Frank Neumann

Prof Frank Neumann

Professor

School of Computer Science and Information Technology

College of Engineering and Information Technology

Eligible to supervise Masters and PhD - email supervisor to discuss availability.


Frank Neumann is a professor and the leader of the Optimisation and Logistics group at the University of Adelaide. He is an expert in the field of evolutionary computation and AI-based optimisation. Frank received a Humboldt Fellowship for Experienced Researchers in 2019, an Australian Research Council Future Fellowship in 2020, and the ACM SIGEVO Outstanding Contribution Award in 2025. He has been the general chair of the ACM GECCO 2016 and co-organised ACM FOGA 2013 in Adelaide. He is an Area Editor of the journal "ACM Transactions on Evolutionary Learning and Optimization" and an Associate Editor of the journal "Evolutionary Computation" (MIT Press). In his work, he considers algorithmic approaches in particular for combinatorial and multi-objective optimization problems and focuses on theoretical aspects of evolutionary computation as well as high impact applications in the areas of cybersecurity, renewable energy, logistics, and mining.

  • artificial intelligence
  • bio-inspired computing
  • cybersecurity
  • machine learning
  • optimization
  • renewable energy
  • supply chain management

Date Position Institution name
2016 - ongoing Professor The University of Adelaide
2015 - 2016 Associate Dean (Research) The University of Adelaide
2013 - 2015 Associate Professor The University of Adelaide
2011 - 2012 Senior Lecturer The University of Adelaide
2008 - 2010 Coordinator of the group "Bio-Inspired Computation” Max Planck Institute for Informatics (MPG)
2006 - 2008 Postdoctoral Researcher Max Planck Institute for Informatics (MPG)
2002 - 2006 Research Assistant Kiel University

Date Institution name Country Title
2006 Kiel University Germany PhD
2002 Kiel University Germany Diplom

Year Citation
2025 Neumann, F., & Witt, C. (2025). Runtime Analysis of Single- and Multi-Objective Evolutionary Algorithms for Chance Constrained Optimization Problems with Normally Distributed Random Variables. Evolutionary Computation, 33(2), 191-214.
DOI
2025 Antipov, D., Neumann, A., Neumann, F., & Sutton, A. M. (2025). Runtime Analysis of Evolutionary Diversity Optimization on the Multi-objective (LeadingOnes, TrailingZeros) Problem.. Evolutionary computation, 1-23.
DOI
2025 Shi, F., Huang, D., Yan, X., & Neumann, F. (2025). Runtime performance of evolutionary algorithms for the chance-constrained makespan scheduling problem. Theoretical Computer Science, 1044, 28 pages.
DOI
2025 Neumann, F., Sudholt, D., & Witt, C. (2025). The Compact Genetic Algorithm Struggles on Cliff Functions.. Algorithmica, 87, 507-536.
2025 Xu, M., Neumann, F., Neumann, A., & Ong, Y. S. (2025). Quality Diversity Genetic Programming for Learning Scheduling Heuristics.. CoRR, abs/2507.02235.
2025 Goel, D., Ward, M., Neumann, A., Neumann, F., Nguyen, H. X., & Guo, M. (2025). Hardening Active Directory Graphs via Evolutionary Diversity Optimization-based Policies.. ACM Trans. Evol. Learn. Optim., 5, 19:1.
2025 Neumann, F., & Witt, C. (2025). Fast Pareto Optimization Using Sliding Window Selection for Problems with Determinstic and Stochastic Constraints.. Evolutionary computation, 1-34.
DOI
2025 Baguley, S., Friedrich, T., Neumann, A., Neumann, F., Pappik, M., & Zeif, Z. (2025). Fixed Parameter Multi-Objective Evolutionary Algorithms
for the W-Separator Problem. Algorithmica, 87(4), 537-571.

