2022 |
Kazemi Moghaddam, M., Abbasnejad, E., Wu, Q., Qinfeng Shi, J., & Van Den Hengel, A. (2022). ForeSI: Success-Aware Visual Navigation Agent. In Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision (WACV 2022) (pp. 3401-3410). Online: IEEE. DOI |
2022 |
Yan, Q., Zhang, S., Chen, W., Liu, Y., Zhang, Z., Zhang, Y., . . . Gong, D. (2022). A Lightweight Network for High Dynamic Range Imaging. In IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops Vol. 2022-June (pp. 823-831). New Orleans, LA: IEEE. DOI Scopus1 |
2022 |
Yan, Q., Gong, D., Liu, Y., Van Den Hengel, A., & Shi, J. Q. (2022). Learning Bayesian Sparse Networks with Full Experience Replay for Continual Learning. In Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition Vol. 2022-June (pp. 109-118). New Orleans, LA: IEEE COMPUTER SOC. DOI Scopus1 WoS1 |
2022 |
Zhang, X., Li, D., Wang, Z., Wang, J., Ding, E., Shi, J. Q., . . . Wang, J. (2022). Implicit Sample Extension for Unsupervised Person Re-Identification. In Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition Vol. 2022-June (pp. 7359-7368). Online: IEEE. DOI |
2021 |
Kazemi Moghaddam, M., Wu, Q., Abbasnejad, E., & Shi, J. (2021). Optimistic Agent: Accurate Graph-Based Value Estimation for More Successful Visual Navigation. In Proceedings of the IEEE Winter Conference on Applications of Computer Vision (WACV 2021) (pp. 3732-3741). online: IEEE. DOI Scopus7 WoS6 |
2021 |
Gong, D., Zhang, Z., Shi, J. Q., & van den Hengel, A. (2021). Memory-augmented Dynamic Neural Relational Inference. In Proceedings 2021 IEEE/CVF International Conference on Computer Vision ICCV 2021 (pp. 11823-11832). Los Alamitos, CA, USA: IEEE. DOI Scopus1 |
2021 |
Wang, Z., Meng, J., Guo, D., Zhang, J., Shi, J. Q., & Chen, S. (2021). Consistency-Aware Graph Network for Human Interaction Understanding. In Proceedings of the IEEE International Conference on Computer Vision (pp. 13349-13358). online: IEEE. DOI Scopus2 |
2020 |
Wang, X., Liu, L., & Shi, Q. (2020). Harmonic Structure-Based Neural Network Model for Music Pitch Detection. In Proceedings - 19th IEEE International Conference on Machine Learning and Applications, ICMLA 2020 (pp. 87-92). online: IEEE. DOI Scopus2 |
2020 |
Wang, X., Liu, L., & Shi, Q. (2020). Enhancing Piano Transcription by Dilated Convolution. In Proceedings - 19th IEEE International Conference on Machine Learning and Applications, ICMLA 2020 (pp. 1446-1453). online: IEEE. DOI Scopus2 |
2020 |
Ehsanpour, M., Abedin, A., Saleh, F., Shi, J., Reid, I., & Rezatofighi, H. (2020). Joint Learning of Social Groups, Individuals Action and Sub-group Activities in Videos. In Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) Vol. 12354 LNCS (pp. 177-195). Cham, Switzerland: Springer International Publishing. DOI Scopus12 |
2020 |
Abedin Varamin, A., Taghizadeh Motlagh, S. F., Shi, Q., Rezatofighi, H., & Ranasinghe, D. (2020). Towards deep clustering of human activities from wearables. In Proceedings - International Symposium on Wearable Computers, ISWC (pp. 1-6). New York, NY, United States: Association for Computing Machinery (ACM). DOI Scopus11 |
2020 |
Abbasnejad, M., Teney, D., Parvaneh, A., Shi, Q., & Van Den Hengel, A. (2020). Counterfactual Vision and Language Learning.. In 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (pp. 10041-10051). online: IEEE. DOI Scopus39 |
