Javen Shi

Professor Javen Shi

Professor Probabilistic Graphical Model Group

School of Computer Science

Faculty of Engineering, Computer and Mathematical Sciences

Eligible to supervise Masters and PhD - email supervisor to discuss availability.


Professor Javen Shi is the Founding Director of Probabilistic Graphical Model Group at the University of Adelaide, Director in Advanced Releasing and Learning of Australian Institute for Machine Learning (AIML), and the Chief Scientist of Smarter Regions. He is a leader in machine learning in both high-end AI research and also real world applications with high impacts.

He is recognised both locally and internationally for the impact of his work, through an impressive record of publishing in the highest ranked venue in the field of Computer Vision & Pattern Recognition (22 CVPR papers), through an impeccable record of ARC funding (including his DECRA, 2 DP as 1st CI, 4 LP as Co-CI). He has published over 80 peer reviewed papers, over 80% are at ERA [A/A*]. He has over 5000 Google Scholar citations with h-index 31. Google Scholar ranks him 7th globally in Probabilistic Graphical Models, and 3rd globally in Counterfactuals.

He has transferred his research to diverse industries including agriculture, mining, sport, manufacturing, bushfire, water utility, health and education. Recent awards include:

1) 2nd place from a global mining competition OZ Minerals Explorer Challenge 2019 (over 1000 participants from 62 countries);

2) Golden prize (1st place) from Volkswagen in 2019 (digital factory powered by AI);

3) Finalist of SA Department of Energy and Mining’s Gawler Challenge 2020 (over 2k participants from 100+ countries) with his team’s work being considered as “The most innovative modelling” by the judge panel;

4) the top winning team (in collaboration with USC and CSIRO) in AUS/NZ Bushfire Data Quest 2020 using AI to predict fire scar and spread.  

He has initiated Smarter Regions CRC bid to empower regional Australia to gain the maximum benefit from the AI revolution and to transform existing industries and grow a technology sector in and for regional Australia.

    Expand
  • Appointments

    Date Position Institution name
    2020 Professor University of Adelaide
    2018 - 2019 Associate Professor University of Adelaide
    2015 - 2017 Senior Lecturer University of Adelaide
    2012 - 2014 ARC DECRA fellow University of Adelaide
    2010 - 2011 Senior Research Associate University of Adelaide
  • Awards and Achievements

    Date Type Title Institution Name Country Amount
    2012 Award ARC Discovery Early Career Researcher Award ARC Australia
  • Language Competencies

    Language Competency
    Chinese (Mandarin) Can read, write, speak, understand spoken and peer review
    English Can read, write, speak, understand spoken and peer review
  • Education

    Date Institution name Country Title
    2006 - 2010 Australian National University, Canberra Australia PhD
    2003 - 2006 Northwestern Polytechnical University, Xi'an China Master
    1999 - 2003 Northwestern Polytechnical University, Xi'an China Bachelor
  • Research Interests