DOI Scopus1
2025 Pan, S., Patel, Y. J., Neumann, A., Neumann, F., Bäck, T., & Wang, H. (2025). Evolving Hard Maximum Cut Instances for Quantum Approximate Optimization Algorithms. Gecco 2025 Proceedings of the 2025 Genetic and Evolutionary Computation Conference, abs/2502.12012, 443-452.
DOI
2025 Goel, D., Ward, M., Neumann, A., Neumann, F., Nguyen, H., & Guo, M. (2025). Hardening Active Directory Graphs via Evolutionary Diversity Optimization based Policies. ACM Transactions on Evolutionary Learning and Optimization, 5(3), 1-36.
DOI Scopus2
2025 Friedrich, T., Kötzing, T., Neumann, A., Neumann, F., & Radhakrishnan, A. (2025). Analysis of the (1+1) EA on LeadingOnes with Constraints. Algorithmica, 87(5), 661-689.
DOI
2024 Nikfarjam, A., Neumann, A., & Neumann, F. (2024). On the Use of Quality Diversity Algorithms for the Travelling Thief Problem.. ACM Trans. Evol. Learn. Optim., 4, 12.
2024 Ghasemi, Z., Neshat, M., Aldrich, C., Karageorgos, J., Zanin, M., Neumann, F., & Chen, L. (2024). An integrated intelligent framework for maximising SAG mill throughput: Incorporating expert knowledge, machine learning and evolutionary algorithms for parameter optimisation. Minerals Engineering, 212(108733), 108733-1-108733-16.
DOI Scopus9 WoS10
2024 Santoni, M. L., Raponi, E., Neumann, A., Neumann, F., Preuss, M., & Doerr, C. (2024). Illuminating the Diversity-Fitness Trade-Off in Black-Box Optimization.. CoRR, abs/2408.16393, 1-21.
DOI
2024 Dang, D. -C., Neumann, A., Neumann, F., Opris, A., & Sudholt, D. (2024). Theoretical Analysis of Quality Diversity Algorithms for a Classical Path Planning Problem.. CoRR, abs/2412.11446.
2024 van Meerten, T., Kuruvilla, J., Song, K. W., Thieblemont, C., Minnema, M. C., Forcade, E., . . . Topp, M. S. (2024). Original Impact of debulking therapy on the clinical outcomes of axicabtagene ciloleucel in the treatment of relapsed or refractory large B-cell lymphoma. AMERICAN JOURNAL OF CANCER RESEARCH, 14(6), 25 pages.
DOI
2024 Elbert, M., Neumann, F., Kiefer, M., Christofyllakis, K., Balensiefer, B., Kos, I., . . . Bewarder, M. (2024). Hyper-N-glycosylated SEL1L3 as auto-antigenic B-cell receptor target of primary vitreoretinal lymphomas. SCIENTIFIC REPORTS, 14(1), 13 pages.
DOI WoS2
2024 Ahouei, S. S., Nobel, J. D., Neumann, A., Bäck, T., & Neumann, F. (2024). Evolving Reliable Differentiating Constraints for the Chance-constrained Maximum Coverage Problem.. CoRR, abs/2405.18772.
2024 Neumann, F., & Sutton, A. M. (2024). Editor's Note: Special Issue with GECCO 2021. ALGORITHMICA, 86(6), 1 page.
DOI
2024 Nikfarjam, A., Neumann, A., & Neumann, F. (2024). On the Use of Quality Diversity Algorithms for The Traveling Thief Problem.. ACM Transactions on Evolutionary Learning and Optimization, 4(2), 1-22.
DOI Scopus5
2024 Neumann, F., Sudholt, D., & Witt, C. (2024). The Compact Genetic Algorithm Struggles on Cliff Functions. Algorithmica: an international journal in computer science, 87(4), 507-536.
DOI Scopus1 WoS1
2024 Ghasemi, Z., Neumann, F., Zanin, M., Karageorgos, J., & Chen, L. (2024). A comparative study of prediction methods for semi-autogenous grinding mill throughput. Minerals Engineering, 205(108458), 108458-1-108458-14.
DOI Scopus13 WoS12
2023 Perera, K., Neumann, A., & Neumann, F. (2023). Evolutionary Multi-Objective Algorithms for the Knapsack Problems with Stochastic Profits. CoRR, abs/2303.01695.
DOI
2023 Ye, F., Neumann, F., Nobel, J. D., Neumann, A., & Bäck, T. (2023). What Performance Indicators to Use for Self-Adaptation in Multi-Objective Evolutionary Algorithms. CoRR, abs/2303.04611.
DOI
2023 Stimson, M., Reid, W., Neumann, A., Ratcliffe, S., & Neumann, F. (2023). Improving Confidence in Evolutionary Mine Scheduling via Uncertainty Discounting. 2023 IEEE Congress on Evolutionary Computation, CEC 2023, abs/2305.17957, 1-10.
DOI Scopus3
2023 Balu, D., Valencia-Olvera, A. C., Nguyen, A., Patnam, M., York, J., Peri, F., . . . Tai, L. M. (2023). A small-molecule TLR4 antagonist reduced neuroinflammation in female E4FAD mice. ALZHEIMERS RESEARCH & THERAPY, 15(1), 15 pages.
DOI WoS15
2022 Roostapour, V., Neumann, A., Neumann, F., & Friedrich, T. (2022). Pareto optimization for subset selection with dynamic cost constraints.. Artif. Intell., 302, 103597.
2022 Bossek, J., & Neumann, F. (2022). Exploring the Feature Space of TSP Instances Using Quality Diversity.. CoRR, abs/2202.02077.
2022 Do, A. V., Guo, M., Neumann, A., & Neumann, F. (2022). Niching-based Evolutionary Diversity Optimization for the Traveling Salesperson Problem.. CoRR, abs/2201.10316.
2022 Friedrich, T., Kötzing, T., Neumann, F., & Radhakrishnan, A. (2022). Theoretical Study of Optimizing Rugged Landscapes with the cGA.. CoRR, abs/2211.13801.
2022 Lengler, J., & Neumann, F. (2022). Editorial.. Algorithmica, 84, 1571-1572.
2022 Roostapour, V., Neumann, A., & Neumann, F. (2022). Single- and multi-objective evolutionary algorithms for the knapsack problem with dynamically changing constraints.. Theor. Comput. Sci., 924, 129-147.
2022 Do, A. V., Guo, M., Neumann, A., & Neumann, F. (2022). Analysis of Evolutionary Diversity Optimization for Permutation Problems.. ACM Trans. Evol. Learn. Optim., 2, 11:1.
2022 Roostapour, V., Neumann, A., Neumann, F., & Friedrich, T. (2022). Pareto optimization for subset selection with dynamic cost constraints. Artificial Intelligence, 302, 103597-1-103597-17.
DOI Scopus41 WoS29
2022 Dumuid, D., Olds, T., Wake, M., Lund Rasmussen, C., Pedišić, Ž., Hughes, J. H., . . . Stanford, T. (2022). Your best day: An interactive app to translate how time reallocations within a 24-hour day are associated with health measures. PLoS One, 17(9), e0272343-1-e0272343-16.
DOI Scopus12 WoS11 Europe PMC9
2022 Roostapour, V., Neumann, A., & Neumann, F. (2022). Single- and multi-objective evolutionary algorithms for the knapsack problem with dynamically changing constraints. Theoretical Computer Science, 924, 129-147.
DOI Scopus11 WoS10
2021 Neumann, F., Pourhassan, M., & Witt, C. (2021). Improved runtime results for simple randomised search heuristics on linear functions with a uniform constraint. Algorithmica, 83(10), 3209-3237.
DOI Scopus4 WoS13
2021 Doerr, B., & Neumann, F. (2021). A Survey on Recent Progress in the Theory of Evolutionary Algorithms for Discrete Optimization. ACM Transactions on Evolutionary Learning and Optimization, 1(4), 16-1-16-43.
DOI Scopus34
2021 Shi, F., Neumann, F., & Wang, J. (2021). Time complexity analysis of evolutionary algorithms for 2-hop (1,2)-minimum spanning tree problem. Theoretical Computer Science, 893, 159-175.
DOI Scopus5 WoS3
2021 Weber, D., & Neumann, F. (2021). Amplifying influence through coordinated behaviour in social networks. Social Network Analysis and Mining, 11(1), 1-42.
DOI Scopus53 Europe PMC8
2021 Assenmacher, D., Weber, D., Preuss, M., Calero Valdez, A., Bradshaw, A., Ross, B., . . . Grimme, C. (2021). Benchmarking Crisis in Social Media Analytics: A Solution for the Data-Sharing Problem. Social Science Computer Review, 40(6), 089443932110122.
DOI Scopus19 WoS17
2021 Bossek, J., Neumann, F., Peng, P., & Sudholt, D. (2021). Time complexity analysis of randomized search heuristics for the dynamic graph coloring problem. Algorithmica, 83(10), 3148-3179.
DOI Scopus4 WoS13
2021 Weber, D., & Neumann, F. (2021). A General Method to Find Highly Coordinating Communities in Social Media through Inferred Interaction Links.. CoRR, abs/2103.03409(1), 42 pages.
DOI WoS36
2021 Shi, F., Neumann, F., & Wang, J. (2021). Runtime Performances of Randomized Search Heuristics for the Dynamic Weighted Vertex Cover Problem. Algorithmica: an international journal in computer science, 83, 906-939.
DOI
2021 Guo, M., Li, J., Neumann, A., Neumann, F., & Nguyen, H. (2021). Practical Fixed-Parameter Algorithms for Defending Active Directory Style Attack Graphs.. CoRR, abs/2112.13175.
2021 Neumann, A., Alexander, B., & Neumann, F. (2021). Evolutionary Image Transition and Painting Using Random Walks. Evolutionary Computation, 28(4), 643-675.
DOI
2021 Shi, F., Neumann, F., & Wang, J. (2021). Time Complexity Analysis of Evolutionary Algorithms for 2-Hop (1, 2)-Minimum Spanning Tree Problem.. CoRR, abs/2110.04701.
2021 Assimi, H., Koch, B., Garcia, C., Wagner, M., & Neumann, F. (2021). Run-of-Mine Stockyard Recovery Scheduling and Optimisation for Multiple Reclaimers.. CoRR, abs/2112.12294.
2021 Assimi, H., Neumann, F., Wagner, M., & Li, X. (2021). Novelty-Driven Binary Particle Swarm Optimisation for Truss Optimisation Problems.. CoRR, abs/2112.07875.
2021 Bossek, J., Neumann, F., Peng, P., & Sudholt, D. (2021). Time Complexity Analysis of Randomized Search Heuristics for the Dynamic Graph Coloring Problem.. Algorithmica, 83, 3148-3179.
2021 Neumann, F., Pourhassan, M., & Witt, C. (2021). Improved Runtime Results for Simple Randomised Search Heuristics on Linear Functions with a Uniform Constraint.. Algorithmica, 83, 3209-3237.
2021 Doerr, B., & Neumann, F. (2021). A Survey on Recent Progress in the Theory of Evolutionary Algorithms for Discrete Optimization.. ACM Trans. Evol. Learn. Optim., 1, 16:1.
2020 Mechau, J., & Neumann, F. (2020). Small Water Projects, big Impact. WASSERWIRTSCHAFT, 110(9), 57-58.
2020 Ziemer, I., & Neumann, F. (2020). Photocatalytic reduction of nitrogen oxides - Numerical simulation for verification of efficiency. VAKUUM IN FORSCHUNG UND PRAXIS, 32(5), 42-44.
DOI
2020 Neumann, A., Alexander, B., & Neumann, F. (2020). Evolutionary Image Transition and Painting Using Random Walks. Evolutionary Computation, 28(4), 643-675.
DOI Scopus12 WoS9
2020 Chin, T. -J., Cai, Z., & Neumann, F. (2020). Robust fitting in computer vision: Easy or hard?. International Journal of Computer Vision, 128(3), 575-587.
DOI Scopus21 WoS17
2020 Shi, F., Neumann, F., & Wang, J. (2020). Runtime Performances of Randomized Search Heuristics for the Dynamic Weighted Vertex Cover Problem. Algorithmica, 83(4), 906-939.
DOI Scopus6 WoS6
2020 Do, A. V., & Neumann, F. (2020). Pareto Optimization for Subset Selection with Dynamic Partition Matroid Constraints.. CoRR, abs/2012.08738.
2020 Neumann, A., Bossek, J., & Neumann, F. (2020). Computing Diverse Sets of Solutions for Monotone Submodular Optimisation Problems.. CoRR, abs/2010.11486.
2020 Friedrich, T., Kötzing, T., Lagodzinski, J. A. G., Neumann, F., & Schirneck, M. (2020). Analysis of the (1 + 1) EA on subclasses of linear functions under uniform and linear constraints. Theoretical Computer Science, 832, 3-19.
DOI Scopus14 WoS13
2020 Pourhassan, M., Roostapour, V., & Neumann, F. (2020). Runtime analysis of RLS and (1+1) EA for the dynamic weighted vertex cover problem. Theoretical Computer Science, 832, 20-41.
DOI Scopus5 WoS4
2020 Ghasemishabankareh, B., Li, X., Ozlen, M., & Neumann, F. (2020). Probabilistic tree-based representation for solving minimum cost integer flow problems with nonlinear non-convex cost functions. Applied Soft Computing Journal, 86, 14 pages.
DOI Scopus2 WoS2
2019 Bossek, J., Kerschke, P., Neumann, A., Neumann, F., & Doerr, C. (2019). One-Shot Decision-Making with and without Surrogates.. CoRR, abs/1912.08956.
2019 Kerschke, P., Hoos, H. H., Neumann, F., & Trautmann, H. (2019). Automated Algorithm Selection: Survey and Perspectives.. Evol. Comput., 27, 3-45.
2019 Shi, F., Schirneck, M., Friedrich, T., Kötzing, T., & Neumann, F. (2019). Reoptimization Time Analysis of Evolutionary Algorithms on Linear Functions Under Dynamic Uniform Constraints.. Algorithmica, 81(10), 828-857.
DOI Scopus2 WoS2
2019 Bustos, Á. P., Chin, T. -J., Neumann, F., Friedrich, T., & Katzmann, M. (2019). A Practical Maximum Clique Algorithm for Matching with Pairwise Constraints.. CoRR, abs/1902.01534.
2019 Pourhassan, M., Shi, F., & Neumann, F. (2019). Parameterized analysis of multiobjective evolutionary algorithms and the weighted vertex cover problem. Evolutionary Computation, 27(4), 559-575.
DOI Scopus8 WoS7 Europe PMC1
2019 Kerschke, P., Hoos, H. H., Neumann, F., & Trautmann, H. (2019). Automated algorithm selection: survey and perspectives. Evolutionary Computation, 27(1), 3-45.
DOI Scopus384 WoS311 Europe PMC8
2019 Pourhassan, M., & Neumann, F. (2019). Theoretical analysis of local search and simple evolutionary algorithms for the generalized travelling salesperson problem. Evolutionary Computation, 27(3), 525-558.
DOI Scopus5 WoS1
2019 Azevedo, I. C., Duarte, P. M., Marinho, G. S., Neumann, F., & Sousa-Pinto, I. (2019). Growth of <i>Saccharina latissima</i> (Laminariales, Phaeophyceae) cultivated offshore under exposed conditions. PHYCOLOGIA, 58(5), 504-515.
DOI WoS30
2019 Dalton, G., Bardocz, T., Blanch, M., Campbell, D., Johnson, K., Lawrence, G., . . . Masters, I. (2019). Feasibility of investment in Blue Growth multiple-use of space and multi-use platform projects; results of a novel assessment approach and case studies. RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 107, 338-359.
DOI WoS52
2019 Doskoc, V., Friedrich, T., Göbel, A., Neumann, F., Neumann, A., & Quinzan, F. (2019). Non-Monotone Submodular Maximization with Multiple Knapsacks in Static and Dynamic Settings.. CoRR, abs/1911.06791.
2019 Shi, F., Schirneck, M., Friedrich, T., Kötzing, T., & Neumann, F. (2019). Reoptimization Time Analysis of Evolutionary Algorithms on Linear Functions Under Dynamic Uniform Constraints. Algorithmica, 81(2), 1-30.
DOI Scopus18 WoS15
2018 Covantes Osuna, E., Gao, W., Neumann, F., & Sudholt, D. (2018). Design and analysis of diversity-based parent selection schemes for speeding up evolutionary multi-objective optimisation. Theoretical Computer Science, 832, 123-142.
DOI Scopus36 WoS32
2018 Neumann, F., & Atten, M. (2018). Novel approach for shape-based similarity search enabled by 3D PDF. INTERNATIONAL JOURNAL OF COMPUTER APPLICATIONS IN TECHNOLOGY, 58(2), 165-173.
DOI WoS5
2017 Doerr, B., Neumann, F., & Sutton, A. (2017). Time Complexity Analysis of Evolutionary Algorithms on Random Satisfiable k-CNF Formulas. Algorithmica, 78(2), 561-586.
DOI Scopus17 WoS14
2017 Bonyadi, M., Michalewicz, Z., Nallaperuma, S., & Neumann, F. (2017). Ahura: a heuristic-based racer for the open racing car simulator. IEEE Transactions on Computational Intelligence and AI in Games, 9(3), 290-304.
DOI Scopus13 WoS7
2017 Nallaperuma, S., Neumann, F., & Sudholt, D. (2017). Expected Fitness Gains of Randomized Search Heuristics for the Traveling Salesperson Problem. Evolutionary Computation, 25(4), 673-705.
DOI Scopus21 WoS19 Europe PMC1
2017 Polyakovskiy, S., & Neumann, F. (2017). The Packing While Traveling Problem. European Journal of Operational Research, 258(2), 424-439.
DOI Scopus15 WoS13
2016 Keating, C. B., & Ireland, V. (2016). Editorial. International Journal of System of Systems Engineering, 7(1/2/3), 1-21.
DOI Scopus6
2016 Polyakovskiy, S., Berghammer, R., & Neumann, F. (2016). Solving hard control problems in voting systems via integer programming. European Journal of Operational Research, 250(1), 204-213.
DOI Scopus4 WoS3
2016 Hoos, H. H., Neumann, F., & Trautmann, H. (2016). Automated Algorithm Selection and Configuration (Dagstuhl Seminar 16412).. Dagstuhl Reports, 6, 33-74.
DOI
2016 Bonyadi, M. R., Michalewicz, Z., Neumann, F., & Wagner, M. (2016). Evolutionary computation for multicomponent problems: opportunities and future directions.. CoRR, abs/1606.06818.
2016 Corus, D., Lehre, P., Neumann, F., & Pourhassan, M. (2016). A Parameterised Complexity Analysis of Bi-level Optimisation with Evolutionary Algorithms. Evolutionary Computation, 24(1), 183-203.
DOI Scopus17 WoS16 Europe PMC1
2016 Kaufmann, P., Kramer, O., Neumann, F., & Wagner, M. (2016). Optimization methods in renewable energy systems design. Renewable Energy, 87, 835-836.
DOI Scopus4 WoS4
2015 Friedrich, T., & Neumann, F. (2015). Maximizing submodular functions under matroid constraints by evolutionary algorithms. Evolutionary Computation, 23(4), 543-558.
DOI Scopus82 WoS75 Europe PMC2
2015 Nallaperuma, S., Wagner, M., & Neumann, F. (2015). Analyzing the effects of instance features and algorithm parameters for max-min ant system and the traveling salesperson problem. Frontiers in Robotics and AI, 2(JUL), 18-1-18-16.
DOI Scopus24 WoS20
2015 Friedrich, T., Neumann, F., & Thyssen, C. (2015). Multiplicative approximations, optimal hypervolume distributions, and the choice of the reference point. Evolutionary Computation, 23(1), 131-159.
DOI Scopus13 WoS12 Europe PMC1
2015 Wagner, M., Neumann, F., & Urli, T. (2015). On the performance of different genetic programming approaches for the SORTING problem. Evolutionary Computation, 23(4), 583-609.
DOI Scopus6 WoS5
2015 Nguyen, A., Sutton, A., & Neumann, F. (2015). Population size matters: rigorous runtime results for maximizing the hypervolume indicator. Theoretical Computer Science, 561(Part A), 24-36.
DOI Scopus27 WoS26
2015 Wagner, M., Bringmann, K., Friedrich, T., & Neumann, F. (2015). Efficient optimization of many objectives by approximation-guided evolution. European Journal of Operational Research, 243(2), 465-479.
DOI Scopus27 WoS23
2015 Polyakovskiy, S., & Neumann, F. (2015). The Packing While Traveling Problem.. CoRR, abs/1512.08831.
2014 Mei, H., Neumann, F., Yao, X., & Minku, L. L. (2014). Computational Intelligence for Software Engineering (NII Shonan Meeting 2014-13).. NII Shonan Meet. Rep., 2014.
2014 Kötzing, T., Sutton, A., Neumann, F., & O'Reilly, U. (2014). The Max problem revisited: The importance of mutation in genetic programming. Theoretical Computer Science, 545(C), 94-107.
DOI Scopus15 WoS12
2014 Neumann, F., Doerr, B., Lehre, P. K., & Haddow, P. C. (2014). Editorial for the special issue on theoretical foundations of evolutionary computation. IEEE Transactions on Evolutionary Computation, 18(5), 625-627.
DOI
2014 Sutton, A. M., Neumann, F., & Nallaperuma, S. (2014). Parameterized runtime analyses of evolutionary algorithms for the planar Euclidean traveling salesperson problem. Evolutionary Computation, 22(4), 595-628.
DOI Scopus32 WoS25 Europe PMC1
2013 Friedrich, T., Kroeger, T., & Neumann, F. (2013). Weighted preferences in evolutionary multi-objective optimization. International Journal of Machine Learning and Cybernetics, 4(2), 139-148.
DOI Scopus17 WoS16
2013 Kratsch, S., & Neumann, F. (2013). Fixed-parameter evolutionary algorithms and the vertex cover problem. Algorithmica, 65(4), 754-771.
DOI Scopus70 WoS58
2013 Doerr, B., Johannsen, D., Kotzing, T., Neumann, F., & Theile, M. (2013). More effective crossover operators for the all-pairs shortest path problem. Theoretical Computer Science, 471, 12-26.
DOI Scopus40 WoS36
2013 Wagner, M., Day, J., & Neumann, F. (2013). A fast and effective local search algorithm for optimizing the placement of wind turbines. Renewable Energy, 51, 64-70.
DOI Scopus98 WoS92
2013 Vladislavleva, E., Friedrich, T., Neumann, F., & Wagner, M. (2013). Predicting the energy output of wind farms based on weather data: important variables and their correlation. Renewable Energy, 50, 236-243.
DOI Scopus93 WoS77
2013 Mersmann, O., Bischl, B., Trautmann, H., Wagner, M., Bossek, J., & Neumann, F. (2013). A novel feature-based approach to characterize algorithm performance for the traveling salesperson problem. Annals of Mathematics and Artificial Intelligence, 69(2), 151-182.
DOI Scopus78 WoS57
2013 Doerr, B., Eremeev, A. V., Neumann, F., Theile, M., & Thyssen, C. (2013). Evolutionary Algorithms and Dynamic Programming. CoRR, abs/1301.4096.
2013 Koerner, R., Preuss, K. -D., Fadle, N., Madjidi, D., Neumann, F., Bergeler, L., . . . Pfoehler, C. (2013). Serum Antibodies against CD28-A New Potential Marker of Dismal Prognosis in Melanoma Patients. PLOS ONE, 8(3), 10 pages.
DOI
2013 Boettger, M., Graumann, T., Boughaled, R., Neumann, F., Jones, P. G., Kowalsky, W., & Johannes, H. -H. (2013). Development of a new qualification method for photocatalytically active surfaces based on a solid state luminescent dye (vol 253, pg 7, 2013). JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY A-CHEMISTRY, 272, 100.
DOI
2013 Arlt, G., Neumann, F., & Milkau, U. (2013). A simple model for pseudo-nonstationarity in operational risk loss data due to interest rate dependency and reporting threshold. JOURNAL OF OPERATIONAL RISK, 8(4), 27-37.
DOI WoS3
2013 Mills, A., Hepburn, J., Hazafy, D., O'Rourke, C., Krysa, J., Baudys, M., . . . Graumann, T. (2013). A simple, inexpensive method for the rapid testing of the photocatalytic activity of self-cleaning surfaces. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY A-CHEMISTRY, 272, 18-20.
DOI WoS53
2013 Boettger, M., Graumann, T., Boughaled, R., Neumann, F., Jones, P. G., Kowalsky, W., & Johannes, H. -H. (2013). Development of a new qualification method for photocatalytically active surfaces based on a solid state luminescent dye (vol 253, pg 7, 2013). JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY A-CHEMISTRY, 259, 66.
DOI
2013 Boettger, M., Graumann, T., Boughaled, R., Neumann, F., Kowalsky, W., & Johannes, H. -H. (2013). Development of a new qualification method for photocatalytically active surfaces based on a solid state luminescent dye. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY A-CHEMISTRY, 253, 7-15.
DOI WoS7
2012 Mersmann, O., Bischl, B., Trautmann, H., Wagner, M., & Neumann, F. (2012). A Novel Feature-Based Approach to Characterize Algorithm Performance for the Traveling Salesman Problem. CoRR, abs/1208.2318.
2012 Berghammer, R., Friedrich, T., & Neumann, F. (2012). Convergence of set-based multi-objective optimization, indicators and deteriorative cycles. Theoretical Computer Science, 456, 2-17.
DOI Scopus15 WoS15
2012 Lehre, P. K., Neumann, F., & Rowe, J. E. (2012). Editorial to the special issue on "Theoretical foundations of evolutionary computation". Theoretical Computer Science, 425, 2-3.
DOI
2012 Kotzing, T., Neumann, F., Roglin, H., & Witt, C. (2012). Theoretical analysis of two ACO approaches for the traveling salesman problem. Swarm Intelligence, 6(1), 1-21.
DOI Scopus45 WoS32
2011 Doerr, B., Eremeev, A., Neumann, F., Theile, M., & Thyssen, C. (2011). Evolutionary algorithms and dynamic programming. Theoretical Computer Science, 412(43), 6020-6035.
DOI Scopus16 WoS10
2011 Friedrich, T., Horoba, C., & Neumann, F. (2011). Illustration of fairness in evolutionary multi-objective optimization. Theoretical Computer Science, 412(17), 1546-1556.
DOI Scopus22 WoS18
2011 Doerr, B., Neumann, F., Sudholt, D., & Witt, C. (2011). Runtime analysis of the 1-ANT ant colony optimizer. Theoretical Computer Science, 412(17), 1629-1644.
DOI Scopus32 WoS24
2011 Neumann, F., Reichel, J., & Skutella, M. (2011). Computing minimum cuts by randomized search heuristics. Algorithmica (New York), 59(3), 323-342.
DOI Scopus25 WoS25
2011 Kagan, E., Stein, M., Agnon, A., & Neumann, F. (2011). Intrabasin paleoearthquake and quiescence correlation of the late Holocene Dead Sea (vol 116, B04311, 2011). JOURNAL OF GEOPHYSICAL RESEARCH-SOLID EARTH, 116(B11), 2 pages.
DOI
2011 Kurz, J., Eberle, F., Graumann, T., Kaschel, M. -E., Saehr, A., Neumann, F., . . . Erdinger, L. (2011). Inactivation of LPS and RNase A on photocatalytically active surfaces. CHEMOSPHERE, 84(9), 1188-1193.
DOI WoS10
2011 Kagan, E., Stein, M., Agnon, A., & Neumann, F. (2011). Intrabasin paleoearthquake and quiescence correlation of the late Holocene Dead Sea. JOURNAL OF GEOPHYSICAL RESEARCH-SOLID EARTH, 116(B4), 27 pages.
DOI WoS63
2011 Lovdal, N., & Neumann, F. (2011). Internationalization as a strategy to overcome industry barriers-An assessment of the marine energy industry. ENERGY POLICY, 39(3), 1093-1100.
DOI WoS33
2010 Hohenstein, C., Neumann, F., & Kornath, A. (2010). Reactivity of Tetramethylphosphonium Fluoride in Acetonitrile Solutions. ZEITSCHRIFT FUR NATURFORSCHUNG SECTION B-A JOURNAL OF CHEMICAL SCIENCES, 65(11), 1327-1333.
DOI
2010 Hohenstein, C., Kornath, A., Neumann, F., & Ludwig, R. (2010). Preparation and Properties of Dimethyltetrafluorophosphate. INORGANIC CHEMISTRY, 49(14), 6421-6427.
DOI WoS1
2010 Friedrich, T., & Neumann, F. (2010). When to use bit-wise neutrality. Natural Computing, 9(1), 283-294.
DOI Scopus1 WoS1
2010 Friedrich, T., He, J., Hebbinghaus, N., Neumann, F., & Witt, C. (2010). Approximating covering problems by randomized search heuristics using multi-objectivemodels. Evolutionary Computation, 18(4), 617-633.
DOI Scopus113 WoS93 Europe PMC8
2010 Doerr, B., Neumann, F., & Wegener, I. (2010). Algorithmica (New York): Editorial. Algorithmica New York, 57(1), 119-120.
DOI
2010 Jansen, T., & Neumann, F. (2010). Editorial for the special issue on theoretical aspects of evolutionary multi-objective optimization. Evolutionary Computation, 18(3), 333-334.
DOI Scopus1 WoS1
2010 Friedrich, T., Hebbinghaus, N., & Neumann, F. (2010). Plateaus can be harder in multi-objective optimization. Theoretical Computer Science, 411(6), 854-864.
DOI Scopus16 WoS16
2010 Neumann, F., & Witt, C. (2010). Ant Colony Optimization and the minimum spanning tree problem. Theoretical Computer Science, 411(25), 2406-2413.
DOI Scopus58 WoS47
2009 Doerr, B., & Neumann, F. (2009). In Memoriam: Ingo Wegener. Algorithmica (New York), 58(3), 1-2.
DOI
2009 Neumann, F., Sudholt, D., & Witt, C. (2009). Analysis of different MMAS ACO algorithms on unimodal functions and plateaus. Swarm Intelligence, 3(1), 35-68.
DOI Scopus73
2009 Neumann, F., & Witt, C. (2009). Runtime analysis of a simple ant colony optimization algorithm. Algorithmica, 54(2), 243-255.
DOI Scopus77 WoS52
2009 Friedrich, T., He, J., Hebbinghaus, N., Neumann, F., & Witt, C. (2009). Analyses of simple hybrid algorithms for the vertex cover problem. Evolutionary Computation, 17(1), 3-19.
DOI Scopus42 WoS36 Europe PMC1
2009 Friedrich, T., Hebbinghaus, N., & Neumann, F. (2009). Comparison of simple diversity mechanisms on plateau functions. Theoretical Computer Science, 410(26), 2455-2462.
DOI Scopus18 WoS15
2009 Brockhoff, D., Friedrich, T., Hebbinghaus, N., Klein, C., Neumann, F., & Zitzler, E. (2009). On the effects of adding objectives to plateau functions. IEEE Transactions on Evolutionary Computation, 13(3), 591-603.
DOI Scopus76 WoS60
2009 Huertas-Olivares, C., & Neumann, F. (2009). Environmental Impacts of Ocean Energy Systems. WASSERWIRTSCHAFT, 99(3), 33-37.
WoS1
2009 Jansen, T., Schmidt, M., Sudholt, D., Witt, C., & Zarges, C. (2009). In Memoriam: Ingo Wegener. EVOLUTIONARY COMPUTATION, 17(1), 1-2.
DOI
2008 Neumann, F. (2008). Expected runtimes of evolutionary algorithms for the Eulerian cycle problem. Computers & Operations Research, 35(9), 2750-2759.
DOI Scopus39 WoS30
2007 Neumann, F. (2007). Expected runtimes of a simple evolutionary algorithm for the multi-objective minimum spanning tree problem. European Journal of Operational Research, 181(3), 1620-1629.
DOI Scopus90 WoS76
2007 Neumann, F., & Wegener, I. (2007). Randomized local search, evolutionary algorithms, and the minimum spanning tree problem. Theoretical Computer Science, 378(1), 32-40.
DOI Scopus200 WoS161
2007 Doerr, B., Hebbinghaus, N., & Neumann, F. (2007). Speeding Up Evolutionary Algorithms through Asymmetric Mutation Operators. Evolutionary Computation, 15(4), 401-410.
DOI Scopus38 WoS33 Europe PMC2
2007 Neumann, F., Schoelzel, C., Litt, T., Hense, A., & Stein, M. (2007). Holocene vegetation and climate history of the northern Golan heights (Near East) (vol 16, pg 329, 2007). VEGETATION HISTORY AND ARCHAEOBOTANY, 16(4), 347.
DOI WoS2
2007 Neugebauer, M., Hilpert, U., Bartscher, M., Gerwien, N., Kunz, S., Neumann, F., . . . Weidemann, G. (2007). A geometrical standard for testing of X-ray computer tomography. TM-TECHNISCHES MESSEN, 74(11), 565-571.
DOI WoS14
2006 Neumann, F., & Wegener, I. (2006). Minimum spanning trees made easier via multi-objective optimization. Natural Computing, 5(3), 305-319.
DOI Scopus121
1938 Neumann, F. (1938). Introduction to Theoretical Seismology, pt 1, Geodynamics. GEOGRAPHICAL REVIEW, 28(1), 173-174.
DOI
- Ghasemi, Z., Neshat, M., Aldrich, C., Karageorgos, J., Zanin, M., Neumann, F., & Chen, L. (n.d.). A Hybrid Intelligent Framework for Maximising Sag Mill Throughput: An Integration of Expert Knowledge, Machine Learning and Evolutionary Algorithms for Parameter Optimisation.