2020 |
Abbasnejad, M., Abbasnejad, I., Wu, Q., Shi, Q., & Van Den Hengel, A. (2020). Gold seeker: Information gain from policy distributions for goal-oriented vision-and-langauge reasoning. In Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition (pp. 13447-13456). online: IEEE. DOI Scopus2 |
2020 |
Parvaneh, A., Abbasnejad, M., Teney, D., Shi, Q., & Van Den Hengel, A. (2020). Counterfactual Vision-and-Language Navigation: Unravelling the Unseen.. In H. Larochelle, M. Ranzato, R. Hadsell, M. -F. Balcan, & H. -T. Lin (Eds.), NeurIPS Vol. 2020-December (pp. 1-12). virtual online: NIPS. Scopus7 |
2019 |
Yan, Q., Gong, D., Zhang, P., Shi, Q., Sun, J., Reid, I., & Zhang, Y. (2019). Multi-scale dense networks for deep high dynamic range imaging. In Proceedings of the 2019 IEEE Winter Conference on Applications of Computer Vision (pp. 41-50). Waikoloa Village, HI, USA: IEEE. DOI Scopus43 WoS37 |
2019 |
Abbasnejad, M. E., Shi, Q., Van Den Hengel, A., & Liu, L. (2019). A Generative Adversarial Density Estimator.. In CVPR (pp. 10782-10791). online: Computer Vision Foundation / IEEE. |
2019 |
Wang, X., Liu, L., & Shi, Q. (2019). Exploiting stereo sound channels to boost performance of neural network-based music transcription. In Proceedings - 18th IEEE International Conference on Machine Learning and Applications, ICMLA 2019 (pp. 1353-1358). online: IEEE. DOI Scopus3 |
2019 |
Wang, Z., Liu, T., Shi, Q., Kumar, M. P., & Zhang, J. (2019). New convex relaxations for MRF inference with unknown graphs. In Proceedings: 2019 International Conference on Computer Vision Vol. 2019-October (pp. 9934-9942). Los Alamitos, California: IEEE. DOI Scopus4 WoS2 |
2019 |
Ehsan Abbasnejad, M., Dick, A., Shi, Q., & Van Den Hengel, A. (2019). Active learning from noisy tagged images. In British Machine Vision Conference 2018, BMVC 2018. |
2019 |
Xu, C., Shi, H., Gao, Y., Zhou, L., Shi, Q., & Li, J. (2019). Space-Based optical imaging dynamic simulation for spatial target. In Proceedings of SPIE - The International Society for Optical Engineering Vol. 11338 (pp. 1-6). online: SPIE. DOI Scopus1 |
2019 |
Abedin Varamin, A., Rezatofighi, H., Shi, Q., & Ranasinghe, D. (2019). SparseSense: Human Activity Recognition from Highly Sparse Sensor Data-streams Using Set-based Neural Networks. In IJCAI International Joint Conference on Artificial Intelligence Vol. 2019-August (pp. 5780-5786). online: IJCAI Organization. DOI Scopus6 WoS4 |
2019 |
Neshat, M., Abbasnejad, E., Shi, Q., Alexander, B., & Wagner, M. (2019). Adaptive neuro-surrogate-based optimisation method for wave energy converters placement optimisation. In T. Gedeon, K. W. Wong, & M. Lee (Eds.), Proceedings of the 26th International Conference on Neural Information Processing (ICONIP 2019), as published in Lecture Notes in Computer Science (Neural Information Processing Proceedings, Part II) Vol. 11954 (pp. 353-366). Switzerland: Springer Nature. DOI Scopus18 WoS14 |
2019 |
Abbasnejad, M. E., Shi, Q., Van Den Hengel, A., & Liu, L. (2019). A generative adversarial density estimator. In Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition Vol. 2019-June (pp. 10774-10783). online: IEEE. DOI Scopus10 WoS4 |
2019 |
Abbasnejad, E., Wu, Q., Shi, Q., & Van Den Hengel, A. (2019). What's to know? uncertainty as a guide to asking goal-oriented questions. In Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition Vol. 2019-June (pp. 4150-4159). online: IEEE. DOI Scopus12 WoS6 |