    Expand
  • Journals

    Year Citation
    2021 Parvaneh, A., Abbasnejad, E., Wu, Q., & Shi, J. (2021). Show, price and negotiate: a hierarchical attention recurrent visual negotiator. IEEE Transactions on Multimedia, abs/1905.03721, 10 pages.
    DOI
    2021 Wang, Y., Gong, D., Yang, J., Shi, Q., Hengel, A. V. D., Xie, D., & Zeng, B. (2021). Deep Single Image Deraining via Modeling Haze-Like Effect. IEEE Transactions on Multimedia, 23, 2481-2492.
    DOI
    2021 Neshat, M., Nezhad, M. M., Abbasnejad, E., Mirjalili, S., Groppi, D., Heydari, A., . . . Wagner, M. (2021). Wind turbine power output prediction using a new hybrid neuro-evolutionary method. Energy, 229, 24 pages.
    DOI Scopus5 WoS3
    2021 Abedin, A., Ehsanpour, M., Shi, Q., Rezatofighi, H., & Ranasinghe, D. C. (2021). Attend and Discriminate: Beyond the State-of-the-Art for Human Activity Recognition Using Wearable Sensors. Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies, 5(1), 1-22.
    DOI
    2021 Yan, Q., Wang, B., Zhang, W., Luo, C., Xu, W., Xu, Z., . . . You, Z. (2021). An attention-guided deep neural network with multi-scale feature fusion for liver vessel segmentation. IEEE Journal of Biomedical and Health Informatics, 25(7), 2629-2642.
    DOI Scopus4 WoS4 Europe PMC2
    2021 Yan, Q., Wang, B., Zhang, L., Zhang, J., You, Z., Shi, Q., & Zhang, Y. (2021). Towards accurate HDR imaging with learning generator constraints. Neurocomputing, 428, 79-91.
    DOI Scopus2 WoS2
    2021 Sun, W., Gong, D., Shi, Q., van den Hengel, A., & Zhang, Y. (2021). Learning to zoom-in via learning to zoom-out: real-world super-resolution by generating and adapting degradation. IEEE Transactions on Image Processing, 30, 1-16.
    DOI Scopus2 WoS1
    2021 Yan, Q., Wang, B., Gong, D., Luo, C., Zhao, W., Shen, J., . . . You, Z. (2021). COVID-19 chest CT image segmentation network by multi-scale fusion and enhancement operations. IEEE Transactions on Big Data, 7(1), 13-24.
    DOI Scopus4 WoS5
    2020 Abbasnejad, M. E., Shi, J., van den Hengel, A., & Liu, L. (2020). GADE: A Generative Adversarial Approach to Density Estimation and its Applications. International Journal of Computer Vision, 128(10-11), 2731-2743.
    DOI
    2020 Yan, Q., Wang, B., Li, P., Li, X., Zhang, A., Shi, Q., . . . Zhang, Y. (2020). Ghost removal via channel attention in exposure fusion. Computer Vision and Image Understanding, 201, 1-8.
    DOI Scopus9 WoS8
    2020 Abedin, A., Motlagh, F., Shi, Q., Rezatofighi, H., & Ranasinghe, D. (2020). Towards deep clustering of human activities from wearables. Proceedings - International Symposium on Wearable Computers, ISWC, 1-6.
    DOI Scopus3
    2020 Guo, Y., Chen, J., Du, Q., Van Den Hengel, A., Shi, Q., & Tan, M. (2020). Multi-way backpropagation for training compact deep neural networks.. Neural Netw, 126, 250-261.
    DOI Scopus9 WoS4
    2020 Zhang, L., Wei, W., Shi, Q., Shen, C., van den Hengel, A., & Zhang, Y. (2020). Accurate tensor completion via adaptive low-rank representation. IEEE Transactions on Neural Networks and Learning Systems, 31(1), 4170-4184.
    DOI Scopus1 WoS1
    2020 Yan, Y., Tan, M., Tsang, I., Yang, Y., Shi, Q., & Zhang, C. (2020). Fast and Low Memory Cost Matrix Factorization: Algorithm, Analysis and Case Study. IEEE Transactions on Knowledge and Data Engineering, 32(2), 288-301.
    DOI Scopus1 WoS1
    2020 Liu, C., Yao, R., Rezatofighi, S. H., Reid, I., & Shi, Q. (2020). Model-Free Tracker for Multiple Objects Using Joint Appearance and Motion Inference. IEEE Transactions on Image Processing, 29, 277-288.
    DOI Scopus3 WoS2
    2020 Rezatofighi, H., Kaskman, R., Motlagh, F. T., Shi, Q., Milan, A., Cremers, D., . . . Reid, I. D. (2020). Learn to Predict Sets Using Feed-Forward Neural Networks.. CoRR, abs/2001.11845.
    2020 Yan, Q., Zhang, L., Liu, Y., Zhu, Y., Sun, J., Shi, Q., & Zhang, Y. (2020). Deep HDR imaging via A non-local network. IEEE Transactions on Image Processing, 29, 4308-4322.
    DOI Scopus18 WoS17 Europe PMC2
    2020 Gong, D., Zhang, Z., Shi, Q., van den Hengel, A., Shen, C., & Zhang, Y. (2020). Learning deep gradient descent optimization for image deconvolution. IEEE Transactions on Neural Networks and Learning Systems, 31(12), 5468-5482.
    DOI Scopus8 WoS4
    2019 Guo, Y., Chen, Q., Chen, J., Wu, Q., Shi, Q., & Tan, M. (2019). Auto-Embedding Generative Adversarial Networks for High Resolution Image Synthesis. IEEE Transactions on Multimedia, 21(11), 2726-2737.
    DOI Scopus20 WoS13
    2019 Liu, W., Gong, D., Tan, M., Shi, Q., Yang, Y., & Hauptmann, A. (2019). Learning Distilled Graph for Large-scale Social Network Data Clustering. IEEE Transactions on Knowledge and Data Engineering, 32(7), 1393-1404.
    DOI