Year Citation
2020 Doerr, B., & Neumann, F. (Eds.) (2020). Theory of Evolutionary Computation - Recent Developments in Discrete Optimization. Springer.
2010 Neumann, F., & Witt, C. (2010). Bioinspired Computation in Combinatorial Optimization. Springer.
DOI
2010 Neumann, F., & Witt, C. (2010). Bioinspired computation in combinatorial optimization : algorithms and their computational complexity. Berlin: Springer.
DOI

Year Citation
2023 Neumann, F., & Witt, C. (2023). Fast Pareto Optimization Using Sliding Window Selection. In H. Fujita, H. Perez Meana, & A. Hernandez-Matamoros (Eds.), Frontiers in Artificial Intelligence and Applications (Vol. 372, pp. 1771-1778). IOS Press.
DOI Scopus8
2020 Neumann, F., Pourhassan, M., & Roostapour, V. (2020). Analysis of Evolutionary Algorithms in Dynamic and Stochastic Environments.. In B. Doerr, & F. Neumann (Eds.), Theory of Evolutionary Computation (pp. 323-357). Springer.
2020 Neumann, F., & Sutton, A. M. (2020). Parameterized complexity analysis of randomized search heuristics. In B. Doerr, & F. Neumann (Eds.), Theory of Evolutionary Computation: Recent Developments in Discrete Optimization (Vol. abs/2001.05120, pp. 213-248). Cham; Switzerland: Springer.
DOI Scopus9
2020 Neumann, F., Pourhassan, M., & Roostapour, V. (2020). Analysis of evolutionary algorithms in dynamic and stochastic environments. In B. Doerr, & F. Neumann (Eds.), Theory of Evolutionary Computation: Recent Developments in Discrete Optimization (Vol. abs/1806.08547, pp. 323-358). Cham, Switzerland: Springer.
DOI Scopus22
2020 Neumann, F., & Sutton, A. M. (2020). Parameterized Complexity Analysis of Randomized Search Heuristics.. In B. Doerr, & F. Neumann (Eds.), Theory of Evolutionary Computation (pp. 213-248). Springer.
2018 Bonyadi, M., Michalewicz, Z., Wagner, M., & Neumann, F. (2018). Evolutionary computation for multicomponent problems: opportunities and future directions. In S. Datta, & J. P. Davim (Eds.), Optimization in industry: present practices and future scopes (pp. 13-30). Cham, Switzerland: Springer.
DOI
2015 Neumann, F., Witt, C., Merz, P., Coello Coello, C., Bartz-Beielstein, T., Schütze, O., . . . Raidl, G. (2015). Part e evolutionary computation. In Springer Handbook of Computational Intelligence (pp. 823-824). Springer Berlin Heidelberg.
DOI Scopus18
2012 Schooler, L., Burgess, C., Goldstone, R., Fu, W., Gavrilets, S., Lazer, D., . . . Wiener, J. (2012). Search environments, representation, and encoding. In P. Todd, T. Hills, & T. Robbins (Eds.), Cognitive Search: Evolution, Algorithms, and the Brain (1 ed., pp. 317-333). Cambridge, MA: MIT Press.
2012 Marshall, J., & Neumann, F. (2012). Foundations of search: a perspective from computer science. In P. Todd, T. Hills, & T. Robbins (Eds.), Cognitive Search: Evolution, Algorithms, and the Brain (1 ed., pp. 257-267). United States: MIT Press.
2011 Neumann, F., O'Reilly, U., & Wagner, M. (2011). Computational Complexity Analysis of Genetic Programming - Initial Results and Future Directions. In R. Riolo, E. Vladislavleva, & J. Moore (Eds.), Genetic Programming Theory and Practice IX (1 ed., pp. 113-128). United States: Springer.
DOI WoS6
2011 Friedrich, T., Kroeger, T., & Neumann, F. (2011). Weighted Preferences in Evolutionary Multi-objective Optimization. In Lecture Notes in Computer Science (pp. 291-300). Springer Berlin Heidelberg.
DOI
2010 Böttcher, S., Doerr, B., & Neumann, F. (2010). Optimal Fixed and Adaptive Mutation Rates for the LeadingOnes Problem. In Parallel Problem Solving from Nature, PPSN XI (pp. 1-10). Springer Berlin Heidelberg.
DOI
2010 Horoba, C., & Neumann, F. (2010). Approximating pareto-optimal sets using diversity strategies in evolutionary multi-objective optimization. In C. Coello Coello, C. Dhaenens, & L. Jourdan (Eds.), Advances in multi-objective nature inspired computing (Vol. 272, pp. 23-44). Berlin: Springer.
DOI Scopus9
2009 Neumann, F., Sudholt, D., & Witt, C. (2009). Computational complexity of ant colony optimization and its hybridization with local search. In C. Lim, L. Jain, & S. Dehuri (Eds.), Innovations in Swarm Intelligence: studies in computational intelligence (Vol. 248, pp. 91-120). Berlin: Springer.
DOI Scopus20
2008 Neumann, F., & Wegener, I. (2008). Can single-objective optimization profit from multipleobjective optimization?. In J. Knowles, D. Corne, & K. Deb (Eds.), Multi-objective problem solving from nature: from concepts to applications (pp. 115-130). Berlin: Springer.
DOI Scopus31
2006 Kehden, B., & Neumann, F. (2006). A Relation-Algebraic View on Evolutionary Algorithms for Some Graph Problems. In Lecture Notes in Computer Science (pp. 147-158). Springer Berlin Heidelberg.
DOI
2006 Kehden, B., Neumann, F., & Berghammer, R. (2006). Relational Implementation of Simple Parallel Evolutionary Algorithms. In Lecture Notes in Computer Science (pp. 161-172). Springer Berlin Heidelberg.
DOI
2005 Berghammer, R., & Neumann, F. (2005). RelView – An OBDD-Based Computer Algebra System for Relations. In Lecture Notes in Computer Science (pp. 40-51). Springer Berlin Heidelberg.
DOI
- Neumann, F., Sudholt, D., & Witt, C. (n.d.). Rigorous Analyses for the Combination of Ant Colony Optimization and Local Search. In Lecture Notes in Computer Science (pp. 132-143). Springer Berlin Heidelberg.
DOI