2019 |
Yan, Q., Gong, D., Shi, Q., Van Den Hengel, A., Shen, C., Reid, I., & Zhang, Y. (2019). Attention-guided network for ghost-free high dynamic range imaging. In Proceedings: 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition Vol. 2019-June (pp. 1751-1760). online: IEEE. DOI Scopus103 WoS82 |
2019 |
Li, J., Liu, Y., Gong, D., Shi, Q., Yuan, X., Zhao, C., & Reid, I. (2019). RGBD based dimensional decomposition residual network for 3D semantic scene completion. In Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR 2019) Vol. 2019-June (pp. 7685-7694). online: Computer Vision Foundation / IEEE. DOI Scopus22 WoS13 |
2019 |
Liu, Y., Dong, W., Zhang, L., Gong, D., & Shi, Q. (2019). Variational bayesian dropout with a hierarchical prior. In Proceedings: 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition Vol. 2019-June (pp. 7117-7126). online: IEEE. DOI Scopus9 WoS8 |
2018 |
Rezatofighi, H., Milan, A., Shi, Q., Dick, A., & Reid, I. (2018). Joint learning of set cardinality and state distribution. In 32nd AAAI Conference on Artificial Intelligence, AAAI 2018 (pp. 3968-3975). online: AAAI. Scopus5 WoS4 |
2018 |
Abbasnejad, M. E., Dick, A. R., Shi, Q., & Hengel, A. V. D. (2018). Active learning from noisy tagged images. In Proceedings of BMVC 2018 and Workshops (pp. 1-13). Newcastle upon Tyne: BMVA Press. |
2018 |
Liu, Y., Dong, W., Gong, D., Zhang, L., & Shi, Q. (2018). Deblurring natural image using super-gaussian fields. In Proceedings of the 15th European Conference on Computer Vision as published in Lecture Notes in Computer Science Vol. 11205 LNCS (pp. 467-484). Switzerland: Springer Nature. DOI Scopus7 WoS10 |
2018 |
Yang, J., Gong, D., Liu, L., & Shi, Q. (2018). Seeing Deeply and Bidirectionally: A Deep Learning Approach for Single Image Reflection Removal. In Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) Vol. 11207 LNCS (pp. 675-691). Switzerland: Springer Nature. DOI Scopus12 WoS28 |
2018 |
Abedin Varamin, A., Abbasnejad, E., Shi, Q., Ranasinghe, D., & Rezatofighi, H. (2018). Deep Auto-Set: A Deep Auto-Encoder-Set Network for Activity Recognition Using Wearables. In MobiQuitous (pp. 1-8). online: ACM. DOI Scopus21 WoS15 |
2017 |
Liu, C., Yao, R., Rezatofighi, S., Reid, I., & Shi, Q. (2017). Multi-object model-free tracking with joint appearance and motion inference. In Y. Guo, H. Li, W. Cai, M. Murshed, Z. Wang, J. Gao, & D. Feng (Eds.), Proceedings of the International Conference on Digital Image Computing: Techniques and Applications (DICTA 2017) Vol. 2017-December (pp. 1-8). Piscataway, NJ: IEEE. DOI Scopus5 |
2017 |
Gong, D., Yang, J., Liu, L., Zhang, Y., Reid, I., Shen, C., . . . Shi, Q. (2017). From motion blur to motion flow: a deep learning solution for removing heterogeneous motion blur. In Proceedings of the 30th IEEE Conference on Computer Vision and Pattern Recognition (CVPR 2017) Vol. 2017-January (pp. 3806-3815). Online: IEEE. DOI Scopus212 WoS136 |
2017 |
Gong, D., Tan, M., Zhang, Y., Van Den Hengel, A., & Shi, Q. (2017). MPGL: An efficient matching pursuit method for generalized LASSO. In Proceedings of the 31st AAAI Conference on Artificial Intelligence, AAAI 2017 (pp. 1934-1940). San Francisco: AAAI. Scopus9 WoS7 |