    2019 Yao, R., Lin, G., Shen, C., Zhang, Y., & Shi, Q. (2019). Semantics-Aware Visual Object Tracking. IEEE Transactions on Circuits and Systems for Video Technology, 29(6), 1687-1700.
    DOI Scopus12 WoS10
    2019 Gong, D., Tan, M., Shi, Q., van den Hengel, A., & Zhang, Y. (2019). MPTV: matching pursuit based total variation minimization for image deconvolution. IEEE Transactions on Image Processing, 28(4), 1851-1865.
    DOI Scopus10 WoS10
    2019 Suwanwimolkul, S., Zhang, L., Gong, D., Zhang, Z., Chen, C., Ranasinghe, D. C., & Qinfeng Shi, J. (2019). An adaptive markov random field for structured compressive sensing. IEEE Transactions on Image Processing, 28(3), 1556-1570.
    DOI Scopus5 WoS5
    2019 Suwanwimolkul, S., Zhang, L., Ranasinghe, D. C., & Shi, Q. (2019). One-step adaptive Markov random field for structured compressive sensing. Signal Processing, 156, 116-144.
    DOI Scopus4 WoS2
    2019 Zhang, L., Wei, W., Shi, Q., Shen, C., van den Hengel, A., & Zhang, Y. (2019). Accurate imagery recovery using a multi-observation patch model. Information Sciences, 501, 724-741.
    DOI Scopus1
    2018 Yao, R., Lin, G., Shi, Q., & Ranasinghe, D. (2018). Efficient dense labelling of human activity sequences from wearables using fully convolutional networks. Pattern Recognition, 78, 252-266.
    DOI Scopus38 WoS28
    2018 Zhang, L., Wei, W., Zhang, Y., Shen, C., van den Hengel, A., & Shi, Q. (2018). Cluster sparsity field: an internal hyperspectral imagery prior for reconstruction. International Journal of Computer Vision, 126(8), 797-821.
    DOI Scopus54 WoS66
    2017 Shinmoto Torres, R., Shi, Q., van den Hengel, A., & Ranasinghe, D. (2017). A hierarchical model for recognizing alarming states in a batteryless sensor alarm intervention for preventing falls in older people. Pervasive and Mobile Computing, 40, 1-16.
    DOI Scopus10 WoS8
    2017 Yao, R., Shi, Q., Shen, C., Zhang, Y., & Van Den Hengel, A. (2017). Part-based robust tracking using online latent structured learning. IEEE Transactions on Circuits and Systems for Video Technology, 27(6), 1235-1248.
    DOI Scopus11 WoS10
    2017 Abbasnejad, M., Shi, Q., Abbasnejad, I., Hengel, A., & Dick, A. (2017). Bayesian Conditional Generative Adverserial Networks.. CoRR, abs/1706.05477.
    2016 Zhang, L., Wei, W., Zhang, Y., Shen, C., Van Den Hengel, A., & Shi, Q. (2016). Dictionary learning for promoting structured sparsity in hyperspectral compressive sensing. IEEE Transactions on Geoscience and Remote Sensing, 54(12), 7223-7235.
    DOI Scopus37 WoS32
    2015 Shi, Q., Reid, M., Caetano, T., Van Den Hengel, A., & Wang, Z. (2015). A hybrid loss for multiclass and structured prediction. IEEE Transactions on Pattern Analysis and Machine Intelligence, 37(1), 2-12.
    DOI Scopus2 WoS2
    2015 Li, H., Shen, C., Van Den Hengel, A., & Shi, Q. (2015). Worst case linear discriminant analysis as scalable semidefinite feasibility problems. IEEE Transactions on Image Processing, 24(8), 2382-2392.
    DOI Scopus6 WoS5
    2015 Shen, F., Shen, C., Shi, Q., Van Den Hengel, A., Tang, Z., & Shen, H. (2015). Hashing on nonlinear manifolds. IEEE Transactions on Image Processing, 24(6), 1839-1851.
    DOI Scopus123 WoS106 Europe PMC13
    2015 Yin, M., Gao, J., Lin, Z., Shi, Q., & Guo, Y. (2015). Dual graph regularized latent low-rank representation for subspace clustering. IEEE Transactions on Image Processing, 24(12), 4918-4933.
    DOI Scopus87 WoS79 Europe PMC7
    2014 Paisitkriangkrai, S., Shen, C., Shi, Q., & van den Hengel, A. (2014). RandomBoost: simplified multiclass boosting through randomization. IEEE Transactions on Neural Networks and Learning Systems, 25(4), 764-779.
    DOI Scopus6 WoS7 Europe PMC1
    2012 Gao, J., Shi, Q., & Caetano, T. (2012). Dimensionality reduction via compressive sensing. Pattern Recognition Letters, 33(9), 1163-1170.
    DOI Scopus28 WoS24
    2011 Shi, Q., Li, C., Wang, L., & Smola, A. (2011). Human action segmentation and recognition using discriminative semi-Markov models. International Journal of Computer Vision, 93(1), 22-32.
    DOI Scopus95 WoS69
    2009 Shi, Q., Petterson, J., Dror, G., Langford, J., Smola, A., & Vishwanathan, S. (2009). Hash Kernels for Structured Data. Journal of Machine Learning Research (Print), 10, 2615-2637.
    Scopus127
    2006 Li, Y., Shi, Q. F., Zhang, Y. N., & Zhao, R. C. (2006). Automatic segmentation for synthetic aperture radar images. Dianzi Yu Xinxi Xuebao/Journal of Electronics and Information Technology, 28(5), 932-935.
    Scopus3
    Li, H., Shen, C., & Shi, Q. (n.d.). Real-time Visual Tracking Using Sparse Representation.
    Liu, Y., Liu, L., Rezatofighi, H., Do, T. -T., Shi, Q., & Reid, I. (n.d.). Learning Pairwise Relationship for Multi-object Detection in Crowded
    Scenes.
  • Conference Papers