Year Citation
2026 Do, A. V., Galhenage, E., Neumann, A., Neumann, F., Uzunov, A. V., & Szabo, C. (2026). A Hybrid Multi-Agent Reinforcement Learning Framework for Decentralised Search-And-Interact Tasks Under Partial Observability. In Lecture Notes in Computer Science Vol. 16371 LNAI (pp. 387-401). Springer Nature Singapore.
DOI
2025 Dang, D. C., Neumann, A., Neumann, F., Opris, A., & Sudholt, D. (2025). Theoretical Analysis of Evolutionary Algorithms with Quality Diversity for a Classical Path Planning Problem. In Ijcai International Joint Conference on Artificial Intelligence (pp. 8858-8866). International Joint Conferences on Artificial Intelligence Organization.
DOI
2025 Don, T. P., Neumann, A., & Neumann, F. (2025). Weighted-Scenario Optimisation for the Chance Constrained Travelling Thief Problem.. In CEC (pp. 1-8). IEEE.
2025 Pathirage Don, T., Neumann, A., & Neumann, F. (2025). Evolutionary Multitasking for the Scenario-based Travelling Thief Problem. In G. Ochoa (Ed.), Gecco 2025 Proceedings of the 2025 Genetic and Evolutionary Computation Conference (pp. 809-817). SPAIN, Malaga: ASSOC COMPUTING MACHINERY.
DOI Scopus1
2025 Wigney, L., Neumann, A., Ong, Y. -S., & Neumann, F. (2025). On the Use of Matching Algorithms to Transfer Solutions for the Travelling Salesperson Problem. In Proceedings of the Genetic and Evolutionary Computation Conference (GECCO 2025) (pp. 845-853). New York, NY, USA: Association for Computing Machinery (ACM).
DOI Scopus1
2025 Krejca, M. S., Neumann, F., & Witt, C. (2025). Population Dynamics and Improved Runtime Guarantees for the (μ+1) EA on BinVal. In Proceedings of the 18th ACM/SIGEVO Conference on Foundations of Genetic Algorithms (FOGA 2025) (pp. 142-153). New York, NY, USA: Association for Computing Machinery (ACM).
DOI
2025 Perera, K. K., Neumann, F., & Neumann, A. (2025). Trust Region-Based Bayesian Optimisation to Discover Diverse Solutions. In Proceedings of the 18th ACM/SIGEVO Conference on Foundations of Genetic Algorithms (FOGA 2025) (pp. 214-225). New York, NY, USA: Association for Computing Machinery (ACM).
DOI
2025 Neumann, F., Neumann, A., & Singh, H. (2025). Evolutionary computation for stochastic problems. In Proceedings of the Genetic and Evolutionary Computation Companion Conference (GECCO 2025) (pp. 1562-1578). New York, NY: Association for Computing Machinery.
DOI
2025 Ahouei, S. S., Antipov, D., Neumann, A., & Neumann, F. (2025). Feature-based Evolutionary Diversity Optimization of Discriminating Instances for Chance-constrained Optimization Problems. In Proceedings of the 25th European Conference on Evolutionary Computation in Combinatorial Optimisation (EvoCOP 2025), as publiushed in Lecture Notes in Computer Science Vol. 15610 (pp. 184-199). Cham, Switzerland: Springer.
DOI
2025 Pathirage Don, T., Neumann, A., & Neumann, F. (2025). Weighted-Scenario Optimisation for the Chance Constrained Travelling Thief Problem. In Genetic and Evolutionary Computation Conference Vol. abs/2505.00269 (pp. 8 pages). Online: IEEE.
DOI
2025 Pan, S., Patel, Y. J., Neumann, A., Neumann, F., Bäck, T., & Wang, H. (2025). Evolving Hard Maximum Cut Instances for Quantum Approximate Optimization Algorithms.. In B. Filipic (Ed.), GECCO (pp. 443-452). ACM.
2025 Sadeghi Ahouei, S., Neumann, A., & Neumann, F. (2025). Evolving Diverse Differentiating Stochastic Constraints Using Multi-objective Indicators. In G. Ochoa (Ed.), Gecco 2025 Proceedings of the 2025 Genetic and Evolutionary Computation Conference (pp. 67-75). SPAIN, Malaga: ASSOC COMPUTING MACHINERY.
DOI
2025 Lengler, J., Neumann, A., & Neumann, F. (2025). Runtime Analysis of Evolutionary Multitasking for Classical Benchmark Problems. In Proceedings of the Genetic and Evolutionary Computation Conference (GECCO 2025) (pp. 1613-1621). New York, NY, USA: Association for Computing Machinery (ACM).
DOI
2025 Xu, M., Neumann, F., Neumann, A., & Ong, Y. S. (2025). Quality Diversity Genetic Programming for Learning Scheduling Heuristics. In G. Ochoa (Ed.), Gecco 2025 Proceedings of the 2025 Genetic and Evolutionary Computation Conference (pp. 1090-1098). SPAIN, Malaga: ASSOC COMPUTING MACHINERY.
DOI
2024 Perera, K. K., Neumann, F., & Neumann, A. (2024). Multi-objective Evolutionary Approaches for the Knapsack Problem with Stochastic Profits. In Proceedings of the International Conference on Parallel Problem Solving from Nature (PPSN 2024) as published in Lecture Notes in Computer Science Vol. 15148 LNCS (pp. 116-132). Hagenberg: Springer Nature Switzerland.
DOI Scopus1 WoS2
2024 Do, A. V., Guo, M., Neumann, A., & Neumann, F. (2024). Evolutionary Multi-objective Diversity Optimization. In M. Affenzeller, S. M. Winkler, A. V. Kononova, H. Trautmann, T. Tusar, P. Machado, & T. Bäck (Eds.), Proeedings of the 18th International Conference on Parallel Problem Solving from Nature, Part IV (PPSN 2024), as published in Lecture Notes in Computer Science Vol. 15151 (pp. 117-134). Cham, Switzerland: Springer Nature.
DOI Scopus2 WoS1
2024 Neumann, F., & Rudolph, G. (2024). Archive-based Single-Objective Evolutionary Algorithms for Submodular Optimization. In Proceedings of the 18th International Conference on Parallel Problem Solving from Nature, Part III (PPSN 2024) , as published in Lecture Notes in Computer Science Vol. 15150 (pp. 166-180). Cham, Switzerland: Springer Nature.
DOI Scopus1
2024 Neumann, F., & Witt, C. (2024). Sliding Window 3-Objective Pareto Optimization for Problems with Chance Constraints. In Proceedings of the 18th International Conference on Parallel Problem Solving from Nature, Part III (PPSN 2024) , as published in Lecture Notes in Computer Science Vol. 15150 (pp. 36-52). Hagenberg, Austria: Springer Nature.
DOI Scopus1 WoS1
2024 Neumann, F., Neumann, A., & Singh, H. K. (2024). Evolutionary computation for stochastic problems. In X. Li, & J. Handl (Eds.), Proceedings of the Genetic and Evolutionary Computation Companion Conference (GECCO 2024) (pp. 1352-1368). New York, NY: Association for Computing Machinery.
DOI Scopus2
2024 Antipov, D., Neumann, A., & Neumann, F. (2024). Local Optima in Diversity Optimization: Non-trivial Offspring Population is Essential. In Proceedings of the 18th International Conference on Parallel Problem Solving from Nature, Part III (PPSN 2024) , as published in Lecture Notes in Computer Science Vol. 15150 (pp. 181-196). Cham, Switzerland: Springer Nature.
DOI
2024 Yan, X., Neumann, A., & Neumann, F. (2024). Sliding Window Bi-Objective Evolutionary Algorithms for Optimizing Chance-Constrained Monotone Submodular Functions. In Proceedings of the 18th International Conference on Parallel Problem Solving from Nature, Part I (PPSN 2024) , as published in Lecture Notes in Computer Science Vol. 15148 (pp. 20-35). Cham, Switzerland: Springer Nature.
DOI Scopus1 WoS2
2024 Doerr, B., Knowles, J., Neumann, A., & Neumann, F. (2024). A Block-Coordinate Descent EMO Algorithm: Theoretical and Empirical Analysis.. In X. Li, & J. Handl (Eds.), GECCO. Online: ACM.
DOI
2024 Pathiranage, I. H., Neumann, F., Antipov, D., & Neumann, A. (2024). Using 3-Objective Evolutionary Algorithms for the Dynamic Chance Constrained Knapsack Problem. In X. Li, & J. Handl (Eds.), Proceedings of the Genetic and Evolutionary Computation Conference (GECCO 2024) (pp. 520-528). Online: Association for Computing Machinery (ACM).
DOI Scopus10 WoS2
2024 Ghasemi, Z., Neshat, M., Aldrich, C., Karageorgos, J., Zanin, M., Neumann, F., & Chen, L. (2024). Enhanced Genetic Programming Models with Multiple Equations for Accurate Semi-Autogenous Grinding Mill Throughput Prediction. In Proceedings of the IEEE Congress on Evolutionary Computation (CEC 2024) (pp. 1-9). Yokohama, Japan: IEEE.
DOI
2024 Zoltai, G., Xie, Y., & Neumann, F. (2024). A Study of Fitness Gains in Evolving Finite State Machines. In D. Wang, L. Yue, T. Liu, & G. Webb (Eds.), Proceedings of the Australasian Joint Conference on Artificial Intelligence (AJCAI, 2023) as published in Lecture Notes in Computer Science Vol. 14472 (pp. 479-490). Brisbane, Queensland: Springer Nature Singapore.
DOI
2024 Guo, M., Li, J., Neumann, A., Neumann, F., & Nguyen, H. (2024). Limited Query Graph Connectivity Test. In M. J. Wooldridge, J. G. Dy, & S. Natarajan (Eds.), Proceedings of the 38th AAAI Conference on Artificial Intelligence (AAAI-24) Vol. 38 (pp. 20718-20725). Online: Association for the Advancement of Artificial Intelligence (AAAI).
DOI Scopus5 WoS2
2024 Yan, X., Neumann, A., & Neumann, F. (2024). Sampling-based Pareto Optimization for Chance-constrained Monotone Submodular Problems. In Proceedings of the Genetic and Evolutionary Computation Conference (GECCO, 2024) (pp. 621-629). Melbourne, Victoria Australia and Virtual Online: Association for Computing Machinery.
DOI Scopus9 WoS1
2024 Antipov, D., Neumann, A., Neumann, F., & Sutton, A. M. (2024). Runtime Analysis of Evolutionary Diversity Optimization on a Tri-Objective Version of the (LeadingOnes, TrailingZeros) Problem. In Proceedings of the 18th International Conference on Parallel Problem Solving From Nature (PPSN, 2024) Vol. 15150 (pp. 19-35). Hagenberg, Austria: Springer Science and Business Media Deutschland GmbH.
DOI
2024 Doerr, B., Knowles, J., Neumann, A., & Neumann, F. (2024). A Block-Coordinate Descent EMO Algorithm: Theoretical and Empirical Analysis. In Proceedings of the Genetic and Evolutionary Computation Conference (GECCO, 2024) Vol. abs/2404.03838 (pp. 493-501). Melbourne, Victoria Australia and Virtual Online: Association for Computing Machinery.
DOI
2024 Opris, A., Dang, D. -C., Neumann, F., & Sudholt, D. (2024). Runtime Analyses of NSGA-III on Many-Objective Problems. In Proceedings of the Genetic and Evolutionary Computation Conference (GECCO, 2024) (pp. 1596-1604). Melbourne, Victoria Australia and Virtual Online: Association for Computing Machinery.
DOI Scopus30 WoS11
2024 Harder, J. G., Neumann, A., & Neumann, F. (2024). Analysis of Evolutionary Diversity Optimisation for the Maximum Matching Problem. In Proceedings of the 18th International Conference on Parallel Problem Solving from Nature, Part III (PPSN 2024) , as published in Lecture Notes in Computer Science Vol. 15150 (pp. 149-165). Cham, Switzerland: Springer Nature.
DOI
2024 Hewa Pathiranage, I., Neumann, F., Antipov, D., & Neumann, A. (2024). Effective 2- and 3-Objective MOEA/D Approaches for the Chance Constrained Knapsack Problem. In Proceedings of the Genetic and Evolutionary Computation Conference (pp. 187-195). Online: ACM.
DOI Scopus9 WoS2
2024 Antipov, D., Neumann, A., & Neumann, F. (2024). A Detailed Experimental Analysis of Evolutionary Diversity Optimization for OneMinMax. In Proceedings of the Genetic and Evolutionary Computation Conference (pp. 467-475). Online: ACM.
DOI Scopus3
2024 Sadeghi Ahouei, S., De Nobel, J., Neumann, A., Bäck, T., & Neumann, F. (2024). Evolving Reliable Differentiating Constraints for the Chance-constrained Maximum Coverage Problem. In Proceedings of the Genetic and Evolutionary Computation Conference (pp. 1036-1044). Online: ACM.
DOI Scopus7 WoS2
2024 Schmidbauer, M., Opris, A., Bossek, J., Neumann, F., & Sudholt, D. (2024). Guiding Quality Diversity on Monotone Submodular Functions: Customising the Feature Space by Adding Boolean Conjunctions. In Proceedings of the Genetic and Evolutionary Computation Conference (pp. 1614-1622). Online: ACM.
DOI Scopus5 WoS2
2024 Gounder, S., Neumann, F., & Neumann, A. (2024). Evolutionary Diversity Optimisation for Sparse Directed Communication Networks. In Proceedings of the Genetic and Evolutionary Computation Conference (pp. 1237-1245). Online: ACM.
DOI Scopus5 WoS2
2024 Pathirage Don, T., Neumann, A., & Neumann, F. (2024). The Chance Constrained Travelling Thief Problem: Problem Formulations and Algorithms. In Proceedings of the Genetic and Evolutionary Computation Conference (GECCO 2024) (pp. 214-222). ACM Digital Library: ACM.
DOI Scopus9 WoS3
2024 Nikfarjam, A., Stanford, T., Neumann, A., Dumuid, D., & Neumann, F. (2024). Quality Diversity Approaches for Time-Use Optimisation to Improve Health Outcomes. In Proceedings of the Genetic and Evolutionary Computation Conference (GECCO, 2024) (pp. 1318-1326). Online: ACM.
DOI Scopus4 WoS1
2024 Ye, F., Neumann, F., de Nobel, J., Neumann, A., & Bäck, T. (2024). What Performance Indicators to Use for Self-Adaptation in Multi-Objective Evolutionary Algorithms. In Proceedings of the Genetic and Evolutionary Computation Conference (pp. 787-795). Online: ACM.
DOI Scopus1 WoS1
2023 Do, A. V., Neumann, A., Neumann, F., & Sutton, A. M. (2023). Rigorous Runtime Analysis of MOEA/D for Solving Multi-Objective Minimum Weight Base Problems. In A. Oh, T. Naumann, A. Globerson, K. Saenko, M. Hardt, & S. Levine (Eds.), Abstracts of the 37th Annual Conference on Neural Information Processing Systems (NeurIPS, 2023) as published in Advances in Neural Information Processing Systems Vol. 36 (pp. 15 pages). Online: Neural information processing systems foundation.
Scopus13 WoS7
2023 Stimson, M., Reid, W., Neumann, A., Ratcliffe, S., & Neumann, F. (2023). Improving Confidence in Evolutionary Mine Scheduling via Uncertainty Discounting.. In CEC (pp. 1-10). Online: IEEE.
2023 Neumann, F., & Witt, C. (2023). Fast Pareto Optimization Using Sliding Window Selection.. In K. Gal, A. Nowé, G. J. Nalepa, R. Fairstein, & R. Radulescu (Eds.), ECAI Vol. 372 (pp. 1771-1778). IOS Press.
2023 Do, A. V., Guo, M., Neumann, A., & Neumann, F. (2023). Diverse approximations for monotone submodular maximization problems with a matroid constraint. In E. Elkind (Ed.), Proceedings of the 32nd International Joint Conference on Artificial Intelligence (IJCAI 2023) Vol. 2023-August (pp. 5558-5566). Macao, S.A.R: IJCAI.
DOI Scopus6 WoS6
2023 Assmann, G., Rittich, C., Neumann, F., Kellner, U., Turkiewicz, R., Radermacher, J., . . . Tampe, B. (2023). Avacopan in ANCA-associated Vasculitis Received Intensified Induction Therapy with Cyclophosphamide Plus Rituximab - Retrospective Case Serial of 12 Patients. In ARTHRITIS & RHEUMATOLOGY Vol. 75 (pp. 1361-1362). WILEY.
2023 Assmann, G., Rittich, C., Neumann, F., Kellner, U., Turkiewicz, R., Radermacher, J., . . . Tampe, B. (2023). Avacopan in ANCA-associated Vasculitis Received Intensified InductionTherapy with Cyclophosphamide Plus Rituximab-Retrospective CaseSerial of 12 Patients. In ARTHRITIS & RHEUMATOLOGY Vol. 75 (pp. 1361-1362). WILEY.
2023 Patel, A. R., Ray, M., Rodriguez-Guadarrama, Y. A., Smith, N. J., Neumann, F., Blisset, R., & Xue, A. X. (2023). Statistical Challenges from Trials of Potentially Curative Treatments: Validation of Cure Assumptions When Analyzing Zuma-7 Follow-up Data of Axi-Cel and Standard of Care Therapy. In BLOOD Vol. 142 (pp. 3 pages). CA, San Diego: ELSEVIER.
DOI WoS1
2023 Bossek, J., Neumann, A., & Neumann, F. (2023). On the Impact of Basic Mutation Operators and Populations within Evolutionary Algorithms for the Dynamic Weighted Traveling Salesperson Problem.. In S. Silva, & L. Paquete (Eds.), GECCO (pp. 248-256). ACM.
2023 Yan, X., Do, A. V., Shi, F., Qin, X., & Neumann, F. (2023). Optimizing Chance-Constrained Submodular Problems with Variable Uncertainties. In H. Fujita, H. Perez-Meana, & A. Hernandez-Matamoros (Eds.), Proceedings of the 26th European Conference on Artificial Intelligence (ECAI 2023), as published in Frontiers in Artificial Intelligence and Applications Vol. 372 (pp. 2826-2833). Kraków, Poland: IOS Press.
DOI Scopus6
2023 Guo, M., Ward, M., Neumann, A., Neumann, F., & Nguyen, H. (2023). Scalable Edge Blocking Algorithms for Defending Active Directory Style Attack Graphs. In Proceedings of the 37th AAAI Conference on Artificial Intelligence (AAAI, 2023) Vol. 37 (pp. 5649-5656). Washington, D.C., USA: Association for the Advancement of Artificial Intelligence (AAAI).
DOI Scopus14 WoS7
2023 Neumann, F., Neumann, A., Qian, C., Do, A., De Nobel, J., Vermetten, D., . . . Back, T. (2023). Benchmarking Algorithms for Submodular Optimization Problems Using IOHProfiler. In Proceedings of the IEEE Congress on Evolutionary Computation (CEC 2023) (pp. 1-9). Online: Institute of Electrical and Electronics Engineers (IEEE).
DOI Scopus2
2023 Goel, D., Neumann, A., Neumann, F., Nguyen, H., & Guo, M. (2023). Evolving Reinforcement Learning Environment to Minimize Learner's Achievable Reward: An Application on Hardening Active Directory Systems. In Proceedings of the Genetic and Evolutionary Computation Conference (GECCO '23) (pp. 1348-1356). New York, NY: Association for Computing Machinery.
DOI Scopus7 WoS3
2023 Neumann, A., Gounder, S., Yan, X., Sherman, G., Campbell, B., Guo, M., & Neumann, F. (2023). Diversity Optimization for the Detection and Concealment of Spatially Defined Communication Networks. In Proceedings of the Genetic and Evolutionary Computation Conference (GECCO '23) (pp. 1436-1444). New York, NY: Association for Computing Machinery.
DOI Scopus14 WoS10
2023 Kearney, J., Neumann, F., & Sutton, A. M. (2023). Fixed-Parameter Tractability of the (1 + 1) Evolutionary Algorithm on Random Planted Vertex Covers. In Proceedings of the 17th ACM/SIGEVO Conference on Foundations of Genetic Algorithms (FOGA, 2023) Vol. abs/2409.10144 (pp. 96-104). Online: ACM.
DOI
2023 Nikfarjam, A., Rothenberger, R., Neumann, F., & Friedrich, T. (2023). Evolutionary Diversity Optimisation in Constructing Satisfying Assignments. In Proceedings of the Genetic and Evolutionary Computation Conference (GECCO, 2023) Vol. abs/2305.11457 (pp. 938-945). Online: Association for Computing Machinery.
DOI Scopus6 WoS5
2023 Bossek, J., Neumann, A., & Neumann, F. (2023). On the Impact of Basic Mutation Operators and Populations within Evolutionary Algorithms for the Dynamic Weighted Traveling Salesperson Problem. In Proceedings of the Genetic and Evolutionary Computation Conference (GECCO '23) Vol. abs/2305.18955 (pp. 248-256). New York, NY: Association for Computing Machinery.
DOI Scopus1 WoS1
2023 Baguley, S., Friedrich, T., Neumann, A., Neumann, F., Pappik, M., & Zeif, Z. (2023). Fixed Parameter Multi-Objective Evolutionary Algorithms for the W-Separator Problem. In Proceedings of the Genetic and Evolutionary Computation Conference (GECCO '23) (pp. 1537-1545). New York, NY: Association for Computing Machinery.
DOI Scopus2 WoS1
2023 Friedrich, T., Kötzing, T., Neumann, F., Neumann, A., & Radhakrishnan, A. (2023). Analysis of the (1+1) EA on LeadingOnes with Constraints. In Proceedings of the Genetic and Evolutionary Computation Conference (GECCO '23) (pp. 1584-1592). New York, NY: Association for Computing Machinery.
DOI Scopus2
2023 Antipov, D., Neumann, A., & Neumann, F. (2023). Rigorous Runtime Analysis of Diversity Optimization with GSEMO on OneMinMax. In Proceedings of the 17th ACM/SIGEVO Conference on Foundations of Genetic Algorithms (FOGA 2023) (pp. 3-14). Potsdam, Germany: Association for Computing Machinery (ACM).
DOI Scopus6
2023 Neumann, F., & Witt, C. (2023). 3-Objective Pareto Optimization for Problems with Chance Constraints. In Proceedings of the Genetic and Evolutionary Computation Conference (GECCO '23) Vol. abs/2304.08774 (pp. 731-739). New York, NY: Association for Computing Machinery.
DOI Scopus5 WoS5
2023 Neumann, F., Neumann, A., & Singh, H. (2023). Evolutionary computation for stochastic problems. In Proceedings of the Genetic and Evolutionary Computation Companion Conference (GECCO 2023) (pp. 1463-1476). New York, NY: Association for Computing Machinery.
DOI
2022 Neumann, A., Antipov, D., & Neumann, F. (2022). Coevolutionary Pareto diversity optimization.. In J. E. Fieldsend, & M. Wagner (Eds.), GECCO (pp. 832-839). ACM.
2022 Nikfarjam, A., Neumann, A., & Neumann, F. (2022). Evolutionary diversity optimisation for the traveling thief problem.. In J. E. Fieldsend, & M. Wagner (Eds.), GECCO (pp. 749-756). ACM.
2022 Nikfarjam, A., Neumann, A., & Neumann, F. (2022). Evolutionary diversity optimisation for the traveling thief problem. In J. E. Fieldsend, & M. Wagner (Eds.), Proceedings of the Genetic and Evolutionary Computation Conference (GECCO'22) Vol. abs/2204.02709 (pp. 749-756). New York, NY: Association for Computing Machinery.
DOI Scopus17 WoS14
2022 Assimi, H., Neumann, F., Wagner, M., & Li, X. (2022). Novelty-Driven Binary Particle Swarm Optimisation for Truss Optimisation Problems. In Lecture Notes in Computer Science Vol. 13222 LNCS (pp. 111-126). Madrid, Spain: Springer International Publishing.
DOI
2022 Neumann, A., Antipov, D., & Neumann, F. (2022). Coevolutionary Pareto diversity optimization. In J. E. Fieldsend, & M. Wagner (Eds.), Proceedings of the Genetic and Evolutionary Computation Conference (GECCO'22) Vol. abs/2204.05457 (pp. 832-839). New York, NY: Association for Computing Machinery.
DOI Scopus12 WoS9
2022 Neumann, A., Xie, Y., & Neumann, F. (2022). Evolutionary Algorithms for Limiting the Effect of Uncertainty for the Knapsack Problem with Stochastic Profits. In G. Rudolph, A. V. Kononova, H. E. Aguirre, P. Kerschke, G. Ochoa, & T. Tusar (Eds.), Proceedings, Part I of the 17th International Conference on Parallel Problem Solving from Nature (PPSN XVII), as published in Lecture Notes in Computer Science Vol. 13398 (pp. 294-307). Online: Springer.
DOI Scopus21 WoS18
2022 Goel, D., Ward-Graham, M. H., Neumann, A., Neumann, F., Nguyen, H., & Guo, M. (2022). Defending active directory by combining neural network based dynamic program and evolutionary diversity optimisation. In J. E. Fieldsend, & M. Wagner (Eds.), Proceedings of the Genetic and Evolutionary Computation Conference (GECCO'22) Vol. abs/2204.03397 (pp. 1191-1199). New York, NY: Association for Computing Machinery.
DOI Scopus15 WoS13
2022 Nikfarjam, A., Neumann, A., Bossek, J., & Neumann, F. (2022). Co-evolutionary Diversity Optimisation for the Traveling Thief Problem. In G. Rudolph, A. V. Kononova, H. E. Aguirre, P. Kerschke, G. Ochoa, & T. Tusar (Eds.), Proceedings, Part I of the 17th International Conference on Parallel Problem Solving from Nature (PPSN XVII), as published in Lecture Notes in Computer Science Vol. 13398 (pp. 237-249). Online: Springer.
DOI Scopus4 WoS4
2022 Nikfarjam, A., Viet Do, A., & Neumann, F. (2022). Analysis of Quality Diversity Algorithms for the Knapsack Problem. In Proceedings, Part II of the 17th International Conference on Parallel Problem Solving from Nature (PPSN XVII), as published in Lecture Notes in Computer Science Vol. 13399 (pp. 413-427). Online: Springer.
DOI Scopus12 WoS9
2022 Nikfarjam, A., Moosavi, A., Neumann, A., & Neumann, F. (2022). Computing High-Quality Solutions for the Patient Admission Scheduling Problem Using Evolutionary Diversity Optimisation. In G. Rudolph, A. V. Kononova, H. E. Aguirre, P. Kerschke, G. Ochoa, & T. Tusar (Eds.), Proceedings, Part I of the 17th International Conference on Parallel Problem Solving from Nature (PPSN XVII), as published in Lecture Notes in Computer Science Vol. 13398 (pp. 250-264). Online: Springer.