2017 |
Zhang, Z., Shi, Q., McAuley, J., Wei, W., Zhang, Y., Yao, R., & Van Den Hengel, A. (2017). Solving constrained combinatorial optimization problems via MAP inference without high-order penalties. In Proceedings of the 31st AAAI Conference on Artificial Intelligence, AAAI 2017 (pp. 3804-3810). San Francisco: AAAI. Scopus1 WoS1 |
2017 |
Zhang, Z., McAuley, J., Li, Y., Wei, W., Zhang, Y., & Shi, Q. (2017). Dynamic programming bipartite belief propagation for hyper graph matching. In Proceedings of the 26th International Joint Conference on Artificial Intelligence (IJCAI 2017) Vol. 0 (pp. 4662-4668). online: AAAI Press. DOI Scopus6 WoS4 |
2017 |
Gong, D., Tan, M., Zhang, Y., Hengel, A., & Shi, Q. (2017). Self-paced kernel estimation for robust blind image deblurring. In Proceedings of the IEEE International Conference on Computer Vision (ICCV 2017) Vol. 2017 (pp. 1670-1679). Online: IEEE. DOI Scopus21 WoS20 |
2017 |
Xu, C., Shi, N., Zhou, L., Shi, Q., Yang, Y., & Li, Z. (2017). Defect analysis and detection of micro nano structured optical thin film. In Proceedings of SPIE - The International Society for Optical Engineering Vol. 10460 (pp. 7 pages). Beijing, China: SPIE - International Society for Optics and Photonics. DOI |
2016 |
Zhang, Z., Shi, Q., McAuley, J., Wei, W., Zhang, Y., & Van Den Hengel, A. (2016). Pairwise matching through max-weight bipartite belief propagation. In Proceedings of the 29th IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPR 2016) Vol. 2016 (pp. 1202-1210). Las Vegas, NV: IEEE. DOI Scopus41 WoS23 |
2016 |
Gong, D., Tan, M., Zhang, Y., Van Den Hengel, A., & Shi, Q. (2016). Blind image deconvolution by automatic gradient activation. In Proceedings of the 29th IEEE Conference on Computer Vision and Pattern Recognition (CVPR 2016) Vol. 2016-December (pp. 1827-1836). Las Vegas, NV: IEEE. DOI Scopus55 WoS48 |
2016 |
Rezatofighi, S., Milan, A., Zhang, Z., Shi, Q., Dick, A., & Reid, I. (2016). Joint probabilistic matching using m-best solutions. In Proceedings of the 29th IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPR 2016) Vol. 2016-December (pp. 136-145). Las Vegas, NV: IEEE. DOI Scopus22 WoS15 |
2016 |
Tan, M., Xiao, S., Gao, J., Xu, D., Van Den Hengel, A., & Shi, Q. (2016). Proximal riemannian pursuit for large-scale trace-norm minimization. In Proceedings of the I29th IEEE Conference on Computer Vision and Pattern Recognition (CVPR 2016) Vol. 2016-December (pp. 5877-5886). Las Vegas, NV: IEEE. DOI Scopus1 WoS1 |
2016 |
Zhang, L., Wei, W., Zhang, Y., Shen, C., Van Den Hengel, A., & Shi, Q. (2016). Cluster sparsity field for hyperspectral imagery denoising. In B. Leibe, J. Matas, N. Sebe, & M. Welling (Eds.), Proceedings of the 14th European Conference on Computer Vision Vol. 9909 (pp. 631-647). Amsterdam, Netherlands: Springer International Publishing AG. DOI Scopus14 WoS12 |
2016 |
Zhang, W., Tan, M., Sheng, Q., Yao, L., & Shi, Q. (2016). Efficient orthogonal non-negative matrix factorization over stiefel manifold. In Proceedings of the 25th ACM International Conference on Information and Knowledge Management (CIKM '16) Vol. 24-28-October-2016 (pp. 1743-1752). Indianapolis, IN, USA: Association for Computing Machinery (ACM). DOI Scopus6 WoS6 |
2016 |