    Year Citation
    2021 Kazemi Moghaddam, M., Wu, Q., Abbasnejad, E., & Shi, J. (2021). Optimistic Agent: Accurate Graph-Based Value Estimation for More Successful Visual Navigation. In 2021 IEEE WINTER CONFERENCE ON APPLICATIONS OF COMPUTER VISION WACV 2021 (pp. 3732-3741). online: IEEE.
    DOI
    2020 Ehsanpour, M., Abedin, A., Saleh, F., Shi, J., Reid, I., & Rezatofighi, H. (2020). Joint Learning of Social Groups, Individuals Action and Sub-group Activities in Videos. In Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) Vol. 12354 LNCS (pp. 177-195). Glasgow, UK.
    DOI
    2020 Abbasnejad, M., Teney, D., Parvaneh, A., Shi, Q., & Van Den Hengel, A. (2020). Counterfactual Vision and Language Learning.. In 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (pp. 10041-10051). online: IEEE.
    DOI Scopus8
    2020 Abbasnejad, M., Abbasnejad, I., Wu, Q., Shi, Q., & Van Den Hengel, A. (2020). Gold seeker: Information gain from policy distributions for goal-oriented vision-and-langauge reasoning. In Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition (pp. 13447-13456). online: IEEE.
    DOI
    2020 Ehsanpour, M., Abedin Varamin, A., Saleh, F., Shi, Q., Reid, I. D., & Rezatofighi, H. (2020). Joint learning of social groups, individuals action and sub-group activities in videos. In A. Vedaldi, H. Bischof, T. Brox, & J. -M. Frahm (Eds.), Proceedings of the 16th European Conference on Computer Vision Workshops (ECCV 2020), as published in Lecture Notes in Computer Science Vol. 12354 (pp. 177-195). Cham, Switzerland: Springer.
    DOI Scopus1
    2020 Parvaneh, A., Abbasnejad, M., Teney, D., Shi, Q., & Van Den Hengel, A. (2020). Counterfactual Vision-and-Language Navigation: Unravelling the Unseen.. In H. Larochelle, M. Ranzato, R. Hadsell, M. -F. Balcan, & H. -T. Lin (Eds.), NeurIPS Vol. 2020-December (pp. 1-12). virtual online: NIPS.
    2020 Wang, X., Liu, L., & Shi, Q. (2020). Harmonic Structure-Based Neural Network Model for Music Pitch Detection. In Proceedings - 19th IEEE International Conference on Machine Learning and Applications, ICMLA 2020 (pp. 87-92). online: IEEE.
    DOI Scopus1
    2020 Wang, X., Liu, L., & Shi, Q. (2020). Enhancing Piano Transcription by Dilated Convolution. In Proceedings - 19th IEEE International Conference on Machine Learning and Applications, ICMLA 2020 (pp. 1446-1453). online: IEEE.
    DOI Scopus1
    2019 Xu, C., Shi, H., Gao, Y., Zhou, L., Shi, Q., & Li, J. (2019). Space-Based optical imaging dynamic simulation for spatial target. In Proceedings of SPIE - The International Society for Optical Engineering Vol. 11338 (pp. 1-6). online: SPIE.
    DOI
    2019 Ehsan Abbasnejad, M., Dick, A., Shi, Q., & Van Den Hengel, A. (2019). Active learning from noisy tagged images. In British Machine Vision Conference 2018, BMVC 2018.
    2019 Wang, X., Liu, L., & Shi, Q. (2019). Exploiting stereo sound channels to boost performance of neural network-based music transcription. In Proceedings - 18th IEEE International Conference on Machine Learning and Applications, ICMLA 2019 (pp. 1353-1358). online: IEEE.
    DOI Scopus2
    2019 Wang, Z., Liu, T., Shi, Q., Kumar, M., & Zhang, J. (2019). New convex relaxations for MRF inference with unknown graphs. In Proceedings: 2019 International Conference on Computer Vision Vol. 2019-October (pp. 9934-9942). Los Alamitos, California: IEEE.
    DOI Scopus2 WoS2
    2019 Yan, Q., Gong, D., Zhang, P., Shi, Q., Sun, J., Reid, I., & Zhang, Y. (2019). Multi-scale dense networks for deep high dynamic range imaging. In Proceedings of the 2019 IEEE Winter Conference on Applications of Computer Vision (pp. 41-50). Waikoloa Village, HI, USA: IEEE.
    DOI Scopus20 WoS14
    2019 Abbasnejad, M. E., Shi, Q., Van Den Hengel, A., & Liu, L. (2019). A Generative Adversarial Density Estimator.. In CVPR (pp. 10782-10791). online: Computer Vision Foundation / IEEE.
    2019 Abedin Varamin, A., Rezatofighi, H., Shi, Q., & Ranasinghe, D. (2019). SparseSense: Human Activity Recognition from Highly Sparse Sensor Data-streams Using Set-based Neural Networks. In IJCAI International Joint Conference on Artificial Intelligence Vol. 2019-August (pp. 5780-5786). online: IJCAI Organization.
    DOI Scopus4
    2019 Neshat, M., Abbasnejad, E., Shi, Q., Alexander, B., & Wagner, M. (2019). Adaptive neuro-surrogate-based optimisation method for wave energy converters placement optimisation. In T. Gedeon, K. W. Wong, & M. Lee (Eds.), Proceedings of the 26th International Conference on Neural Information Processing (ICONIP 2019), as published in Lecture Notes in Computer Science (Neural Information Processing Proceedings, Part II) Vol. 11954 (pp. 353-366). Switzerland: Springer Nature.
    DOI Scopus10 WoS3
    2019 Abbasnejad, M., Shi, Q., Van Den Hengel, A., & Liu, L. (2019). A generative adversarial density estimator. In Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition Vol. 2019-June (pp. 10774-10783). online: IEEE.
    DOI Scopus6 WoS1
    2019 Abbasnejad, E., Wu, Q., Shi, Q., & Van Den Hengel, A. (2019). What's to know? uncertainty as a guide to asking goal-oriented questions. In Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition Vol. 2019-June (pp. 4150-4159). online: IEEE.
    DOI Scopus8 WoS1
    2019 Yan, Q., Gong, D., Shi, Q., Van Den Hengel, A., Shen, C., Reid, I., & Zhang, Y. (2019). Attention-guided network for ghost-free high dynamic range imaging. In Proceedings: 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition Vol. 2019-June (pp. 1751-1760). online: IEEE.
    DOI Scopus34 WoS19
    2019 Li, J., Liu, Y., Gong, D., Shi, Q., Yuan, X., Zhao, C., & Reid, I. (2019). RGBD based dimensional decomposition residual network for 3D semantic scene completion. In Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR 2019) Vol. 2019-June (pp. 7685-7694). online: Computer Vision Foundation / IEEE.
    DOI Scopus11 WoS9
    2019 Liu, Y., Dong, W., Zhang, L., Gong, D., & Shi, Q. (2019). Variational bayesian dropout with a hierarchical prior. In Proceedings: 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition Vol. 2019-June (pp. 7117-7126). online: IEEE.
    DOI Scopus4 WoS1