DOI Scopus6 WoS4
2022 Neumann, F., Sudholt, D., & Witt, C. (2022). The compact genetic algorithm struggles on Cliff functions. In Proceedings of the Genetic and Evolutionary Computation Conference (GECCO'22) Vol. abs/2204.04904 (pp. 1426-1433). New York, NY: Association for Computing Machinery.
DOI Scopus7 WoS6
2022 Shi, F., Yan, X., & Neumann, F. (2022). Runtime Analysis of Simple Evolutionary Algorithms for the Chance-Constrained Makespan Scheduling Problem. In Proceedings, Part II of the 17th International Conference on Parallel Problem Solving from Nature (PPSN XVII), as published in Lecture Notes in Computer Science Vol. 13399 (pp. 526-541). Online: Springer.
DOI Scopus12 WoS11
2022 Xie, Y., Neumann, A., & Neumann, F. (2022). An optimization strategy for the complex large-scale stockpile blending problem. In J. E. Fieldsend, & M. Wagner (Eds.), GECCO ’22: Genetic and Evolutionary Computation Conference, Companion Volume, Boston, Massachusetts, USA, July 9 - 13, 2022 (pp. 770-773). Online: ACM.
DOI Scopus1
2022 Bossek, J., Neumann, A., & Neumann, F. (2022). Evolutionary diversity optimization for combinatorial optimization: tutorial at GECCO’22, Boston, USA. In J. E. Fieldsend, & M. Wagner (Eds.), GECCO ’22: Genetic and Evolutionary Computation Conference, Companion Volume, Boston, Massachusetts, USA, July 9 - 13, 2022 (pp. 824-842). Boston, MA: ACM.
DOI
2022 Neumann, A., Neumann, F., & Qian, C. (2022). Evolutionary submodular optimisation: tutorial. In J. E. Fieldsend, & M. Wagner (Eds.), GECCO ’22: Genetic and Evolutionary Computation Conference, Companion Volume, Boston, Massachusetts, USA, July 9 - 13, 2022 (pp. 1427-1449). MA, Boston: ACM.
DOI Scopus1
2022 Xie, Y., Neumann, A., Stanford, T., Rasmussen, C. L., Dumuid, D., & Neumann, F. (2022). Evolutionary Time-Use Optimization for Improving Children’s Health Outcomes. In G. Rudolph, A. V. Kononova, H. E. Aguirre, P. Kerschke, G. Ochoa, & T. Tusar (Eds.), Proceedings, Part II of the 17th International Conference on Parallel Problem Solving from Nature (PPSN XVII), as published in Lecture Notes in Computer Science Vol. 13399 (pp. 323-337). Online: Springer.
DOI Scopus2 WoS1
2022 Nikfarjam, A., Neumann, A., & Neumann, F. (2022). On the use of quality diversity algorithms for the traveling thief problem. In J. E. Fieldsend, & M. Wagner (Eds.), Proceedings of the Genetic and Evolutionary Computation Conference (GECCO'22) (pp. 260-268). New York, NY: Association for Computing Machinery.
DOI Scopus19 WoS17
2022 Assimi, H., Koch, B., Garcia, C., Wagner, M., & Neumann, F. (2022). Run-of-mine stockyard recovery scheduling and optimisation for multiple reclaimers. In Proceedings of the 37th ACM/SIGAPP Symposium on Applied Computing (SAC ’22) (pp. 1074-1083). New York, N.Y.: Association for Computing Machinery.
DOI Scopus3 WoS1
2022 Do, A. V., Guo, M., Neumann, A., & Neumann, F. (2022). Niching-based evolutionary diversity optimization for the traveling salesperson problem. In J. E. Fieldsend, & M. Wagner (Eds.), Proceedings of the Genetic and Evolutionary Computation Conference (GECCO'22) (pp. 684-693). Online: Association for Computing Machinery.
DOI Scopus4 WoS3
2022 Bossek, J., & Neumann, F. (2022). Exploring the feature space of TSP instances using quality diversity. In Proceedings of the Genetic and Evolutionary Computation Conference (GECCO'22) (pp. 186-194). New York, NY: Association for Computing Machinery.
DOI Scopus14 WoS10
2022 Guo, M., Li, J., Neumann, A., Neumann, F., & Nguyen, H. (2022). Practical Fixed-Parameter Algorithms for Defending Active Directory Style Attack Graphs. In Proceedings of the 36th AAAI Conference on Artificial Intelligence (AAAI-2022) Vol. 36 (pp. 9360-9367). virtual online: AAAI Press.
DOI Scopus21 WoS16
2022 Friedrich, T., Kötzing, T., Neumann, F., & Radhakrishnan, A. (2022). Theoretical Study of Optimizing Rugged Landscapes with the cGA. In Proceedings, Part II of the 17th International Conference on Parallel Problem Solving from Nature (PPSN XVII), as published in Lecture Notes in Computer Science Vol. 13399 (pp. 586-599). Online: Springer.
DOI Scopus8 WoS6
2022 Neumann, F., & Witt, C. (2022). Runtime Analysis of the (1+1) EA on Weighted Sums of Transformed Linear Functions. In Proceedings, Part II of the 17th International Conference on Parallel Problem Solving from Nature (PPSN XVII), as published in Lecture Notes in Computer Science Vol. 13399 (pp. 542-554). Cham, Switzerland: Springer.
DOI Scopus3 WoS1
2022 Neumann, F., & Witt, C. (2022). Runtime Analysis of Single- and Multi-Objective Evolutionary Algorithms for Chance Constrained Optimization Problems with Normally Distributed Random Variables. In IJCAI International Joint Conference on Artificial Intelligence (pp. 4800-4806). Online: Association for Computing Machinery, Inc.
DOI Scopus14 WoS12
2022 Neumann, A., Xie, Y., & Neumann, F. (2022). Evolutionary Algorithms for Limiting the Effect of Uncertainty for the Knapsack Problem with Stochastic Profits.. In G. Rudolph, A. V. Kononova, H. E. Aguirre, P. Kerschke, G. Ochoa, & T. Tusar (Eds.), PPSN (1) Vol. 13398 (pp. 294-307). Springer.
2022 Nikfarjam, A., Do, A. V., & Neumann, F. (2022). Analysis of Quality Diversity Algorithms for the Knapsack Problem.. In G. Rudolph, A. V. Kononova, H. E. Aguirre, P. Kerschke, G. Ochoa, & T. Tusar (Eds.), PPSN (2) Vol. 13399 (pp. 413-427). Springer.
2022 Nikfarjam, A., Moosavi, A., Neumann, A., & Neumann, F. (2022). Computing High-Quality Solutions for the Patient Admission Scheduling Problem Using Evolutionary Diversity Optimisation.. In G. Rudolph, A. V. Kononova, H. E. Aguirre, P. Kerschke, G. Ochoa, & T. Tusar (Eds.), PPSN (1) Vol. 13398 (pp. 250-264). Springer.
2022 Shi, F., Yan, X., & Neumann, F. (2022). Runtime Analysis of Simple Evolutionary Algorithms for the Chance-Constrained Makespan Scheduling Problem.. In G. Rudolph, A. V. Kononova, H. E. Aguirre, P. Kerschke, G. Ochoa, & T. Tusar (Eds.), PPSN (2) Vol. 13399 (pp. 526-541). Online: Springer.
2022 Nikfarjam, A., Neumann, A., Bossek, J., & Neumann, F. (2022). Co-evolutionary Diversity Optimisation for the Traveling Thief Problem.. In G. Rudolph, A. V. Kononova, H. E. Aguirre, P. Kerschke, G. Ochoa, & T. Tusar (Eds.), PPSN (1) Vol. 13398 (pp. 237-249). Springer.
2022 Neumann, F., & Witt, C. (2022). Runtime Analysis of the (1+1) EA on Weighted Sums of Transformed Linear Functions.. In G. Rudolph, A. V. Kononova, H. E. Aguirre, P. Kerschke, G. Ochoa, & T. Tusar (Eds.), PPSN (2) Vol. 13399 (pp. 542-554). Springer.
2022 Xie, Y., Neumann, A., Stanford, T., Rasmussen, C. L., Dumuid, D., & Neumann, F. (2022). Evolutionary Time-Use Optimization for Improving Children's Health Outcomes.. In G. Rudolph, A. V. Kononova, H. E. Aguirre, P. Kerschke, G. Ochoa, & T. Tusar (Eds.), PPSN (2) Vol. 13399 (pp. 323-337). Online: Springer.
2022 Bewarder, M., Elbert, M., Christofyllakis, K., Heyne, K., Carbon, G., Fadle, N., . . . Thurner, L. (2022). Hyper N-Glycosylated SEL1L3 As B-Cell Receptor Autoantigen of Primary Vitreoretinal Lymphoma. In BLOOD Vol. 140 (pp. 3042-3043). LA, New Orleans: AMER SOC HEMATOLOGY.
DOI
2021 Bossek, J., Neumann, A., & Neumann, F. (2021). Exact Counting and Sampling of Optima for the Knapsack Problem.. In D. E. Simos, P. M. Pardalos, & I. S. Kotsireas (Eds.), LION Vol. 12931 (pp. 40-54). Springer.
2021 Xie, Y., Neumann, A., & Neumann, F. (2021). Heuristic Strategies for Solving Complex Interacting Large-Scale Stockpile Blending Problems.. In CEC (pp. 1288-1295). Kraków, Poland: IEEE.
2021 Bian, C., Qian, C., Neumann, F., & Yu, Y. (2021). Fast Pareto Optimization for Subset Selection with Dynamic Cost Constraints. In Proceedings of the Thirtieth International Joint Conference on Artificial Intelligence (pp. 2191-2197). online: IJCAI.
DOI Scopus14 WoS11
2021 Reid, W., Neumann, A., Ratcliffe, S., & Neumann, F. (2021). Advanced mine optimisation under uncertainty using evolution. In K. Krawiec (Ed.), Proceedings of the Genetic and Evolutionary Computation Conference Companion (GECCO '21) (pp. 1605-1613). New York, NY: Association for Computing Machinery.
DOI Scopus5 WoS3
2021 Xie, Y., Neumann, A., Neumann, F., & Sutton, A. M. (2021). Runtime analysis of RLS and the (1+1) EA for the chance-constrained knapsack problem with correlated uniform weights. In F. Chicano, & K. Krawiec (Eds.), GECCO ’21: Genetic and Evolutionary Computation Conference, Lille, France, July 10-14, 2021 (pp. 1187-1194). New York, NY, USA: ACM.
DOI Scopus23 WoS22
2021 Do, A. V., Guo, M., Neumann, A., & Neumann, F. (2021). Analysis of Evolutionary Diversity Optimization for Permutation Problems. In Proceedings of the Genetic and Evolutionary Computation Conference (GECCO 2021) (pp. 574-582). New York, NY, United States: Association for Computing Machinery.
DOI Scopus17 WoS5
2021 Xie, Y., Neumann, A., & Neumann, F. (2021). Heuristic Strategies for Solving Complex Interacting Large-Scale Stockpile Blending Problems. In 2021 IEEE Congress on Evolutionary Computation (CEC) Vol. abs/2104.03440 (pp. 1288-1295). Krakow, Poland: IEEE.
DOI Scopus5 WoS4
2021 Assimi, H., Koch, B., Garcia, C., Wagner, M., & Neumann, F. (2021). Modelling and optimization of run-of-mine stockpile recovery. In Proceedings of the 36th ACM Symposium on Applied Computing (SAC '21) (pp. 450-458). New York, N.Y.: Association for Computing Machinery.
DOI Scopus2 WoS2
2021 Do, V. A., & Neumann, F. (2021). Pareto optimization for subset selection with dynamic partition matroid constraints. In Proceedings of the 35th AAAI Conference on Artificial Intelligence (AAAI-21) Vol. 35 (pp. 12284-12292). online: AAAI Press.
DOI Scopus10 WoS8
2021 Bossek, J., Neumann, A., & Neumann, F. (2021). Exact Counting and Sampling of Optima for the Knapsack Problem. In D. E. Simos, P. M. Pardalos, & I. S. Kotsireas (Eds.), Learning and Intelligent Optimization - 15th International Conference, LION 15 Vol. 12931 (pp. 40-54). Athens, Greece: Springer.
DOI Scopus1
2021 Bossek, J., & Neumann, F. (2021). Evolutionary diversity optimization and the minimum spanning tree problem.. In F. Chicano, & K. Krawiec (Eds.), Proceedings of Genetic and Evolutionary Computation Conference (GECCO21) (pp. 198-206). online: ACM.
2021 Bossek, J., Neumann, A., & Neumann, F. (2021). Breeding diverse packings for the knapsack problem by means of diversity-tailored evolutionary algorithms. In Proceedings of the Genetic and Evolutionary Computation Conference (GECCO'21) (pp. 556-564). New York, NY: Association for Computing Machinery.
DOI Scopus16 WoS12
2021 Neumann, A., Bossek, J., & Neumann, F. (2021). Diversifying greedy sampling and evolutionary diversity optimisation for constrained monotone submodular functions. In F. Chicano, & K. Krawiec (Eds.), Proceedings of the Genetic and Evolutionary Computation Conference (GECCO'21) (pp. 261-269). New York, NY: Association for Computing Machinery.
DOI Scopus35 WoS24
2021 Nikfarjam, A., Bossek, J., Neumann, A., & Neumann, F. (2021). Entropy-based evolutionary diversity optimisation for the traveling salesperson problem. In F. Chicano, & K. Krawiec (Eds.), GECCO ’21: Genetic and Evolutionary Computation Conference, Lille, France, July 10-14, 2021 (pp. 600-608). Lille, France: ACM.
DOI Scopus25 WoS12
2021 Xie, Y., Neumann, A., & Neumann, F. (2021). Heuristic strategies for solving complex interacting stockpile blending problem with chance constraints. In Genetic and Evolutionary Computation Conference (GECCO'21) (pp. 1079-1087). New York, NY: Association for Computing Machinery.
DOI Scopus12 WoS8
2021 Neumann, A., Neumann, F., & Qian, C. (2021). Evolutionary submodular optimisation.. In K. Krawiec (Ed.), GECCO '21: Proceedings of the Genetic and Evolutionary Computation Conference Companion (pp. 918-940). New York, NY, United States: ACM: Association for Computing Machinery.
DOI WoS1
2021 Assimi, H., Neumann, F., Wagner, M., & Li, X. (2021). Novelty particle swarm optimisation for truss optimisation problems. In GECCO Companion (pp. 67-68). New York, NY, USA: ACM.
DOI Scopus1 WoS1
2021 Friedrich, T., Neumann, F., Rothenberger, R., & Sutton, A. M. (2021). Solving Non-uniform Planted and Filtered Random SAT Formulas Greedily.. In C. -M. Li, & F. Manyà (Eds.), Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) Vol. 12831 LNCS (pp. 188-206). Barcelona, Spain: Springer.
DOI
2021 Nikfarjam, A., Bossek, J., Neumann, A., & Neumann, F. (2021). Computing Diverse Sets of High Quality TSP Tours by EAX-Based Evolutionary Diversity Optimisation. In Proceedings of the 16th ACM/SIGEVO Conference on Foundations of Genetic Algorithms (FOGA 2021) (pp. 9-1-9-11). New York, NY: Association for Computing Machinery.
DOI Scopus15 WoS12
2021 Neumann, A., & Neumann, F. (2021). Human Interactive EEG-Based Evolutionary Image Animation. In 2020 IEEE Symposium Series on Computational Intelligence (SSCI) (pp. 678-685). Canberra, ACT, Australia: IEEE.
DOI
2021 Bossek, J., & Neumann, F. (2021). Evolutionary Diversity Optimization and the Minimum Spanning Tree Problem. In Proceedings of the Genetic and Evolutionary Computation Conference (GECCO 2021) Vol. abs/2010.10913 (pp. 198-206). New York, United States: Association for Computing Machinery.
DOI Scopus26 WoS13
2020 Weber, D., & Neumann, F. (2020). Who's in the Gang? Revealing Coordinating Communities in Social Media.. In Proceedings of the 2020 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining (ASONAM) Vol. 2020.9381418 (pp. 89-93). New York, USA: IEEE.
DOI Scopus26 WoS17
2020 Roostapour, V., Bossek, J., & Neumann, F. (2020). Runtime analysis of evolutionary algorithms with biased mutation for the multi-objective minimum spanning tree problem. In Proceedings of the 2020 Genetic and Evolutionary Computation Conference (GECCO'20) Vol. abs/2004.10424 (pp. 551-559). New York: Association for Computing Machinery.
DOI Scopus7 WoS7
2020 Bossek, J., Neumann, A., & Neumann, F. (2020). Optimising tours for the weighted traveling salesperson problem and the traveling thief problem: a structural comparison of solutions. In T. Bäck, M. Preuss, A. H. Deutz, H. Wang, C. Doerr, M. T. M. Emmerich, & H. Trautmann (Eds.), Proceedings, Part 1 of the 16th International Conference on Parallel Problem Solving from Nature (PPSN XVI), as published in Lecture Notes in Computer Science Vol. 12269 (pp. 346-359). Leiden, The Netherlands: Springer.
DOI Scopus3 WoS2
2020 Do, V., & Neumann, F. (2020). Maximizing submodular or monotone functions under partition matroid constraints by multi-objective evolutionary algorithms. In T. Bäck, M. Preuss, A. H. Deutz, H. Wang, C. Doerr, M. T. M. Emmerich, & H. Trautmann (Eds.), Proceedings of the 16th International Conference on Parallel Problem Solving from Nature (PPSN XVI), as published in Parallel Problem Solving from Nature – PPSN XVI, Part II Vol. 12270 (pp. 588-603). Switzerland: Springer Nature.
DOI Scopus8 WoS6
2020 Neumann, A., & Neumann, F. (2020). Optimising monotone chance-constrained submodular functions using evolutionary multi-objective algorithms. In T. Bäck, M. Preuss, A. H. Deutz, H. Wang, C. Doerr, M. T. M. Emmerich, & H. Trautmann (Eds.), Proceedings, Part I of the 16th International Conference on Parallel Problem Solving from Nature (PPSN XVI), as published in Lecture Notes in Computer Science Vol. 12269 (pp. 404-417). Cham, Switzerland: Springer.
DOI Scopus36 WoS36
2020 Bossek, J., Doerr, C., Kerschke, P., Neumann, A., & Neumann, F. (2020). Evolving Sampling Strategies for One-Shot Optimization Tasks. In T. Bäck, M. Preuss, A. H. Deutz, H. Wang, C. Doerr, M. T. M. Emmerich, & H. Trautmann (Eds.), Proceedings, Part 1 of the 16th International Conference on Parallel Problem Solving from Nature (PPSN 2020), as published in Lecture Notes in Computer Science Vol. 12269 (pp. 111-124). Cham, Switzerland: Springer.
DOI Scopus7 WoS6
2020 Sachdeva, R., Neumann, F., & Wagner, M. (2020). The Dynamic Travelling Thief Problem: Benchmarks and Performance of Evolutionary Algorithms.. In H. Yang, K. Pasupa, A. C. -S. Leung, J. T. Kwok, J. H. Chan, & I. King (Eds.), Proceedings of the 27th International Conference on Neural Information Processing, ICONIP 2020 Vol. 1333 (pp. 220-228). Switzerland: Springer Nature.
DOI Scopus6
2020 Bossek, J., Neumann, F., Peng, P., & Sudholt, D. (2020). More effective randomized search heuristics for graph coloring through dynamic optimization. In GECCO '20: Proceedings of the 2020 Genetic and Evolutionary Computation Conference Vol. abs/2005.13825 (pp. 1277-1285). Cancún, Mexico: Association for Computing Machinery.
DOI Scopus2
2020 Assimi, H., Harper, O., Xie, Y., Neumann, A., & Neumann, F. (2020). Evolutionary bi-objective optimization for the dynamic chance-constrained knapsack problem based on tail bound objectives. In G. D. Giacomo, A. Catalá, B. Dilkina, M. Milano, S. Barro, A. Bugarín, & J. Lang (Eds.), Proceedings of the 24th European Conference on Artificial Intelligence (ECAI 2020), as published in Frontiers in Artificial Intelligence and Applications Vol. 325 (pp. 307-314). Amsterdam, Netherlands: IOS Press BV.
DOI Scopus22 WoS20
2020 Xie, Y., Neumann, A., & Neumann, F. (2020). Specific single- and multi-objective evolutionary algorithms for the chance-constrained knapsack problem. In C. A. C. Coello (Ed.), Proceedings of the 2020 Genetic and Evolutionary Computation Conference (GECCO'20) (pp. 271-279). New York, NY: Association for Computing Machinery.
DOI Scopus32 WoS30
2020 Do, A. V., Bossek, J., Neumann, A., & Neumann, F. (2020). Evolving diverse sets of tours for the Travelling Salesperson Problem. In Proceedings of the Genetic and Evolutionary Computation Conference (GECCO'20) (pp. 681-689). New York, NY, USA: Association for Computing Machinery.
DOI Scopus29 WoS25
2020 Doskoc, V., Friedrich, T., Göbel, A., Neumann, A., Neumann, F., & Quinzan, F. (2020). Non-monotone submodular maximization with multiple knapsacks in static and dynamic settings. In G. D. Giacomo, A. Catalá, B. Dilkina, M. Milano, S. Barro, A. Bugarín, & J. Lang (Eds.), Proceedings of the 24th European Conference on Artificial Intelligence (ECAI 2020), as published in Frontiers in Artificial Intelligence and Applications Vol. 325 (pp. 435-442). Amsterdam, Netherlands: IOS Press.
DOI Scopus4 WoS4
2020 Bossek, J., Casel, K., Kerschke, P., & Neumann, F. (2020). The node weight dependent Traveling Salesperson Problem: Approximation algorithms and randomized search heuristics. In Proceedings of the 2020 Genetic and Evolutionary Computation Conference (GECCO'20) Vol. abs/2002.01070 (pp. 1286-1294). New York: Association for Computing Machinery.
DOI Scopus8 WoS2
2020 Hasani Shoreh, M., Hermoza Aragones, R., & Neumann, F. (2020). Neural networks in evolutionary dynamic constrained optimization: computational cost and benefits. In Proceedings of the 24th European Conference on Artificial Intelligence (ECAI 2020), as published in Frontiers in Artificial Intelligence and Applications Vol. 325 (pp. 275-282). Amsterdam, Netherlands: IOS Press BV.
DOI
2020 Doerr, B., Doerr, C., Neumann, A., Neumann, F., & Sutton, A. M. (2020). Optimization of chance-constrained submodular functions. In Proceedings of the Thirty-Fourth AAAI Conference on Artificial Intelligence (AAAI-20) Vol. 34 (pp. 1460-1467). Palo Alto, CA: Association for the Advancement of Artificial Intelligence.
DOI Scopus38 WoS35
2020 Hasani Shoreh, M., Hermoza Aragones, R., & Neumann, F. (2020). Using neural networks and diversifying differential evolution for dynamic optimisation. In Proceedings of the 2020 IEEE Symposium Series on Computational Intelligence (IEEE SSCI) (pp. 289-296). online: IEEE.
DOI Scopus1
2019 Hasani Shoreh, M., & Neumann, F. (2019). On the use of diversity mechanisms in dynamic constrained continuous optimization. In T. Gedeon, K. W. Wong, & M. Lee (Eds.), Proceedings of the 26th International Conference on Neural Information Processing (ICONIP 2019), as published in Lecture Notes in Computer Science (Neural Information Processing Proceedings, Part I) Vol. 11953 (pp. 644-657). Cham, Switzerland: Springer.
DOI Scopus2 WoS2
2019 Bossek, J., Kerschke, P., Neumann, A., Wagner, M., Neumann, F., & Trautmann, H. (2019). Evolving diverse TSP instances by means of novel and creative mutation operators. In FOGA '19: Proceedings of the 15th ACM/SIGEVO Conference on Foundations of Genetic Algorithms (pp. 58-71). online: Association for Computing Machinery.
DOI Scopus60 WoS49
2019 Bossek, J., Grimme, C., & Neumann, F. (2019). On the benefits of biased edge-exchange mutation for the multi-criteria spanning tree problem. In GECCO '19: Proceedings of the 2019 Genetic and Evolutionary Computation Conference (pp. 516-523). New York: ACM.
DOI Scopus6 WoS6
2019 Bossek, J., Neumann, F., Peng, P., & Sudholt, D. (2019). Runtime analysis of randomized search heuristics for dynamic graph coloring. In GECCO '19: Proceedings of the 2019 Genetic and Evolutionary Computation Conference (pp. 1443-1451). New York: ACM.
DOI Scopus15 WoS13
2019 Neumann, F., Pourhassan, M., & Witt, C. (2019). Improved runtime results for simple randomised search heuristics on linear functions with a uniform constraint. In GECCO '19: Proceedings of the 2019 Genetic and Evolutionary Computation Conference (pp. 1506-1514). New York: ACM.
DOI Scopus7 WoS5
2019 Doerr, B., Doerr, C., & Neumann, F. (2019). Fast re-optimization via structural diversity. In GECCO '19: Proceedings of the 2019 Genetic and Evolutionary Computation Conference Vol. abs/1902.00304 (pp. 233-241). New York: ACM.
DOI Scopus15 WoS12
2019 Neumann, F., & Sutton, A. M. (2019). Evolving Solutions to Community-Structured Satisfiability Formulas. In THIRTY-THIRD AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE / THIRTY-FIRST INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE CONFERENCE / NINTH AAAI SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE Vol. 33 (pp. 2346-2353). online: AAAI.
DOI
2019 Friedrich, T., Goebel, A., Neumann, F., Quinzan, F., & Rothenberger, R. (2019). Greedy maximization of functions with bounded curvature under partition matroid constraints. In Proceedings of the AAAI Conference on Artificial Intelligence Vol. 33 (pp. 2272-2279). Palo Alto, CA: Association for the Advancement of Artificial Intelligence.
DOI Scopus33 WoS28
2019 Xie, Y., Harper, O., Assimi, H., Neumann, A., & Neumann, F. (2019). Evolutionary algorithms for the chance-constrained knapsack problem. In A. Auger, & T. Stützle (Eds.), Proceedings of the Genetic and Evolutionary Computation Conference, GECCO 2019, Prague, Czech Republic, July 13-17, 2019 Vol. abs/1902.04767 (pp. 338-346). Prague Czech Republic: ACM.
DOI Scopus36 WoS31
