2004). Reducing parametric automata: a multimedia protocol service case study. In Lecture Notes in Computer Science. Berlin, Germany: Springer-Verlag.
2002 Liu, L., & Billington, J. (2002). Tackling the infinite state space of a multimedia control protocol service specification. In Lecture notes in computer science (pp. 273-293). Germany: Springer-Verlag.
DOI
2001 Liu, L., & Billington, J. (2001). Modelling and analysis of the CES Protocol of H.245. In Proceedings: 3rd Workshop and Tutorial on Practical Use of Coloured Petri Nets and the CPN Tools. http://www.daimi.au.dk/CPnets/workshop01/cpnpapers/.
2001 Liu, L., & Billington, J. (2001). Modelling and analysis of internet multimedia protocols - methodology and initial results. In 11th Annual International Symposium of the International Council on Systems Engineering Vol. 11 (pp. 258-265). US: International Council of Systems Engineering.
DOI
  • Build competency aware and assuring machine learning systems, ARC - Discovery Projects, 01/01/2023 - 31/12/2026

  • On-orbit evaluation and demonstration of energy-efficient fire smoke detection on the Kanyini and the Phi-Sat-2 CubeSat during 2025 and 2026 fire season using HS2 imagery and onboard AI., SmartSat CRC, 18/12/2024 - 18/04/2026

  • ARC ITTC in Cognitive Computing for Medical Technologies, ARC - Industrial Transformation Training Centres, 13/12/2017 - 31/12/2024

  • Develop efficient data mining methods for evidence based decision making, ARC - Discovery Projects, 29/06/2017 - 28/06/2021

  • Int Policing: Entity Linking & Resolution, D2D CRC Limited, 01/01/2016 - 31/12/2019

  • D2D CRC Limited Scholarship, D2D CRC Limited, 16/03/2016 - 30/09/2019

  • Efficient causal discovery from observational data, ARC - Discovery Projects, 19/06/2014 - 31/12/2017

Courses I teach

  • INFS 5102 Unsupervised Methods in Analytics (2025)
  • INFS 5102 Unsupervised Methods in Analytics (2024)

Date Role Research Topic Program Degree Type Student Load Student Name
2025 Co-Supervisor - Doctor of Philosophy Doctorate Full Time Linqing Li
2025 Principal Supervisor - Doctor of Philosophy Doctorate Full Time Yi Li
2025 Co-Supervisor - Doctor of Philosophy Doctorate Full Time Kaylen Smith
2024 Co-Supervisor - Doctor of Philosophy Doctorate Full Time Mrs Jin Cui
2023 Co-Supervisor - Doctor of Philosophy Doctorate Full Time Miss Xiaojing Du
2023 Co-Supervisor - Doctor of Philosophy Doctorate Full Time Mr Tuyen Vu
2023 Principal Supervisor - Doctor of Philosophy Doctorate Full Time Mr Haolin Wang
2023 Principal Supervisor - Doctor of Philosophy Doctorate Full Time Mr Xudong Guo
2023 Co-Supervisor - Doctor of Philosophy Doctorate Full Time Wentao Gao
2022 Co-Supervisor - Doctor of Philosophy Doctorate Full Time Muhammad Tanzil Furqon
2022 Co-Supervisor - Doctor of Philosophy Doctorate Full Time Mrs Sindy Pinero
2022 Co-Supervisor - Doctor of Philosophy Doctorate Full Time Xiongren Chen

Date Title Engagement Type Institution Country
2019 - ongoing The Australasian Data Science and Machine Learning Conference series (AusDM) Scientific Community Engagement AusDM Australia

Date Role Editorial Board Name Institution Country
2024 - ongoing Associate Editor IEEE Transactions on Artificial Intelligence IEEE Computational Intelligence Society United States
2020 - ongoing Associate Editor BMC Bioinformatics BMC United Kingdom

Connect With Me

External Profiles

Other Links