    2018 Rezatofighi, H., Milan, A., Shi, Q., Dick, A., & Reid, I. (2018). Joint learning of set cardinality and state distribution. In 32nd AAAI Conference on Artificial Intelligence, AAAI 2018 (pp. 3968-3975). online: AAAI.
    Scopus3 WoS1
    2018 Abbasnejad, M. E., Dick, A. R., Shi, Q., & Hengel, A. V. D. (2018). Active learning from noisy tagged images. In Proceedings of BMVC 2018 and Workshops (pp. 1-13). Newcastle upon Tyne: BMVA Press.
    2018 Liu, Y., Dong, W., Gong, D., Zhang, L., & Shi, Q. (2018). Deblurring Natural Image Using Super-Gaussian Fields. In Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) Vol. 11205 LNCS (pp. 467-484). Switzerland: Springer Nature.
    DOI Scopus3 WoS1
    2018 Yang, J., Gong, D., Liu, L., & Shi, Q. (2018). Seeing Deeply and Bidirectionally: A Deep Learning Approach for Single Image Reflection Removal. In Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) Vol. 11207 LNCS (pp. 675-691). Switzerland: Springer Nature.
    DOI Scopus7 WoS4
    2018 Abedin Varamin, A., Abbasnejad, E., Shi, Q., Ranasinghe, D., & Rezatofighi, H. (2018). Deep Auto-Set: A Deep Auto-Encoder-Set Network for Activity Recognition Using Wearables. In MobiQuitous (pp. 1-8). online: ACM.
    DOI Scopus11 WoS4
    2017 Liu, C., Yao, R., Rezatofighi, S., Reid, I., & Shi, Q. (2017). Multi-object model-free tracking with joint appearance and motion inference. In Y. Guo, H. Li, W. Cai, M. Murshed, Z. Wang, J. Gao, & D. Feng (Eds.), Proceedings of the International Conference on Digital Image Computing: Techniques and Applications (DICTA 2017) Vol. 2017-December (pp. 1-8). Piscataway, NJ: IEEE.
    DOI Scopus2
    2017 Gong, D., Yang, J., Liu, L., Zhang, Y., Reid, I., Shen, C., . . . Shi, Q. (2017). From motion blur to motion flow: a deep learning solution for removing heterogeneous motion blur. In Proceedings of the 30th IEEE Conference on Computer Vision and Pattern Recognition (CVPR 2017) Vol. 2017-January (pp. 3806-3815). Online: IEEE.
    DOI Scopus134 WoS46
    2017 Gong, D., Tan, M., Zhang, Y., Van Den Hengel, A., & Shi, Q. (2017). MPGL: An efficient matching pursuit method for generalized LASSO. In Proceedings of the 31st AAAI Conference on Artificial Intelligence, AAAI 2017 (pp. 1934-1940). San Francisco: AAAI.
    Scopus8 WoS1
    2017 Zhang, Z., Shi, Q., McAuley, J., Wei, W., Zhang, Y., Yao, R., & Van Den Hengel, A. (2017). Solving constrained combinatorial optimization problems via MAP inference without high-order penalties. In Proceedings of the 31st AAAI Conference on Artificial Intelligence, AAAI 2017 (pp. 3804-3810). San Francisco: AAAI.
    2017 Zhang, Z., McAuley, J., Li, Y., Wei, W., Zhang, Y., & Shi, Q. (2017). Dynamic programming bipartite belief propagation for hyper graph matching. In IJCAI International Joint Conference on Artificial Intelligence Vol. 0 (pp. 4662-4668). online: IJCAI.
    DOI Scopus3
    2017 Gong, D., Tan, M., Zhang, Y., Hengel, A., & Shi, Q. (2017). Self-paced kernel estimation for robust blind image deblurring. In Proceedings of the IEEE International Conference on Computer Vision (ICCV 2017) Vol. 2017 (pp. 1670-1679). Online: IEEE.
    DOI Scopus18 WoS15
    2017 Xu, C., Shi, N., Zhou, L., Shi, Q., Yang, Y., & Li, Z. (2017). Defect analysis and detection of micro nano structured optical thin film. In Proceedings of SPIE - The International Society for Optical Engineering Vol. 10460. SPIE.
    DOI
    2016 Zhang, Z., Shi, Q., McAuley, J., Wei, W., Zhang, Y., & Van Den Hengel, A. (2016). Pairwise matching through max-weight bipartite belief propagation. In Proceedings of the 29th IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPR 2016) Vol. 2016 (pp. 1202-1210). Las Vegas, NV: IEEE.
    DOI Scopus29 WoS16
    2016 Gong, D., Tan, M., Zhang, Y., Van Den Hengel, A., & Shi, Q. (2016). Blind image deconvolution by automatic gradient activation. In Proceedings of the 29th IEEE Conference on Computer Vision and Pattern Recognition (CVPR 2016) Vol. 2016-December (pp. 1827-1836). Las Vegas, NV: IEEE.
    DOI Scopus48 WoS33
    2016 Rezatofighi, S., Milan, A., Zhang, Z., Shi, Q., Dick, A., & Reid, I. (2016). Joint probabilistic matching using m-best solutions. In Proceedings of the 29th IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPR 2016) Vol. 2016-December (pp. 136-145). Las Vegas, NV: IEEE.
    DOI Scopus20 WoS12
    2016 Tan, M., Xiao, S., Gao, J., Xu, D., Van Den Hengel, A., & Shi, Q. (2016). Proximal riemannian pursuit for large-scale trace-norm minimization. In Proceedings of the I29th IEEE Conference on Computer Vision and Pattern Recognition (CVPR 2016) Vol. 2016-December (pp. 5877-5886). Las Vegas, NV: IEEE.
    DOI Scopus1
    2016 Zhang, L., Wei, W., Zhang, Y., Shen, C., Van Den Hengel, A., & Shi, Q. (2016). Cluster sparsity field for hyperspectral imagery denoising. In B. Leibe, J. Matas, N. Sebe, & M. Welling (Eds.), Proceedings of the 14th European Conference on Computer Vision Vol. 9909 (pp. 631-647). Amsterdam, Netherlands: Springer International Publishing AG.
    DOI Scopus14 WoS11
    2016 Zhang, W., Tan, M., Sheng, Q., Yao, L., & Shi, Q. (2016). Efficient orthogonal non-negative matrix factorization over stiefel manifold. In Proceedings of the 25th ACM International Conference on Information and Knowledge Management (CIKM '16) Vol. 24-28-October-2016 (pp. 1743-1752). Indianapolis, IN, USA: Association for Computing Machinery (ACM).
    DOI Scopus5 WoS5
    2016 Tan, M., Yan, Y., Wang, L., Van Den Hengel, A., Tsang, I., & Shi, Q. (2016). Learning sparse confidence-weighted classifier on very high dimensional data. In Proceedings of the 30th AAAI Conference on Artificial Intelligence Vol. 3 (pp. 2080-2086). Phoenix, AZ: AAAI Press.
    Scopus3 WoS2
    2015 Yan, Y., Tan, M., Tsang, I., Yang, Y., Zhang, C., & Shi, Q. (2015). Scalable maximum margin matrix factorization by active Riemannian subspace search. In Proceedings of the Twenty-Fourth International Joint Conference on Artificial Intelligence Vol. 2015-January (pp. 3988-3994). Buenos Aires, Argentina: AAAI Press.
    Scopus11 WoS11