2019 Roostapour, V., Pourhassan, M., & Neumann, F. (2019). Analysis of baseline evolutionary algorithms for the packing while travelling problem. In FOGA '19: Proceedings of the 15th ACM/SIGEVO Conference on Foundations of Genetic Algorithms Vol. abs/1902.04692 (pp. 124-132). online: Association for Computing Machinery.
DOI Scopus3 WoS3
2019 Roostapour, V., Neumann, A., Neumann, F., & Friedrich, T. (2019). Pareto optimization for subset selection with dynamic cost constraints. In Proceedings of the AAAI Conference on Artificial Intelligence Vol. 33 (pp. 2354-2361). Honolulu, Hawaii: Association for the Advancement of Artificial Intelligence.
DOI Scopus41 WoS41
2019 Gao, W., Pourhassan, M., Roostapour, V., & Neumann, F. (2019). Runtime analysis of evolutionary multi-objective algorithms optimising the degree and diameter of spanning trees. In Proceedings of the 10th International Conference on Evolutionary Multi-Criterion Optimization (EMO 2019), as published in Lecture Notes in Computer Science Vol. 11411 (pp. 504-515). Cham, Switzerland: Springer.
DOI Scopus3 WoS3
2019 Neumann, F., Polyakovskiy, S., Skutella, M., Stougie, L., & Wu, J. (2019). A Fully Polynomial Time Approximation Scheme for Packing While Traveling. In Proceedings of the 4th International Symposium on Algorithmic Aspects of Cloud Computing (ALGOCLOUD 2018), as published in Lecture Notes in Computer Science Vol. 11409 (pp. 59-72). Cham, Switzerland: Springer.
DOI Scopus14 WoS11
2019 Hasani Shoreh, M., Ameca-Alducin, M. Y., Blaikie, W., Neumann, F., & Schoenauer, M. (2019). On the behaviour of differential evolution for problems with dynamic linear constraints. In Proceedings: 2019 IEEE Congress on Evolutionary Computation (CEC 2019) Vol. abs/1905.04099 (pp. 3045-3052). online: IEEE.
DOI Scopus4 WoS3
2019 Neumann, F., & Sutton, A. M. (2019). Runtime analysis of the (1+1) evolutionary algorithm for the chance-constrained knapsack problem. In FOGA '19: Proceedings of the 15th ACM/SIGEVO Conference on Foundations of Genetic Algorithms (pp. 147-153). online: Association for Computing Machinery.
DOI Scopus21 WoS21
2019 Shi, F., Neumann, F., & Wang, J. (2019). Runtime analysis of evolutionary algorithms for the depth restricted (1,2)-minimum spanning tree problem. In FOGA '19: Proceedings of the 15th ACM/SIGEVO Conference on Foundations of Genetic Algorithms (pp. 133-146). online: Association for Computing Machinery.
DOI Scopus2 WoS2
2019 Roostapour, V., Pourhassan, M., & Neumann, F. (2019). Analysis of baseline evolutionary algorithms for the packing while travelling problem.. In T. Friedrich, C. Doerr, & D. V. Arnold (Eds.), FOGA (pp. 124-132). ACM.
2018 Chin, T. -J., Cai, Z., & Neumann, F. (2018). Robust Fitting in Computer Vision: Easy or Hard?. In CoRR Vol. abs/1802.06464.
2018 Shi, F., Neumann, F., & Wang, J. (2018). Runtime analysis of randomized search heuristics for the dynamic weighted vertex cover problem. In H. E. Aguirre, & K. Takadama (Eds.), Proceedings of the 2018 Genetic and Evolutionary Computation Conference (GECCO'18) (pp. 1515-1522). New York, NY: Association for Computing Machinery.
DOI Scopus9 WoS7
2018 Gao, W., Friedrich, T., Neumann, F., & Hercher, C. (2018). Randomized greedy algorithms for covering problems. In H. E. Aguirre, & K. Takadama (Eds.), Proceedings of the 2018 Genetic and Evolutionary Computation Conference (GECCO'18) (pp. 309-315). New York, NY: Association for Computing Machinery.
DOI Scopus8 WoS7
2018 Neumann, A., Gao, W., Doerr, C., Neumann, F., & Wagner, M. (2018). Discrepancy-based evolutionary diversity optimization. In Proceedings of the 2018 Genetic and Evolutionary Computation Conference (GECCO'18) (pp. 991-998). New York, NY: Association for Computing Machinery.
DOI Scopus54 WoS46
2018 Neumann, F., & Sutton, A. (2018). Runtime analysis of evolutionary algorithms for the knapsack problem with favorably correlated weights. In A. Auger, C. Fonseca, N. Lourenco, P. Machado, L. Paquete, & D. Whitley (Eds.), Parallel Problem Solving from Nature - PPSN XV: 15th International Conference, Coimbra, Portugal, September 8-12, 2018, Proceedings, Part II Vol. 11102 LNCS (pp. 141-152). Cham: Springer.
DOI Scopus11 WoS11
2018 Ghasemishabankareh, B., Ozlen, M., Neumann, F., & Li, X. (2018). A probabilistic tree-based representation for non-convex minimum cost flow problems. In A. Auger, C. Fonseca, N. Lourenco, P. Machado, L. Paquete, & D. Whitley (Eds.), Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) Vol. 11101 LNCS (pp. 69-81). Univ Coimbra, Coimbra, PORTUGAL: SPRINGER INTERNATIONAL PUBLISHING AG.
DOI Scopus6 WoS3
2018 Neumann, F., Polyakovskiy, S., Skutella, M., Stougie, L., & Wu, J. (2018). A Fully Polynomial Time Approximation Scheme for Packing While Traveling.. In Y. Disser, & V. S. Verykios (Eds.), ALGOCLOUD Vol. 11409 (pp. 59-72). Springer.
2018 Neumann, A., Gao, W., Wagner, M., & Neumann, F. (2018). Evolutionary diversity optimization using multi-objective indicators. In Proceedings of the Genetic and Evolutionary Computation Conference (GECCO '19) Vol. - (pp. 837-845). New York, NY: Association for Computing Machinery.
DOI Scopus52 WoS41
2018 Ameca-Alducin, M., Hasani-Shoreh, M., & Neumann, F. (2018). On the use of repair methods in differential evolution for dynamic constrained optimization. In K. Sim, P. Kaufmann, G. Ascheid, J. Bacardit, S. Cagnoni, C. Cotta, . . . M. Zhang (Eds.), Proceedings of the 21st International Conference on the Applications of Evolutionary Computation (EvoApplications), as published in Lecture Notes in Computer Science Vol. 10784 (pp. 832-847). Cham, Switzerland: Springer International Publishing AG.
DOI Scopus9 WoS8
2018 Roostapour, V., Neumann, A., & Neumann, F. (2018). On the performance of baseline evolutionary algorithms on the dynamic knapsack problem. In A. Auger, C. M. Fonseca, N. Lourenço, P. Machado, L. Paquete, & L. D. Whitley (Eds.), Parallel Problem Solving from Nature - PPSN XV: 15th International Conference, Coimbra, Portugal, September 8-12, 2018, Proceedings, Part I Vol. 11101 (pp. 158-169). Cham, Switzerland: Springer.
DOI Scopus27 WoS23
2018 Neumann, A., & Neumann, F. (2018). On the use of colour-based segmentation in evolutionary image composition. In Proceedings of the IEEE Congress on Evolutionary Computation (CEC 2018) (pp. 1-8). Piscataway, NJ: IEEE.
DOI Scopus1
2018 Ameca-Alducin, M. Y., Hasani-Shoreh, M., Blaikie, W., Neumann, F., & Mezura-Montes, E. (2018). A comparison of constraint handling techniques for dynamic constrained optimization problems. In Proceedings: 2018 IEEE Congress on Evolutionary Computation (CEC) (pp. 290-297). online: IEEE.
DOI Scopus15 WoS10
2018 Pourhassan, M., Roostapour, V., & Neumann, F. (2018). Improved runtime analysis of RLS and (1+1) EA for the dynamic vertex cover problem. In Proceedings of the IEEE Symposium Series on Computational Intelligence (IEEE SSCI 2017) Vol. 2018-January (pp. 1-6). NJ, USA: IEEE.
DOI Scopus7
2018 Wu, J., Wagner, M., Polyakovskiy, S., & Neumann, F. (2018). Evolutionary computation plus dynamic programming for the Bi-objective travelling thief problem. In Proceedings of the 2018 Genetic and Evolutionary Computation Conference as published in the ACM Digital Library Vol. abs/1802.02434 (pp. 777-784). online: ACM.
DOI Scopus22 WoS13
2018 Chin, T. -J., Cai, Z., & Neumann, F. (2018). Robust fitting in computer vision: easy or hard?. In V. Ferrari, M. Herbert, C. Sminchisescu, & Y. Weiss (Eds.), ECCV: European Conference on Computer Vision Vol. abs/1802.06464 (pp. 715-730). Cham, Switzerland: Springer.
DOI Scopus4 WoS26
2017 Friedrich, T., & Neumann, F. (2017). What's hot in evolutionary computation. In S. P. Singh, & S. Markovitch (Eds.), Proceedings of the Thirty-First AAAI Conference on Artificial Intelligence (AAAI-17) (pp. 5064-5066). San Francisco, California, USA: AAAI Press.
Scopus13 WoS6
2017 Wu, J., Wagner, M., Polyakovskiy, S., & Neumann, F. (2017). Exact approaches for the travelling thief problem. In Proceedings of the 11th International Conference on Simulated Evolution and Learning (SEAL 2017), as published in Lecture Notes in Computer Science Vol. 10593 (pp. 110-121). Cham, Switzerland: Springer.
DOI Scopus31
2017 Neumann, A., Alexander, B., & Neumann, F. (2017). Evolutionary Image Transition and Painting Using Random Walks. In Proceedings of the 6th International Conference on Evolutionary and Biologically Inspired Music, Sound, Art and Design (EvoMUSART 2017), as published in Lecture Notes in Computer Science Vol. 10198 (pp. 230-245). Cham, Switzerland: Springer International Publishing.
DOI Scopus18 WoS15
2017 Pourhassan, M., Friedrich, T., & Neumann, F. (2017). On the use of the dual formulation for minimum weighted vertex cover in evolutionary algorithms. In FOGA 2017 - Proceedings of the 14th ACM/SIGEVO Conference on Foundations of Genetic Algorithms (pp. 37-44). New York, NY, USA: Association for Computing Machinery (ACM).
DOI Scopus13
2017 Friedrich, T., Kötzing, T., Lagodzinski, G., Neumann, F., & Schirneck, M. (2017). Analysis of the (1+1) EA on subclasses of linear functions under uniform and linear constraints. In C. Igel, D. Sudholt, & C. Witt (Eds.), Proceedings of the 14th ACM/SIGEVO Conference on Foundations of Genetic Algorithms (FOGA 2017) (pp. 45-54). New York: Association for Computing Machinery.
DOI Scopus10
2017 Gao, W., Friedrich, T., Kötzing, T., & Neumann, F. (2017). Scaling up local search for minimum vertex cover in large graphs by parallel kernelization. In Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) Vol. 10400 LNAI (pp. 131-143). Melbourne, Australia: Springer Nature.
DOI Scopus6
2017 Shi, F., Schirneck, M., Friedrich, T., Kotzing, T., & Neumann, F. (2017). Reoptimization times of evolutionary algorithms on linear functions under dynamic uniform constraints. In GECCO '17: Proceedings of the 2017 Genetic and Evolutionary Computation Conference (pp. 1407-1414). New York, NY: Association for Computing Machinery (ACM).
DOI Scopus12 WoS9
2017 Osuna, E., Neumann, F., Gao, W., & Sudholt, D. (2017). Speeding up evolutionary multi-objective optimisation through diversity-based parent selection. In GECCO '17: Proceedings of the 2017 Genetic and Evolutionary Computation Conference (pp. 553-560). Berlin, Germany: Association for Computing Machinery (ACM).
DOI Scopus8 WoS6
2017 Neumann, F. (2017). Parameterized analysis of bio-inspired computing. In Proceedings of the IEEE Symposium Series on Computational Intelligence (IEEE SSCI 2017) Vol. 2018-January (pp. 1-3). Piscataway, NJ: IEEE.
DOI
2016 Neumann, F., & Poursoltan, S. (2016). Feature-based algorithm selection for constrained continuous optimisation. In CEC (pp. 1461-1468). Vancouver: IEEE.
DOI Scopus5 WoS5
2016 Neumann, A., Alexander, B., & Neumann, F. (2016). The Evolutionary Process of Image Transition in Conjunction with Box and Strip Mutation. In A. Hirose, S. Ozawa, K. Doya, K. Ikeda, M. Lee, & D. Liu (Eds.), Proceedings, Part III of the 23rd International Conference on Neural Information Processing (ICONIP 2016), as published in Lecture Notes in Computer Science Vol. 9949 (pp. 261-268). Cham, Switzerland: Springer International Publishing.
DOI Scopus8 WoS8
2016 Wu, J., Shekh, S., Sergiienko, N., Cazzolato, B., Ding, B., Neumann, F., & Wagner, M. (2016). Fast and effective optimisation of arrays of submerged wave energy converters. In Proceedings of the 2016 Genetic and Evolutionary Computation Conference (pp. 1045-1052). Denver, CO: Association for Computing Machinery.
DOI Scopus38 WoS29
2016 Wu, J., Polyakovskiy, S., & Neumann, F. (2016). On the impact of the renting rate for the unconstrained nonlinear Knapsack problem. In Proceedings of the 2016 Genetic and Evolutionary Computation Conference (pp. 413-419). Denver, CO: ACM.
DOI Scopus20 WoS17
2016 Friedrich, T., Kötzing, T., Krejca, M., Nallaperuma, S., Neumann, F., & Schirneck, M. (2016). Fast building block assembly by majority vote crossover. In Proceedings of the 2016 Genetic and Evolutionary Computation Conference (pp. 661-668). Denver, Colorado, USA: Association for Computing Machinery.
DOI Scopus32 WoS27
2016 Neumann, F. (2016). Chair's welcome. In Gecco 2016 Companion Proceedings of the 2016 Genetic and Evolutionary Computation Conference (pp. iii).
2016 Chin, T., Kee, Y., Eriksson, A., & Neumann, F. (2016). Guaranteed outlier removal with mixed integer linear programs. In Proceedings of the 29th IEEE Computer Society Conference on Computer Vision and Pattern Recognition Vol. 2016 (pp. 5858-5866). Las Vegas, NV: IEEE.
DOI Scopus41 WoS33
2016 Neumann, F. (2016). Chair's welcome. In Gecco 2016 Proceedings of the 2016 Genetic and Evolutionary Computation Conference (pp. iii).
2016 Doerr, B., Gao, W., & Neumann, F. (2016). Runtime analysis of evolutionary diversity maximization for OneMinMax. In Proceedings of the 2016 Genetic and Evolutionary Computation Conference (pp. 557-564). Denver, Colorado, USA: Association for Computing Machinery.
DOI Scopus36 WoS32
2016 Gao, W., Friedrich, T., & Neumann, F. (2016). Fixed-parameter single objective search heuristics for minimum vertex cover. In J. Handl, E. Hart, P. Lewis, M. Lopez-Ibanez, G. Ochoa, & B. Paechter (Eds.), Proceedings of the 14th International Conference on Parallel Problem Solving from Nature Vol. 9921 LNCS (pp. 740-750). Edinburgh, UK: Springer.
DOI Scopus1
2016 Pourhassan, M., Shi, F., & Neumann, F. (2016). Parameterized Analysis of Multi-objective Evolutionary Algorithms and the Weighted Vertex Cover Problem.. In J. Handl, E. Hart, P. Lewis, M. López-Ibáñez, G. Ochoa, & B. Paechter (Eds.), PPSN. 14th International conference Parallel Problem Solving from Nature - PPSN XIV Vol. 9921 (pp. 729-739). Online: Springer.
2015 Neumann, F., & Sutton, A. M. (2015). Parameterized complexity analysis of evolutionary algorithms. In S. Silva, & A. I. Esparcia-Alcázar (Eds.), Gecco 2015 Companion Publication of the 2015 Genetic and Evolutionary Computation Conference (pp. 435-450). ACM.
DOI
2015 Gao, W., Pourhassan, M., & Neumann, F. (2015). Runtime analysis of evolutionary diversity optimization and the vertex cover problem. In S. Silva, & A. Esparcia-Alcázar (Eds.), Proceedings of the Companion Publication of the 2015 Genetic and Evolutionary Computation Conference (pp. 1395-1396). Madrid, Spain: ACM.
DOI Scopus4
2015 Neumann, F., & Witt, C. (2015). On the runtime of randomized local search and simple evolutionary algorithms for dynamic makespan scheduling. In Q. Yang, & M. Wooldridge (Eds.), Proceedings of the 24th International Joint Conference on Artificial Intelligence Vol. 2015-January (pp. 3742-3748). Buenos Aires, Argentina: AAAI Press.
Scopus33 WoS27
2015 Poursoltan, S., & Neumann, F. (2015). A feature-based comparison of evolutionary computing techniques for constrained continuous optimisation. In S. Arik, T. Huang, W. Lai, & Q. Liu (Eds.), Proceedings of the 22nd International Conference on Neural Information Processing Vol. 9491 (pp. 332-343). Istanbul, Turkey: Springer.
DOI Scopus4 WoS4
2015 Poursoltan, S., & Neumann, F. (2015). A feature-based analysis on the impact of set of constraints for ε-constrained differential evolution. In S. Arik, T. Huang, W. Lai, & Q. Liu (Eds.), Proceedings of the 22nd International Conference on Neural Information Processing Vol. 9491 (pp. 344-355). Istanbul, Turkey: Springer.
DOI Scopus2 WoS2
2015 Doerr, B., Neumann, F., & Sutton, A. (2015). Improved runtime bounds for the (1+1) EA on random 3-CNF formulas based on fitness-distance correlation. In S. Silva (Ed.), Proceedings of the 2015 Genetic and Evolutionary Computation Conference (pp. 1415-1422). Madrid, Spain: Association for Ccomputing Machinery.
DOI Scopus11 WoS9
2015 Pourhassan, M., Gao, W., & Neumann, F. (2015). Maintaining 2-approximations for the dynamic vertex cover problem using evolutionary algorithms. In S. Silva (Ed.), Proceedings of the 2015 Genetic and Evolutionary Computation Conference (pp. 903-910). Madrid, Spain: Association for Computing Machinery.
DOI Scopus28 WoS23
2015 Pourhassan, M., & Neumann, F. (2015). On the impact of local search operators and variable neighbourhood search for the generalized travelling salesperson problem. In S. Silva (Ed.), Proceedings of the 2015 Genetic and Evolutionary Computation Conference (pp. 465-472). Madrid, Spain: Assocation for Computing Machinery.
DOI Scopus5 WoS3
2015 Polyakovskiy, S., & Neumann, F. (2015). Packing while traveling: mixed integer programming for a class of nonlinear knapsack problems. In L. Michel (Ed.), Integration of AI and OR Techniques in Constraint Programming Vol. 9075 (pp. 332-346). Barcelona, Spain: Springer.
DOI Scopus14 WoS12
2014 Friedrich, T., & Neumann, F. (2014). Maximizing submodular functions under matroid constraints by multi-objective evolutionary algorithms. In T. Bartz-Beielstein, J. Branke, B. Filipic, & J. Smith (Eds.), (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) Vol. 8672 (pp. 922-931). Ljubljana, Slovenia: Springer.
DOI Scopus22 WoS19
2014 Poursoltan, S., & Neumann, F. (2014). A feature-based analysis on the impact of linear constraints for ε-constrained differential evolution. In Proceedings of the 2014 IEEE Congress on Evolutionary Computation (pp. 3088-3095). Beijing, China: Institute of Electrical and Electronics Engineers.
DOI Scopus4 WoS4
2014 Wagner, M., & Neumann, F. (2014). Single- and multi-objective genetic programming: new runtime results for sorting. In Proceedings of the 2014 IEEE Congress on Evolutionary Computation, CEC 2014 (pp. 125-132). Beijing: IEEE.
DOI Scopus6 WoS5
2014 Polyakovskiy, S., Bonyadi, M., Wagner, M., Michalewicz, Z., & Neumann, F. (2014). A comprehensive benchmark set and heuristics for the traveling thief problem. In GECCO 2014 - Proceedings of the 2014 Genetic and Evolutionary Computation Conference (pp. 477-484). Vancouver, Canada: Association for Computing Machinery.
DOI Scopus104 WoS81
2014 Nallaperuma, S., Neumann, F., Bonyadi, M., & Michalewicz, Z. (2014). EVOR: An online evolutionary algorithm for car racing games. In C. Igel (Ed.), Proceedings of the 2014 Genetic and Evolutionary Computation Conference (pp. 317-324). Vancouver, Canada: Association for Computing Machinery.
DOI Scopus7 WoS7
2014 Gao, W., & Neumann, F. (2014). Runtime analysis for maximizing population diversity in single-objective optimization. In C. Igel (Ed.), Proceedings of the 2014 Annual Conference on Genetic and Evolutionary Computation (pp. 777-784). Vancouver, Canada: Association for Computing Machinery.
DOI Scopus18 WoS13
2014 Nallaperuma, S., Neumann, F., & Sudholt, D. (2014). A fixed budget analysis of randomized search heuristics for the traveling salesperson problem. In C. Igel (Ed.), Proceedings of the 2014 Annual Conference on Genetic and Evolutionary Computation (pp. 807-814). Vancouver, Canada: Association for Ccomputing Machinery.
DOI Scopus9 WoS7
2014 Neumann, F., & Sutton, A. M. (2014). Parameterized complexity analysis of evolutionary algorithms. In D. V. Arnold, & E. Alba (Eds.), Gecco 2014 Companion Publication of the 2014 Genetic and Evolutionary Computation Conference (pp. 607-621). ACM.
DOI
2014 Nallaperuma, S., Wagner, M., & Neumann, F. (2014). Parameter prediction based on features of evolved instances for ant colony optimization and the traveling salesperson problem. In T. Bartz-Beielstein, J. Branke, B. Filipič, & J. Smith (Eds.), Proceedings of the 13th International Conference on Parallel Problem Solving from Nature Vol. 8672 (pp. 100-109). Ljubljana, Slovenia: Springer Verlag.
DOI Scopus11 WoS9
2014 Nguyen, A., Wagner, M., & Neumann, F. (2014). User preferences for approximation-guided multi-objective evolution. In G. Dick, & et al. (Eds.), Proceedings of the 10th International Conference on Simulated Evolution and Learning Vol. 8886 (pp. 251-262). Online: Springer.
DOI Scopus3 WoS2
2014 Neumann, F., & Nguyen, A. (2014). On the impact of utility functions in interactive evolutionary multi-objective optimization. In Proceeding of the 10th International Conference on Simulated Evolution and Learning Vol. 8886 (pp. 419-430). Dunedin, New Zealand: Springer Verlag.
DOI Scopus3 WoS1
2014 Sutton, A., & Neumann, F. (2014). Runtime analysis of evolutionary algorithms on randomly constructed high-density satisfiable 3-CNF formulas. In Proceedings of the 13th International Conference on Parallel Problem Solving from Nature Vol. 8672 (pp. 942-951). Ljubljana, Slovenia: Springer, Cham.
DOI Scopus11 WoS7
2013 Neumann, F., & Witt, C. (2013). Bioinspired computation in combinatorial optimization - Algorithms and their computational complexity. In C. Blum, & E. Alba (Eds.), Gecco 2013 Proceedings of the 2013 Genetic and Evolutionary Computation Conference Companion (pp. 567-590). ACM.
DOI Scopus19
2013 Neumann, F., & Jong, K. D. (2013). Foreword. In Foga 2013 Proceedings of the 12th ACM Workshop on Foundations of Genetic Algorithms Vol. 58 (pp. I-II). CSIRO PUBLISHING.
DOI
2013 Wagner, M., Day, J., Jordan, C., Kroeger, T., & Neumann, F. (2013). Evolving pacing strategies for team pursuit track cycling. In Proceedings of Advances in Metaheuristics Vol. abs/1104.0775 (pp. 61-76). New York: Springer.
DOI
2013 Nguyen, A., Sutton, A., & Neumann, F. (2013). Population size matters: rigorous runtime results for maximizing the hypervolume indicator. In Proceedings of the 15th Annual Conference on Genetic and Evolutionary Computation (pp. 1613-1620). online: ACM.
DOI Scopus4 WoS4
2013 Corus, D., Lehre, P., & Neumann, F. (2013). The generalized minimum spanning tree problem: a parameterized complexity analysis of bi-level optimisation. In Proceedings of the 15th Annual Conference on Genetic and Evolutionary Computation, GECCO'13 (pp. 519-526). online: ACM.
DOI Scopus11 WoS9
2013 Nallaperuma, S., Wagner, M., Neumann, F., Bischi, B., Mersmann, O., & Trautmann, H. (2013). A feature-based comparison of local search and the Christofides algorithm for the travelling salesperson problem. In Proceedings of the 12th Workshop on Foundations of Genetic Algorithms, FOGA XII (pp. 147-159). online: ACM.
DOI Scopus28
2013 Tran, R., Wu, J., Denison, C., Ackling, T., Wagner, M., & Neumann, F. (2013). Fast and effective multi-objective optimisation of wind turbine placement. In Proceedings of the 15th Annual Conference on Genetic and Evolutionary Computation, GECCO'13 (pp. 1381-1388). online: ACM.
DOI Scopus32 WoS32
2013 Wagner, M., & Neumann, F. (2013). A fast approximation-guided evolutionary multi-objective algorithm. In Proceedings of the 15th Annual Conference on Genetic and Evolutionary Computation (pp. 687-694). online: ACM.
DOI Scopus74 WoS63
2013 Nallaperuma, S., Wagner, M., & Neumann, F. (2013). Ant colony optimisation and the travelling salesperson problem - hardness, features and parameter settings. In Proceedings of the 15th Annual Conference Companion on Genetic and Evolutionary Computation, GECCO'13 (pp. 13-14). Amsterdam, Netherlands: ACM.