Tan, M., Yan, Y., Wang, L., Van Den Hengel, A., Tsang, I., & Shi, Q. (2016). Learning sparse confidence-weighted classifier on very high dimensional data. In Proceedings of the 30th AAAI Conference on Artificial Intelligence Vol. 3 (pp. 2080-2086). Phoenix, AZ: AAAI Press. Scopus3 WoS3 |
2015 |
Yan, Y., Tan, M., Tsang, I., Yang, Y., Zhang, C., & Shi, Q. (2015). Scalable maximum margin matrix factorization by active Riemannian subspace search. In Proceedings of the Twenty-Fourth International Joint Conference on Artificial Intelligence Vol. 2015-January (pp. 3988-3994). Buenos Aires, Argentina: AAAI Press. Scopus12 WoS11 |
2015 |
McAuley, J., Targett, C., Shi, Q., & Van Den Hengel, A. (2015). Image-based recommendations on styles and substitutes. In Proceedings of the 38th International ACM SIGIR Conference on Research and Development in Information Retrieval (pp. 43-52). Santiago, Chile: Association for Computing Machinery. DOI Scopus1104 WoS790 |
2015 |
Tan, M., Shi, Q., Van Den Hengel, A., Shen, C., Gao, J., Hu, F., & Zhang, Z. (2015). Learning graph structure for multi-label image classification via clique generation. In Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition Vol. 07-12-June-2015 (pp. 4100-4109). Boston, MA: IEEE. DOI Scopus35 WoS25 |
2015 |
Rezatofighi, S., Milan, A., Zhang, Z., Shi, Q., Dick, A., & Reid, I. (2015). Joint Probabilistic Data Association Revisited. In Proceedings of the 2015 IEEE International Conference on Computer Vision Vol. 2015 International Conference on Computer Vision, ICCV 2015 (pp. 3047-3055). Santiago, CHILE: IEEE. DOI Scopus235 WoS178 |
2015 |
Zhang, L., Wei, W., Zhang, Y., Li, F., Shen, C., & Shi, Q. (2015). Hyperspectral Compressive Sensing Using Manifold-Structured Sparsity Prior. In Proceedings of the IEEE International Conference on Computer Vision (ICCV) Vol. 2015 International Conference on Computer Vision, ICCV 2015 (pp. 3550-3558). Santiago, Chile: IEEE. DOI Scopus14 WoS14 |
2014 |
Shinmoto Torres, R., Ranasinghe, D., & Shi, Q. (2014). Evaluation of wearable sensor tag data segmentation approaches for real time activity classification in elderly. In I. Stojmenovic, Z. Cheng, & S. Guo (Eds.), Mobile and Ubiquitous Systems: Computing, Networking, and Services Vol. 131 (pp. 384-395). Tokyo, Japan: SPRINGER INTERNATIONAL PUBLISHING AG. DOI Scopus11 WoS5 |
2014 |
Lin, G., Shen, C., Shi, Q., Van Den Hengel, A., & Suter, D. (2014). Fast supervised hashing with decision trees for high-dimensional data. In Proceedings of 2014 IEEE Conference on Computer Vision and Pattern Recognition (pp. 1971-1978). Columbus, Ohio: IEEE. DOI Scopus347 WoS288 |
2013 |
Shinmoto Torres, R., Ranasinghe, D., Shi, Q., & Sample, A. (2013). Sensor enabled wearable RFID technology for mitigating the risk of falls near beds. In Proceedings of the 2013 IEEE International Conference on RFID (pp. 191-198). United States: IEEE. DOI Scopus87 WoS63 |
2013 |
Yao, R., Shi, Q., Shen, C., Zhang, Y., & Van Den Hengel, A. (2013). Part-based visual tracking with online latent structural learning. In Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition (pp. 2363-2370). United States of America: IEEE. DOI Scopus198 WoS157 |
2013 |
Wang, Z., Shi, Q., Shen, C., & Van Den Hengel, A. (2013). Bilinear programming for human activity recognition with unknown MRF graphs. In Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition (pp. 1690-1697). United States of America: IEEE. DOI Scopus34 WoS17 |