    2015 McAuley, J., Targett, C., Shi, Q., & Van Den Hengel, A. (2015). Image-based recommendations on styles and substitutes. In Proceedings of the 38th International ACM SIGIR Conference on Research and Development in Information Retrieval (pp. 43-52). Santiago, Chile: Association for Computing Machinery.
    DOI Scopus756 WoS426
    2015 Tan, M., Shi, Q., Van Den Hengel, A., Shen, C., Gao, J., Hu, F., & Zhang, Z. (2015). Learning graph structure for multi-label image classification via clique generation. In Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition Vol. 07-12-June-2015 (pp. 4100-4109). Boston, MA: IEEE.
    DOI Scopus29 WoS20
    2015 Rezatofighi, S., Milan, A., Zhang, Z., Shi, Q., Dick, A., & Reid, I. (2015). Joint Probabilistic Data Association Revisited. In Proceedings of the 2015 IEEE International Conference on Computer Vision Vol. 2015 International Conference on Computer Vision, ICCV 2015 (pp. 3047-3055). Santiago, CHILE: IEEE.
    DOI Scopus191 WoS121
    2015 Zhang, L., Wei, W., Zhang, Y., Li, F., Shen, C., & Shi, Q. (2015). Hyperspectral Compressive Sensing Using Manifold-Structured Sparsity Prior. In Proceedings of the IEEE International Conference on Computer Vision (ICCV) Vol. 2015 International Conference on Computer Vision, ICCV 2015 (pp. 3550-3558). Santiago, Chile: IEEE.
    DOI Scopus13 WoS14
    2014 Shinmoto Torres, R., Ranasinghe, D., & Shi, Q. (2014). Evaluation of wearable sensor tag data segmentation approaches for real time activity classification in elderly. In I. Stojmenovic, Z. Cheng, & S. Guo (Eds.), Mobile and Ubiquitous Systems: Computing, Networking, and Services Vol. 131 (pp. 384-395). Tokyo, Japan: SPRINGER INTERNATIONAL PUBLISHING AG.
    DOI Scopus9 WoS3
    2014 Lin, G., Shen, C., Shi, Q., Van Den Hengel, A., & Suter, D. (2014). Fast supervised hashing with decision trees for high-dimensional data. In Proceedings of 2014 IEEE Conference on Computer Vision and Pattern Recognition (pp. 1971-1978). Columbus, Ohio: IEEE.
    DOI Scopus313 WoS202
    2013 Shinmoto Torres, R., Ranasinghe, D., Shi, Q., & Sample, A. (2013). Sensor enabled wearable RFID technology for mitigating the risk of falls near beds. In Proceedings of the 2013 IEEE International Conference on RFID (pp. 191-198). United States: IEEE.
    DOI Scopus65 WoS42
    2013 Yao, R., Shi, Q., Shen, C., Zhang, Y., & Van Den Hengel, A. (2013). Part-based visual tracking with online latent structural learning. In Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition (pp. 2363-2370). United States of America: IEEE.
    DOI Scopus191 WoS143
    2013 Wang, Z., Shi, Q., Shen, C., & Van Den Hengel, A. (2013). Bilinear programming for human activity recognition with unknown MRF graphs. In Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition (pp. 1690-1697). United States of America: IEEE.
    DOI Scopus29 WoS11
    2013 Shen, F., Shen, C., Shi, Q., Van Den Hengel, A., & Tang, Z. (2013). Inductive hashing on manifolds. In Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition (pp. 1562-1569). United States of America: IEEE.
    DOI Scopus186 WoS140
    2012 Shi, Q., Shen, C., Hill, R., & Van Den Hengel, A. (2012). Is margin preserved after random projection?. In Proceedings of the29th International Conference on Machine Learning, ICML 12 Vol. 1 (pp. 591-598). USA: Omnipress.
    Scopus29
    2012 Yao, R., Shi, Q., Shen, C., Zhang, Y., & Van Den Hengel, A. (2012). Robust tracking with weighted online structured learning. In Proceedings of the 2012 European Conference on Computer Vision, ECCV 2012 Vol. 7574 LNCS (pp. 158-172). Germany: Springer-Verlag.
    DOI Scopus24 WoS21
    2012 Li, X., Shen, C., Shi, Q., Dick, A., & Van Den Hengel, A. (2012). Non-sparse linear representations for visual tracking with online reservoir metric learning. In Proceedings of the 2012 IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2012 (pp. 1760-1767). USA: IEEE.
    DOI Scopus68 WoS41
    2011 Li, H., Shen, C., & Shi, Q. (2011). Real-time visual tracking using compressive sensing. In Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition (pp. 1305-1312). Online: IEEE.
    DOI Scopus308 WoS216
    2011 Shi, Q., Eriksson, A., Van Den Hengel, A., & Shen, C. (2011). Is face recognition really a compressive sensing problem?. In Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition (pp. 553-560). USA: IEEE.
    DOI Scopus257 WoS174
    2010 Shi, Q., Li, H., & Shen, C. (2010). Rapid face recognition using hashing. In Proceedings of 23rd IEEE Computer Society Conference on Computer Vision and Pattern Recognition (pp. 2753-2760). USA: IEEE.
    DOI Scopus39
    2009 Shi, Q., Zhou, L., Cheng, L., & Schuurmans, D. (2009). Discriminative maximum margin image object categorization with exact inference. In The 5th International Conference on Image and Graphics (pp. 232-237). Los Alamitos, California: IEEE Computer Society.
    DOI
    2009 Shi, Q., Petterson, J., Dror, G., Langford, J., Smola, A., Strehl, A., & Vishwanathan, S. (2009). Hash kernels. In D. Dyk, & M. Welling (Eds.), JMLR Workshop and Conference Proceedings : Volume 5: AISTATS 2009 Vol. 5 (pp. 496-503). Online: JMLR.
    Scopus29
    2008 Shi, Q., Wang, L., Cheng, L., & Smola, A. (2008). Discriminative human action segmentation and recognition using semi-Markov model. In 2008 IEEE conference on computer vision and pattern recognition (pp. 1-8). Online: IEEE.
    DOI Scopus79
    2007 Shi, Q., Altun, Y., Smola, A., & Vishwanathan, S. (2007). Semi-Markov models for sequence segmentation. In Proceedings of the 2007 Joint Conference on Empirical Methods in Natural Language Processing and Computational Natural Language Learning (pp. 640-648). United States: Association for Computational Linguistics.
    Scopus7
    2004 Shi, Q., Li, Y., & Zhang, Y. (2004). A new automatic segmentation for synthetic aperture radar images. In 2004 International Symposium on Intelligent Multimedia, Video and Speech Processing, ISIMP 2004 (pp. 739-742).
    Scopus1
    2004 Shi, Q. F., & Zhang, Y. N. (2004). Adaptive linear feature detection based on beamlet. In Proceedings of 2004 International Conference on Machine Learning and Cybernetics Vol. 7 (pp. 3981-3984).
    Scopus8