DOI Scopus6
2013 Nallaperuma, S., Sutton, A., & Neumann, F. (2013). Parameterized complexity analysis and more effective construction methods for ACO algorithms and the Euclidean traveling salesperson problem. In 2013 IEEE Congress on Evolutionary Computation (CEC) (pp. 2045-2052). United States: IEEE.
DOI Scopus7 WoS5
2013 Nallaperuma, S., Sutton, A., & Neumann, F. (2013). Fixed-parameter evolutionary algorithms for the euclidean traveling salesperson problem. In Proceedings of the 2013 IEEE Congress on Evolutionary Computation, CEC 2013 (pp. 2037-2044). United States: IEEE.
DOI Scopus6 WoS2
2013 Neumann, F., & Jong, K. A. D. (Eds.) (2013). Foundations of Genetic Algorithms XII, FOGA '13, Adelaide, SA, Australia, January 16-20, 2013. In FOGA. ACM.
2012 Sutton, A. M., & Neumann, F. (2012). A Parameterized Runtime Analysis of Evolutionary Algorithms for the Euclidean Traveling Salesperson Problem. In J. Hoffmann, & B. Selman (Eds.), Proceedings of the 26th Aaai Conference on Artificial Intelligence Aaai 2012 Vol. 26 (pp. 1105-1111). Association for the Advancement of Artificial Intelligence (AAAI).
DOI Scopus9
2012 Urli, T., Wagner, M., & Neumann, F. (2012). Experimental supplements to the computational complexity analysis of genetic programming for problems modelling isolated program semantics. In Proceedings of the12th International Conference on Parallel Problem Solving from Nature, PPSN 2012 Vol. 7491 LNCS (pp. 102-112). Germany: Springer-Verlag.
DOI Scopus8
2012 Sutton, A., & Neumann, F. (2012). A parameterized runtime analysis of simple evolutionary algorithms for makespan scheduling. In Proceedings of 12th International Conference on Parallel Problem Solving from Nature, PPSN 2012 Vol. 7491 LNCS (pp. 52-61). Germany: Springer-Verlag.
DOI Scopus24
2012 Wagner, M., & Neumann, F. (2012). Parsimony pressure versus multi-objective optimization for variable length representations. In Proceedings of the12th International Conference on Parallel Problem Solving from Nature, PPSN 2012 Vol. 7491 LNCS (pp. 133-142). Germany: Springer-Verlag.
DOI Scopus15
2012 Veeramachaneni, K., Wagner, M., O'Reilly, U., & Neumann, F. (2012). Optimizing energy output and layout costs for large wind farms using particle swarm optimization. In Proceedings of 2012 IEEE Congress on Evolutionary Computation, CEC 2012 (pp. 1-7). USA: IEEE.
DOI Scopus39 WoS7
2012 Yuen, J., Gao, S., Wagner, M., & Neumann, F. (2012). An adaptive data structure for evolutionary multi-objective algorithms with unbounded archives. In Proceedings of 2012 IEEE Congress on Evolutionary Computation, CEC 2012 (pp. 1-8). USA: IEEE.
DOI Scopus3 WoS1
2012 Mainberger, M., Hoffmann, S., Weickert, J., Tang, C., Johannsen, D., Neumann, F., & Doerr, B. (2012). Optimising spatial and tonal data for homogeneous diffusion inpainting. In Proceedings of the 3rd International Conference on Scale Space and Variational Methods in Computer Vision, SSVM 2011 Vol. 6667 LNCS (pp. 26-37). Germany: Springer-Verlag.
DOI Scopus49 WoS45
2012 Sutton, A., Day, J., & Neumann, F. (2012). A parameterized runtime analysis of evolutionary algorithms for MAX-2-SAT. In Proceedings of the 14th International Conference on Genetic and Evolutionary Computation, GECCO'12 (pp. 433-440). online: Association for Computing Machinery.
DOI Scopus6 WoS3
2012 Kotzing, T., Sutton, A., Neumann, F., & O'Reilly, U. (2012). The max problem revisited: the importance of mutation in genetic programming. In Proceedings of the 14th International Conference on Genetic and Evolutionary Computation, GECCO'12 (pp. 1333-1340). online: Association for Computing Machinery.
DOI Scopus13 WoS9
2012 Neumann, F. (2012). Computational complexity analysis of multi-objective genetic programming. In Proceedings of the 14th International Conference on Genetic and Evolutionary Computation, GECCO'12 Vol. abs/1203.4881 (pp. 799-806). online: Association for Computing Machinery.
DOI Scopus26 WoS18
2012 Sutton, A., & Neumann, F. (2012). A parameterized runtime analysis of evolutionary algorithms for the Euclidean traveling salesperson problem. In Proceedings of the 26th National Conference on Artificial Intelligence Vol. 2 (pp. 1105-1111). online: AAAI.
DOI Scopus22
2012 Mersmann, O., Bischl, B., Bossek, J., Trautmann, H., Wagner, M., & Neumann, F. (2012). Local search and the traveling salesman problem: A feature-based characterization of problem hardness. In Proceedings of the 6th International Conference on Learning and Intelligent Optimization, LION 6 Vol. 7219 LNCS (pp. 115-129). Germany: Springer-Verlag.
DOI Scopus40
2011 Friedrich, T., Kroeger, T., & Neumann, F. (2011). Weighted preferences in evolutionary multi-objective optimization. In Proceedings of the 24th Australasian Joint Conference on Artificial Intelligence Vol. 7106 LNAI (pp. 291-300). Germany: Springer.
DOI Scopus21 WoS17
2011 Kötzing, T., Neumann, F., Sudholt, D., & Wagner, M. (2011). Simple max-min ant systems and the optimization of linear pseudo-boolean functions. In Proceeding: FOGA '11: Proceedings of the 11th Workshop Proceedings on Foundations of Genetic Algorithms Vol. abs/1007.4707 (pp. 209-218). New York: ACM Press.
DOI Scopus27 WoS19
2011 Durrett, G., Neumann, F., & O'Reilly, U. (2011). Computational complexity analysis of simple genetic programming on two problems modeling isolated program semantics. In Proceedings of Foundations of Genetic Algorithms XI Vol. abs/1007.4636 (pp. 69-80). New York: ACM Press.
DOI Scopus40 WoS28
2011 Wagner, M., Neumann, F., Veeramachaneni, K., & O'Reilly, U. (2011). Optimizing the Layout of 1000 Wind Turbines. In European Wind Energy Association 2011 Scientific Proceedings (pp. 205-209). Brussels, Belgium: UWEA.
Scopus42
2011 Bringmann, K., Friedrich, T., Neumann, F., & Wagner, M. (2011). Approximation-guided evolutionary multi-objective optimization. In Proceedings of the 22nd International Joint Conference on Artificial Intelligence (pp. 1198-1203). online: IJCAI.
DOI Scopus78
2011 Neumann, F., Oliveto, P., Rudolph, G., & Sudholt, D. (2011). On the effectiveness of crossover for migration in parallel evolutionary algorithms. In Proceedings of GECCO'11 (pp. 1587-1594). New York: ACM Press.
DOI Scopus43 WoS36
2011 Kotzing, T., Neumann, F., & Spohel, R. (2011). PAC learning and genetic programming. In Proceedings of GECCO'11 (pp. 2091-2096). New York: ACM Press.
DOI Scopus17 WoS12
2010 Kotzing, T., Lehre, P., Neumann, F., & Oliveto, P. (2010). Ant colony optimization and the minimum cut problem. In Proceedings of the 12th annual conference on Genetic and evolutionary computation (pp. 1393-1400). New York: ACM Press.
DOI Scopus19
2010 Neumann, F., Sudholt, D., & Witt, C. (2010). A few ants are enough: ACO with iteration-best update. In Proceedings of the 12th annual conference on Genetic and evolutionary computation (pp. 63-70). New York: ACM Press.
DOI Scopus47
2010 Berghammer, R., Friedrich, T., & Neumann, F. (2010). Set-based multi-objective optimization, indicators, and deteriorative cycles. In Proceedings of the 12th annual conference on Genetic and evolutionary computation (pp. 495-502). New York: ACM Press.
DOI Scopus8
2010 Kotzing, T., Neumann, F., Roglin, H., & Witt, C. (2010). Theoretical properties of two ACO approaches for the traveling salesman problem. In M. Dorigo, M. Birattari, G. Di Carlo, R. Doursat, & A. Engelbrecht (Eds.), 7th international conference on Swarm Intelligence Vol. 6234 LNCS (pp. 324-335). Berlin: Springer-Verlag.
DOI Scopus13 WoS10
2010 Kratsch, S., Lehre, P., Neumann, F., & Oliveto, P. (2010). Fixed parameter evolutionary algorithms and maximum leaf spanning trees: a matter of mutation. In Proceedings of the 11th international conference on Parallel problem solving from nature Vol. 6238 LNCS (pp. 204-213). Berlin: Springer-Verlag.
DOI Scopus35 WoS24
2010 Doerr, B., Johannsen, D., Kotzing, T., Neumann, F., & Theile, M. (2010). More effective crossover operators for the all-pairs shortest path problem. In Proceedings of the 11th international conference on Parallel problem solving from nature Vol. 6238 LNCS (pp. 184-193). Berlin: Springer-Verlag.
DOI Scopus17 WoS17
2010 Neumann, F., & Theile, M. (2010). How crossover speeds up evolutionary algorithms for the multi-criteria all-pairs-shortest-path problem. In R. Schaefer, C. Cotta, J. Kolodziej, & G. Rudolph (Eds.), Proceedings of the 11th international conference on Parallel problem solving from nature Vol. 6238 LNCS (pp. 667-676). Berlin: Springer-Verlag.
DOI Scopus36 WoS28
2010 Bottcher, S., Doerr, B., & Neumann, F. (2010). Optimal fixed and adaptive mutation rates for the leadingones problem. In R. Schaefer, C. Cotta, J. Kolodziej, & G. Rudolph (Eds.), Proceedings of the 11th international conference on Parallel problem solving from nature Vol. 6238 LNCS (pp. 1-10). Berlin: Springer-Verlag.
DOI Scopus133 WoS125
2010 Ghandar, A., Michalewicz, Z., & Neumann, F. (2010). Evolving fuzzy rules: evaluation of a new approach. In Proceedings of 8th International Conference SEAL 2010 Vol. 6457 LNCS (pp. 250-259). Germany: Springer.
DOI
2010 Friedrich, T., & Neumann, F. (2010). Foundations of evolutionary multi-objective optimization. In J. Branke (Ed.), Proceedings of the 12th Annual Genetic and Evolutionary Computation Conference Gecco 10 Companion Publication (pp. 2557-2575). Portland, OR: ASSOC COMPUTING MACHINERY.
DOI
2010 Jansen, T., & Neumann, F. (2010). Computational complexity and evolutionary computation. In J. Branke (Ed.), Proceedings of the 12th Annual Genetic and Evolutionary Computation Conference Gecco 10 Companion Publication (pp. 2683-2709). Portland, OR: ASSOC COMPUTING MACHINERY.
DOI
2009 Helwig, S., Neumann, F., & Wanka, R. (2009). Particle swarm optimization with velocity adaptation. In Proceedings of the 2009 International Conference on Adaptive and Intelligent Systems (pp. 146-151). Washington, DC: IEEE Computer Society.
DOI Scopus12 WoS8
2009 Kratsch, S., & Neumann, F. (2009). Fixed-parameter evolutionary algorithms and the vertex cover problem. In Proceedings of the 11th Annual conference on Genetic and evolutionary computation (pp. 293-300). New York: ACM Press.
DOI Scopus15
2009 Friedrich, T., Horoba, C., & Neumann, F. (2009). Multiplicative approximations and the hypervolume indicator. In Proceedings of the 11th Annual conference on Genetic and evolutionary computation (pp. 571-578). New York: ACM Press.
DOI Scopus54
2009 Doerr, B., Eremeev, A., Horoba, C., Neumann, F., & Theile, M. (2009). Evolutionary algorithms and dynamic programming. In Proceedings of the 11th Annual conference on Genetic and evolutionary computation (pp. 771-777). New York: ACM Press.
DOI Scopus10
2009 Neumann, F., Oliveto, P., & Witt, C. (2009). Theoretical analysis of fitness-proportional selection: landscapes and efficiency. In Proceedings of the Genetic and Evolutionary Computation Conference (GECCO 09) (pp. 835-842). New York: ACM Press.
DOI Scopus72
2009 Oliveto, P., Lehre, P., & Neumann, F. (2009). Theoretical Analysis of Rank-based Mutation - Combining Exploration and Exploitation. In 2009 IEEE Congress on Evolutionary Computation (pp. 1455-1462). Piscataway, New Jersey: IEEE.
DOI Scopus34 WoS25
2009 Horoba, C., & Neumann, F. (2009). Additive approximations of Pareto-optimal sets by evolutionary multi-objective algorithms. In Proceedings of the tenth ACM SIGEVO workshop on Foundations of genetic algorithms (pp. 79-86). New York: ACM Press.
DOI Scopus11 WoS10
2009 Baswana, S., Biswas, S., Doerr, B., Friedrich, T., Kurur, P., & Neumann, F. (2009). Computing single source shortest paths using single-objective fitness functions. In Proceedings of the tenth ACM SIGEVO workshop on Foundations of genetic algorithms (pp. 59-66). New York: ACM Press.
DOI Scopus51 WoS36
2009 Jansen, T., & Neumann, F. (2009). Computational complexity and evolutionary computation. In F. Rothlauf (Ed.), Proceedings of the 11th Annual Genetic and Evolutionary Computation Conference Gecco 2009 Vol. 2009-January (pp. 3157-3183). ACM.
DOI
2009 Gasser, S. M., Neumann, F. R., Tsai, M., Taddei, A., & Gehlen, L. (2009). Nucleosome Remodeling Complexes Increase Subnuclear Dynamics Of Chromatin In Yeast. In BIOPHYSICAL JOURNAL Vol. 96 (pp. 553A). CELL PRESS.
DOI
2008 Jansen, T., & Neumann, F. (2008). Computational complexity and evolutionary computation. In C. Ryan, & M. Keijzer (Eds.), Gecco 08 Proceedings of the 10th Annual Conference on Genetic and Evolutionary Computation 2008 (pp. 2417-2443). ACM.
DOI
2008 Diedrich, F., Kehden, B., & Neumann, F. (2008). Multi-objective Problems in Terms of Relational Algebra.. In R. Berghammer, B. Möller, & G. Struth (Eds.), RelMiCS Vol. 4988 (pp. 84-98). Springer.
2008 Neumann, F., Sudholt, D., & Witt, C. (2008). Rigorous analyses for the combination of ant colony optimization and local search. In Ant Colony Optimization and Swarm Intelligence Vol. 5217 LNCS (pp. 132-143). Berlin: Springer.
DOI Scopus36 WoS24
2008 Neumann, F., & Reichel, J. (2008). Approximating Minimum Multicuts by Evolutionary Multi-objective Algorithms. In Parallel Problem Solving from Nature - PPSN X : LNCS 5199 Vol. 5199 LNCS (pp. 72-81). Berlin: Springer.
DOI Scopus30 WoS26
2008 Brockhoff, D., Friedrich, T., & Neumann, F. (2008). Analyzing Hypervolume Indicator Based Algorithms. In Parallel Problem Solving from Nature ¿ PPSN X Vol. 5199 LNCS (pp. 651-660). Berlin: Springer.
DOI Scopus101 WoS94
2008 Friedrich, T., Horoba, C., & Neumann, F. (2008). Runtime analyses for using fairness in evolutionary multi-objective optimization. In Parallel Problem Solving from Nature - 10th International Conference Vol. 5199 LNCS (pp. 671-680). Berlin: Springer.
DOI Scopus2
2008 Happ, E., Johannsen, D., Klein, C., & Neumann, F. (2008). Rigorous analyses of fitness-proportional selection for optimizing linear functions. In Proceedings of the 10th annual conference on genetic and evolutionary computation (pp. 953-960). New York: ACM New York.
DOI Scopus58
2008 Horoba, C., & Neumann, F. (2008). Benefits and drawbacks for the use of ε-dominance in evolutionary multi-objective optimization. In Proceedings of the 10th annual conference on Genetic and evolutionary computation (pp. 641-680). New York: ACM New York.
DOI Scopus41
2008 Diedrich, F., & Neumann, F. (2008). Using Fast Matrix Multiplication in Bio-Inspired Computation for Complex Optimization Problems. In IEEE World Congress on Computational Intelligence (pp. 3827-3832). New York: IEEE Press.
DOI
2008 Friedrich, T., & Neumann, F. (2008). When to use bit-wise neutrality. In IEEE World Conference on Computational Intelligence 2008 (pp. 997-1003). Los Alamitos, California: IEEE Press.
DOI
2008 Diedrich, F., Kehden, B., & Neumann, F. (2008). Multi-objective Problems in Terms of Relational Algebra. In Relations and Kleene Algebra in Computer Science : LNCS 4988 Vol. 4988 LNCS (pp. 84-98). Berlin: Springer.
DOI
2008 Kroeske, J., Ghandar, A., Michalewicz, Z., & Neumann, F. (2008). Learning fuzzy rules with evolutionary algorithms - An analytic approach. In Proceedings of the 10th International Conference on Parallel Problem Solving from Nature Vol. 5199 LNCS (pp. 1051-1060). Heidelberger Platz 3 Berlin Germany D-14197: Springer-Verlag Berlin.
DOI Scopus7 WoS5
2008 Neumann, F., & Witt, C. (2008). Ant colony optimization and the minimum spanning tree problem. In Lecture Notes in Computer Science Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics Vol. 5313 LNCS (pp. 153-166). Trento, Italy: Springer.
DOI Scopus21 WoS14
2008 Neumann, F., Reichel, J., & Skutella, M. (2008). Computing minimum cuts by randomized search heuristics. In Proceedings of the 10th annual conference on Genetic and evolutionary computation (pp. 779-786). New York: ACM Press.
DOI Scopus14
2007 Jansen, T., & Neumann, F. (2007). Computational complexity and evolutionary computation. In D. Thierens (Ed.), Proceedings of Gecco 2007 Genetic and Evolutionary Computation Conference Companion Material (pp. 3225-3250). ACM.
DOI Scopus2
2007 Friedrich, T., He, J., Hebbinghaus, N., Neumann, F., & Witt, C. (2007). On improving approximate solutions by evolutionary algorithms. In IEEE Congress on Evolutionary Computation 2007 (pp. 2614-2621). Online: IEEE Press.
DOI Scopus3 WoS2
2007 Doerr, B., Gnewuch, M., Hebbinghaus, N., & Neumann, F. (2007). A Rigorous View On Neutrality. In 2007 Congress on Evolutionary Computation, CEC 2007 : proceedings, Singapore 25-28th September, 2007. (pp. 2591-2597). Piscataway, N.J.: IEEE.
DOI Scopus13 WoS10
2007 Neumann, F., Sudholt, D., & Witt, C. (2007). Comparing Variants of MMAS ACO Algorithms on Pseudo-Boolean Functions. In Engineering Stochastic Local Search Algorithms. Designing, Implementing and Analyzing Effective Heuristics : LNCS 5752 Vol. 4638 LNCS (pp. 61-75). Berlin: Springer.
DOI Scopus16 WoS12
2007 Brockhoff, D., Friedrich, T., Hebbinghaus, N., Klein, C., Neumann, F., & Zitzler, E. (2007). Do additional objectives make a problem harder?. In Proceedings of the 9th annual conference on Genetic and evolutionary computation (pp. 765-772). New York: ACM New York.
DOI Scopus97 WoS58
2007 Friedrich, T., He, J., Hebbinghaus, N., Neumann, F., & Witt, C. (2007). Approximating covering problems by randomized search heuristics using multi-objective models. In Proceedings of the 9th annual conference on Genetic and evolutionary computation Vol. TR07 (pp. 797-804). New York: ACM New York.
DOI Scopus49 WoS28
2007 Friedrich, T., Hebbinghaus, N., & Neumann, F. (2007). Rigorous Analyses of Simple Diversity Mechanisms. In Proceedings of the 9th annual conference on Genetic and evolutionary computation (pp. 1219-1225). New York: ACM New York.
DOI Scopus28 WoS16
2007 Doerr, B., Neumann, F., Sudholt, D., & Witt, C. (2007). On the Runtime Analysis of the 1-ANT ACO Algorithm. In GECCO '07 Genetic and Evolutionary Computation Conference London, England UK ¿ July 07 - 11, 2007 (pp. 33-40). New York: ACM New York.
DOI Scopus48 WoS27
2007 Neumann, F., Sudholt, D., & Witt, C. (2007). Comparing Variants of MMAS ACO Algorithms on Pseudo-Boolean Functions.. In T. Stützle, M. Birattari, & H. H. Hoos (Eds.), SLS Vol. 4638 (pp. 61-75). Springer.
2007 Friedrich, T., Hebbinghaus, N., & Neumann, F. (2007). Plateaus can be harder in multi-objective optimization. In 2007 IEEE Congress on Evolutionary Computation CEC 2007 (pp. 2622-2629). Singapore, SINGAPORE: IEEE.
DOI Scopus8 WoS6
2007 Neumann, F., & Rodriguez, J. L. (2007). On cellularization for simplicial presheaves and motivic homotopy. In TOPOLOGY AND ITS APPLICATIONS Vol. 154 (pp. 1481-1488). MEXICO, Univ Autonoma Benito Juarez Oaxaca, Fac Sci, Oaxaca: ELSEVIER.
DOI
2007 Neumann, F., Schoelzel, C., Litt, T., Hense, A., & Stein, M. (2007). Holocene vegetation and climate history of the northern Golan heights (Near East). In VEGETATION HISTORY AND ARCHAEOBOTANY Vol. 16 (pp. 329-346). SPAIN, Granada: SPRINGER.
DOI WoS87
2006 Neumann, F., & Witt, C. (2006). Runtime Analysis of a Simple Ant Colony Optimization Algorithm. In T. Asano (Ed.), Dagstuhl Seminar Proceedings Vol. 6061 (pp. 618-627). Springer.
2006 Neumann, F., & Witt, C. (2006). Runtime Analysis of a Simple Ant Colony Optimization Algorithm.. In D. V. Arnold, T. Jansen, M. D. Vose, & J. E. Rowe (Eds.), Theory of Evolutionary Algorithms Vol. 06061. Internationales Begegnungs- und Forschungszentrum fuer Informatik (IBFI), Schloss Dagstuhl, Germany.
2006 Doerr, B., Hebbinghaus, N., & Neumann, F. (2006). Speeding up evolutionary algorithms through restricted mutation operators. In PPSN IX 9th International Conference Vol. 4193 (pp. 978-987). Heidelberger Platz 3 Berlin Germany D-14197: Springer-Verlag Berlin.
DOI Scopus20 WoS16
2006 Kehden, B., & Neumann, F. (2006). A Relation-Algebraic View on Evolutionary Algorithms for Some Graph Problems. In Evolutionary Computation in Combinatorial Optimization : 6th European Conference : LNCS 3906 Vol. 3906 (pp. 147-158). Heidelberger Platz 3 Berlin Germany D-14197: Springer-Verlag Berlin.
DOI Scopus5 WoS6
2006 Neumann, F., & Laummans, M. (2006). Speeding up approximation algorithms for NP-hard spanning forest problems by multi-objective optimization. In Proceedings of the LATIN 2006: Theoretical Informatics : 7th Latin American Symposium Vol. 3887 LNCS (pp. 745-756). Heidelberger Platz 3 Berlin Germany D-14197: Springer-Verlag Berlin.
DOI Scopus1 WoS1
2006 Kehden, B., Neumann, F., & Berghammer, R. (2006). Relational implementation of simple parallel evolutionary algorithms. In Relational Methods in Computer Science : LNCS 3929 Vol. 3929 (pp. 161-172). Heidelberger Platz 3 Berlin Germany D-14197: Springer-Verlag Berlin.
DOI Scopus1
2006 Neumann, F., & Witt, C. (2006). Runtime analysis of a simple Ant Colony Optimization algorithm - Extended abstract. In T. Asano (Ed.), ALGORITHMS AND COMPUTATION, PROCEEDINGS Vol. 4288 (pp. 618-+). Calcutta, INDIA: SPRINGER-VERLAG BERLIN.
WoS33
2006 Neumann, F., & Witt, C. (2006). Runtime analysis of a simple ant colony optimization algorithm. In Lecture Notes in Computer Science Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics Vol. 4288 LNCS (pp. 618-627). Springer Berlin Heidelberg.
DOI Scopus46
2005 Neumann, F., & Wegener, I. (2005). Minimum spanning trees made easier via multi-objective optimization. In H. G. Beyer (Ed.), Gecco 2005 Genetic and Evolutionary Computation Conference (pp. 763-769). Washington, DC: ASSOC COMPUTING MACHINERY.
DOI Scopus28 WoS18
2005 Berghammer, R., & Neumann, F. (2005). RELVIEW - An OBDD-Based Computer Algebra System for Relations. In Computer algebra in scientific computing : 8th International Workshop, CSAC 2005, Kalamata, Greece, September 12-16, 2005 : LNCS 3718 Vol. 3718 LNCS (pp. 40-51). Berlin: Springer.
DOI Scopus54 WoS52
2004 Neumann, F., & Wegener, I. (2004). Randomized local search, evolutionary algorithms, and the minimum spanning tree problem. In K. Deb, R. Poli, W. Banzhaf, H. G. Beyer, E. Burke, P. Darwen, . . . A. Tyrrell (Eds.), Lecture Notes in Computer Science Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics Vol. 3102 (pp. 713-724). WA, Seattle: SPRINGER-VERLAG BERLIN.
DOI Scopus58 WoS44
2004 Neumann, F. (2004). Expected runtimes of a simple evolutionary algorithm for the multi-objective minimum spanning tree problem. In X. Yao, E. Burke, J. A. Lozano, J. Smith, J. J. MereloGuervos, J. A. Bullinaria, . . . H. P. Schwefel (Eds.), Lecture Notes in Computer Science Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics Vol. 3242 (pp. 81-90). Univ Birmingham, Sch Comp Sci, Birmingham, ENGLAND: SPRINGER-VERLAG BERLIN.
DOI Scopus10 WoS11
2004 Neumann, F. (2004). Expected runtimes of evolutionary algorithms for the eulerian cycle problem. In Proceedings of the 2004 Congress on Evolutionary Computation Cec2004 Vol. 1 (pp. 904-910). OR, Portland: IEEE.
DOI Scopus30 WoS18