2013 |
Shen, F., Shen, C., Shi, Q., Van Den Hengel, A., & Tang, Z. (2013). Inductive hashing on manifolds. In Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition (pp. 1562-1569). United States of America: IEEE. DOI Scopus206 WoS161 |
2012 |
Shi, Q., Shen, C., Hill, R., & Van Den Hengel, A. (2012). Is margin preserved after random projection?. In Proceedings of the29th International Conference on Machine Learning, ICML 12 Vol. 1 (pp. 591-598). USA: Omnipress. Scopus32 |
2012 |
Yao, R., Shi, Q., Shen, C., Zhang, Y., & Van Den Hengel, A. (2012). Robust tracking with weighted online structured learning. In Proceedings of the 2012 European Conference on Computer Vision, ECCV 2012 Vol. 7574 LNCS (pp. 158-172). Germany: Springer-Verlag. DOI Scopus26 WoS23 |
2012 |
Li, X., Shen, C., Shi, Q., Dick, A., & Van Den Hengel, A. (2012). Non-sparse linear representations for visual tracking with online reservoir metric learning. In Proceedings of the 2012 IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2012 (pp. 1760-1767). USA: IEEE. DOI Scopus71 WoS44 |
2011 |
Li, H., Shen, C., & Shi, Q. (2011). Real-time visual tracking using compressive sensing. In Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition (pp. 1305-1312). Online: IEEE. DOI Scopus313 WoS227 |
2011 |
Shi, Q., Eriksson, A., Van Den Hengel, A., & Shen, C. (2011). Is face recognition really a compressive sensing problem?. In Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition (pp. 553-560). USA: IEEE. DOI Scopus265 WoS190 |
2010 |
Shi, Q., Li, H., & Shen, C. (2010). Rapid face recognition using hashing. In Proceedings of 23rd IEEE Computer Society Conference on Computer Vision and Pattern Recognition (pp. 2753-2760). USA: IEEE. DOI Scopus44 WoS24 |
2009 |
Shi, Q., Zhou, L., Cheng, L., & Schuurmans, D. (2009). Discriminative maximum margin image object categorization with exact inference. In The 5th International Conference on Image and Graphics (pp. 232-237). Los Alamitos, California: IEEE Computer Society. DOI |
2009 |
Shi, Q., Petterson, J., Dror, G., Langford, J., Smola, A., Strehl, A., & Vishwanathan, S. (2009). Hash kernels. In D. Dyk, & M. Welling (Eds.), JMLR Workshop and Conference Proceedings : Volume 5: AISTATS 2009 Vol. 5 (pp. 496-503). Online: JMLR. Scopus36 |
2008 |
Shi, Q., Wang, L., Cheng, L., & Smola, A. (2008). Discriminative human action segmentation and recognition using semi-Markov model. In 2008 IEEE conference on computer vision and pattern recognition (pp. 1-8). Online: IEEE. DOI Scopus83 WoS13 |
2007 |
Shi, Q., Altun, Y., Smola, A., & Vishwanathan, S. (2007). Semi-Markov models for sequence segmentation. In Proceedings of the 2007 Joint Conference on Empirical Methods in Natural Language Processing and Computational Natural Language Learning (pp. 640-648). United States: Association for Computational Linguistics. Scopus7 |
2004 |
Shi, Q., Li, Y., & Zhang, Y. (2004). A new automatic segmentation for synthetic aperture radar images. In 2004 International Symposium on Intelligent Multimedia, Video and Speech Processing, ISIMP 2004 (pp. 739-742). Scopus1 |
2004 |
Shi, Q. F., & Zhang, Y. N. (2004). Adaptive linear feature detection based on beamlet. In Proceedings of 2004 International Conference on Machine Learning and Cybernetics Vol. 7 (pp. 3981-3984). Scopus8 |