Grants Summary

  • Total Australian Research Council (ARC) funding awarded: $2.8 M 
    • Lead (1st) Chief Investigator (CI) (2 DPs, 1 DECRA): $1M 
    • Co-CI (4 LPs): $1.7M
  • Other funding (RDCs, Industry, ...): ~$7.5M

ARC Grants

  • ARC Linkage Grant 2021-2024, 3rd Chief Investigator (CI), and Machine Learning Lead 
    A Machine Learning driven flow modelling of fragmented rocks in cave mining

 

  • ARC Discovery Project Grant 2016-2019, 1st Chief Investigator (CI) 
    Probabilistic Graphical Models For Interventional Queries
  • ARC Linkage Project Grant 2014-2017, 2nd CI 
    Sentient Buildings
  • ARC Discovery Project Grant 2014-2016, 1st CI 
    Online Learning for Large Scale Structured Data in Complex Situations
  • ARC Linkage Grant 2013-2016, 4th CI 
    Semantic change detection through large-scale learning
  • ARC Linkage Grant 2012-2015, 3rd CI 
    Scalable classification for massive datasets: randomized algorithms
  • ARC DECRA fellowship, 2012-2014, Sole CI 
    Compressive Sensing Based Probabilistic Graphical Models

University Courses 

AI, DL, ISML, MBD, ...

 

 

Tutorials 

Probabilistic Graphical Models

  1. Representation [ pdf], ACVT, UoA, April 15, 2011 

     

  2. Inference [ pdf], ACVT, UoA, May 6, 2011 

     

  3. Learning [ pdf], ACVT, UoA, May 27, 2011 

     

  4. Sampling-based approximate inference [ pdf], ACVT, UoA, June 10, 2011 

     

  5. Temporal models [ pdf], ACVT, UoA, August 12, 2011 

     

Generalisation Bounds

  1. Basics [ pdf], ACVT, UoA, April 13, 2012 

     

  2. VC dimensions and bounds [ pdf], ACVT, UoA, April 27, 2012 

     

  3. Rademacher complexity and bounds [ pdf], ACVT, UoA, August 17, 2012 

     

  4. PAC Bayesian Bounds, [ pdf], ACVT, UoA, August 31, 2012 

     

  5. Regret bounds for online learning, [ pdf], ACVT, UoA, Nov. 2, 2012 

     

Please email me if you find errors or typos in the slides.

    Expand
  • Current Higher Degree by Research Supervision (University of Adelaide)

    Date Role Research Topic Program Degree Type Student Load Student Name
    2021 Principal Supervisor Task-Based Mapping of Human Kinematics to Robot Arm Kinematics Using Generative Adversarial Networks (GANs) Doctor of Philosophy under a Jointly-awarded Degree Agreement with Doctorate Full Time Mr Mohamed Khalil Jabri
    2021 Principal Supervisor Research on lightweight intelligent models based on deep learning: incorporating artificial intelligence on end devices Doctor of Philosophy Doctorate Full Time Ms Hongrong Cheng
    2021 Principal Supervisor Reinforcement Learning for Continuous Action Space Master of Philosophy Master Full Time Mr Jihua Shi
    2021 Principal Supervisor Data efficient learning in natural language processing (NLP) Doctor of Philosophy Doctorate Full Time Mr Yuhao Lin
    2020 Principal Supervisor End-To-End semi-supervised text classification with automated text augmentation and character attention Master of Philosophy Master Full Time Mr Adrian John Orenstein
    2019 Principal Supervisor Machine Learning and Natural Language Processing in Stock Prediction Doctor of Philosophy Doctorate Full Time Mr Jinan Zou
    2019 Principal Supervisor Visual Navigation in Embodied Autonomous Agents Doctor of Philosophy Doctorate Full Time Mr Mahdi Kazemi Moghaddam
    2018 Principal Supervisor Development of Goal-Oriented Dialogue Systems via Deep Neural Networks Doctor of Philosophy Doctorate Full Time Mr Amin Parvaneh
    2018 Co-Supervisor Social Human Activity Recognition and Localization in Video Sequences Doctor of Philosophy Doctorate Full Time Ms Mahsa Ehsanpour
    2017 Principal Supervisor Social network analysis using statistical machine learning Doctor of Philosophy Doctorate Part Time Mrs Iman Fahmy Shoaib
    2016 Principal Supervisor Markov Logic Networks. Generalisations and Applications Doctor of Philosophy Doctorate Part Time Mr Xian Wang
  • Past Higher Degree by Research Supervision (University of Adelaide)

    Date Role Research Topic Program Degree Type Student Load Student Name
    2020 - 2021 Principal Supervisor Connecting Machine Learning to Causal Structure Learning with Jacobian Matrix Master of Philosophy Master Full Time Mr Xiongren Chen
    2017 - 2020 Co-Supervisor Deep Learning Methods for Human Activity Recognition using Wearables Doctor of Philosophy Doctorate Full Time Mr Alireza Abedin Varamin
    2016 - 2021 Principal Supervisor Deep Learning for Image Deblurring and Reflection Removal Doctor of Philosophy Doctorate Full Time Mr Jie Yang
    2015 - 2018 Principal Supervisor Adaptive Markov Random Fields for Structured Compressive Sensing Doctor of Philosophy Doctorate Full Time Miss Suwichaya Suwanwimolkul
    2014 - 2019 Principal Supervisor Joint Appearance and Motion Model for Multi-class Multi-object Tracking Doctor of Philosophy Doctorate Full Time Mr Chongyu Liu
    2014 - 2016 Co-Supervisor Deep Learning for Multi-label Scene Classification Master of Philosophy Master Full Time Mr Junjie Zhang
    2012 - 2014 Co-Supervisor Markov Random Fields with Unknown Heterogeneous Graphs Doctor of Philosophy Doctorate Full Time Mr Zhenhua Wang
  • Position: Professor Probabilistic Graphical Model Group
  • Phone: 83130324
  • Email: javen.shi@adelaide.edu.au
  • Fax: 8313 4366
  • Campus: North Terrace
  • Building: Australian Institute for Machine Learning, floor 1
  • Room: 1.06.A
  • Org Unit: Australian Institute for Machine Learning

Connect With Me
External Profiles

Other Links