Year Citation
2022 Goel, D., Ward-Graham, M. H., Neumann, A., Neumann, F., Nguyen, H., & Guo, M. (2022). Defending active directory by combining neural network based dynamic program and evolutionary diversity optimisation.. Poster session presented at the meeting of GECCO. ACM.
2020 Neumann, A., & Neumann, F. (2020). Evolutionary computation for digital art. Poster session presented at the meeting of Gecco 2020 Companion Proceedings of the 2020 Genetic and Evolutionary Computation Conference Companion. ACM.
DOI Scopus1
2020 Bossek, J., Neumann, A., & Neumann, F. (2020). Evolutionary Diversity Optimisation. Poster session presented at the meeting of Parallel Problem Solving from Nature, PPSN 2020.
2019 Neumann, A., & Neumann, F. (2019). Evolutionary computation for digital art. Poster session presented at the meeting of Abstracts of the Genetic and Evolutionary Computation Conference Companion (GECCO 2019). Prague, The Czech Republic: Association for Computing Machinery (ACM).
DOI Scopus1 WoS1
2018 Neumann, A., & Neumann, F. (2018). Evolutionary computation for digital art. Poster session presented at the meeting of Abstracts of the Genetic and Evolutionary Computation Conference Companion (GECCO 2018). Kyoto, Japan: Association for Computing Machinery.
DOI Scopus2
2016 Friedrich, T., Kötzing, T., Krejca, M. S., & Sutton, A. M. (2016). The Benefit of Recombination in Noisy Evolutionary Search.. Poster session presented at the meeting of GECCO (Companion). ACM.
2016 Friedrich, T., Kötzing, T., Quinzan, F., & Sutton, A. M. (2016). Ant Colony Optimization Beats Resampling on Noisy Functions.. Poster session presented at the meeting of GECCO (Companion). ACM.
2016 Colmenar, J. M., Winkler, S. M., Kronberger, G., Maqueda, E., Botella, M., & Hidalgo, J. I. (2016). Predicting Glycemia in Diabetic Patients By Evolutionary Computation and Continuous Glucose Monitoring.. Poster session presented at the meeting of GECCO (Companion). ACM.
2016 Duarte, M., Costa, V., Gomes, J. C., Rodrigues, T., Silva, F., Oliveira, S. M., & Christensen, A. L. (2016). Unleashing the Potential of Evolutionary Swarm Robotics in the Real World.. Poster session presented at the meeting of GECCO (Companion). ACM.
2016 Kheng, C. W., Ku, D. C., Ng, H. -F., Khattab, M. A. H. M., & Chong, S. Y. (2016). Curvature Flight Path for Particle Swarm Optimisation.. Poster session presented at the meeting of GECCO. ACM.
2016 Martins, M. S., Delgado, M. R. D. B. D. S., Santana, R., Lüders, R., Gonçalves, R. A., & Almeida, C. P. D. (2016). HMOBEDA: Hybrid Multi-objective Bayesian Estimation of Distribution Algorithm.. Poster session presented at the meeting of GECCO. ACM.
2016 Guervós, J. J. M., Castillo, P. A., García-Sánchez, P., Cuevas, P. D. L., Rico, N., & Valdez, M. G. (2016). Performance for the Masses: Experiments with A Web Based Architecture to Harness Volunteer Resources for Low Cost Distributed Evolutionary Computation.. Poster session presented at the meeting of GECCO. ACM.
2016 Paula, L. C. D., Soares, A. D. S., Lima, T. W. D., Filho, A. R., & Coelho, C. J. (2016). Variable Selection for Multivariate Calibration in Chemometrics: A Real-World Application with Building Blocks Disruption Problem.. Poster session presented at the meeting of GECCO (Companion). ACM.
2016 Dang, D. -C., Friedrich, T., Kötzing, T., Krejca, M. S., Lehre, P. K., Oliveto, P. S., . . . Sutton, A. M. (2016). Escaping Local Optima with Diversity Mechanisms and Crossover.. Poster session presented at the meeting of GECCO. ACM.
2016 Fernando, C., Banarse, D., Reynolds, M., Besse, F., Pfau, D., Jaderberg, M., . . . Wierstra, D. (2016). Convolution by Evolution: Differentiable Pattern Producing Networks.. Poster session presented at the meeting of GECCO. ACM.
2016 Larson, A., Bernatskiy, A., Cappelle, C., Livingston, K. R., Livingston, N., Jr, J. H. L., . . . Bongard, J. C. (2016). Recombination Hotspots Promote the Evolvability of Modular Systems.. Poster session presented at the meeting of GECCO (Companion). ACM.
2016 Urselmann, M., Foussette, C., Janus, T., Tlatlik, S., Gottschalk, A., Emmerich, M. T., . . . Bäck, T. (2016). Selection of a DFO Method for the Efficient Solution of Continuous Constrained Sub-Problems within a Memetic Algorithm for Chemical Process Synthesis.. Poster session presented at the meeting of GECCO. ACM.
2016 Scott, E. O., & De Jong, K. A. (2016). Evaluation-time bias in quasi-generational and steady-state asynchronous evolutionary algorithms. Poster session presented at the meeting of Gecco 2016 Proceedings of the 2016 Genetic and Evolutionary Computation Conference. Denver, CO: ASSOC COMPUTING MACHINERY.
DOI Scopus11 WoS10
2016 Shim, Y., Auerbach, J. E., & Husbands, P. (2016). Darwinian Dynamics of Embodied Chaotic Exploration.. Poster session presented at the meeting of GECCO (Companion). ACM.
2016 Urbanowicz, R. J., Browne, W. N., & Kuber, K. (2016). Hands-on Workshop on Learning Classifier Systems.. Poster session presented at the meeting of GECCO (Companion). ACM.
2016 Pugh, J. K., Soros, L. B., & Stanley, K. O. (2016). An Extended Study of Quality Diversity Algorithms.. Poster session presented at the meeting of GECCO (Companion). ACM.
2016 Smith, S. L., Cagnoni, S., & Patton, R. M. (2016). MedGEC'16 Chairs' Welcome.. Poster session presented at the meeting of GECCO (Companion). ACM.
2016 Tarapore, D., Clune, J., Cully, A., & Mouret, J. -B. (2016). How do Different Encodings Influence the Performance of the MAP-Elites Algorithm?. Poster session presented at the meeting of GECCO. ACM.
2016 Woodward, J. R., Johnson, C. G., & Brownlee, A. E. (2016). Connecting Automatic Parameter Tuning, Genetic Programming as a Hyper-heuristic, and Genetic Improvement Programming.. Poster session presented at the meeting of GECCO (Companion). ACM.
2016 Toosi, F. G., Nikolov, N. S., & Eaton, M. (2016). A GA-Inspired Approach to the Reduction of Edge Crossings in Force-Directed Layouts.. Poster session presented at the meeting of GECCO (Companion). ACM.
2016 Wilson, D., Cussat-Blanc, S., & Luga, H. (2016). The Evolution of Artificial Neurogenesis.. Poster session presented at the meeting of GECCO (Companion). ACM.
2016 Zuin, G. L., Macedo, Y. P., Chaimowicz, L., & Pappa, G. L. (2016). Discovering Combos in Fighting Games with Evolutionary Algorithms.. Poster session presented at the meeting of GECCO. ACM.
2016 Zutty, J., Long, D., & Rohling, G. (2016). Increasing the Throughput of Expensive Evaluations Through a Vector Based Genetic Programming Framework.. Poster session presented at the meeting of GECCO (Companion). ACM.
2016 Alvarez, I. M., Browne, W. N., & Zhang, M. (2016). Human-inspired Scaling in Learning Classifier Systems: Case Study on the n-bit Multiplexer Problem Set.. Poster session presented at the meeting of GECCO. ACM.
2016 Andersson, M., Bandaru, S., & Ng, A. H. (2016). Tuning of Multiple Parameter Sets in Evolutionary Algorithms.. Poster session presented at the meeting of GECCO. ACM.
2016 Arrieta, A., Wang, S., Sagardui, G., & Etxeberria, L. (2016). Test Case Prioritization of Configurable Cyber-Physical Systems with Weight-Based Search Algorithms.. Poster session presented at the meeting of GECCO. ACM.
2016 Arnaldo, I., Hemberg, E., & O'Reilly, U. -M. (2016). Multi-Line Batch Scheduling by Similarity.. Poster session presented at the meeting of GECCO (Companion). ACM.
2016 Asafuddoula, M., Singh, H. K., & Ray, T. (2016). A CUDA Implementation of an Improved Decomposition Based Evolutionary Algorithm for Multi-Objective Optimization.. Poster session presented at the meeting of GECCO (Companion). ACM.
2016 Basseur, M., Derbel, B., Goëffon, A., & Liefooghe, A. (2016). Experiments on Greedy and Local Search Heuristics for ddimensional Hypervolume Subset Selection.. Poster session presented at the meeting of GECCO. ACM.
2016 Brotánková, J., Urli, T., & Kilby, P. (2016). Planning Habitat Restoration with Genetic Algorithms.. Poster session presented at the meeting of GECCO. ACM.
2016 Bulanova, N., Buzdalova, A., & Buzdalov, M. (2016). Fitness-Dependent Hybridization of Clonal Selection Algorithm and Random Local Search.. Poster session presented at the meeting of GECCO (Companion). ACM.
2016 Chen, Q., Xue, B., Shang, L., & Zhang, M. (2016). Improving generalisation of genetic programming for symbolic regression with structural risk minimisation. Poster session presented at the meeting of Gecco 2016 Proceedings of the 2016 Genetic and Evolutionary Computation Conference. ACM.
DOI Scopus22
2016 Contreras, S. F., Cortés, C. A., & Guzmán, M. A. (2016). Bio-inspired Multi-objective Optimization Design of a Highly Efficient Squirrel Cage Induction Motor.. Poster session presented at the meeting of GECCO. ACM.
2016 Cruz, C., Karakiewicz, J., & Kirley, M. (2016). A Morphogenetic Design Strategy Using a Composite CA Model.. Poster session presented at the meeting of GECCO (Companion). ACM.
2016 Doerr, B., Doerr, C., & Yang, J. (2016). Optimal Parameter Choices via Precise Black-Box Analysis.. Poster session presented at the meeting of GECCO. ACM.
2016 Fernandes, C. M., Guervós, J. J. M., & Rosa, A. C. (2016). Asynchronous Steady State Particle Swarm.. Poster session presented at the meeting of GECCO (Companion). ACM.
2016 Fernandez, S., Stützle, T., & Pellicer, P. V. (2016). IAM 2016 Chairs' Welcome & Organization.. Poster session presented at the meeting of GECCO (Companion). ACM.
2016 Gilan, S. S., Goyal, N., & Dilkina, B. (2016). Active Learning in Multi-objective Evolutionary Algorithms for Sustainable Building Design.. Poster session presented at the meeting of GECCO. ACM.
2016 Ha, S., Lee, S., & Moon, B. -R. (2016). Inspecting the Latent Space of Stock Market Data with Genetic Programming.. Poster session presented at the meeting of GECCO (Companion). ACM.
2016 Helmuth, T., McPhee, N. F., & Spector, L. (2016). The Impact of Hyperselection on Lexicase Selection.. Poster session presented at the meeting of GECCO. ACM.
2016 Helmuth, T., McPhee, N. F., & Spector, L. (2016). Effects of Lexicase and Tournament Selection on Diversity Recovery and Maintenance.. Poster session presented at the meeting of GECCO (Companion). ACM.
2016 Cramer, S., Kampouridis, M., & Freitas, A. A. (2016). A Genetic Decomposition Algorithm for Predicting Rainfall within Financial Weather Derivatives.. Poster session presented at the meeting of GECCO. ACM.
2016 Huizinga, J., Mouret, J. -B., & Clune, J. (2016). Does Aligning Phenotypic and Genotypic Modularity Improve the Evolution of Neural Networks?. Poster session presented at the meeting of GECCO. ACM.
2016 Kamizono, M., Shimomura, K., Tajiri, M., & Ono, S. (2016). Two-Dimensional Barcode Decoration Using Module-wise Non-systematic Coding and Cooperative Evolution by User and System.. Poster session presented at the meeting of GECCO. ACM.
2016 Kerschke, P., Preuss, M., Wessing, S., & Trautmann, H. (2016). Low-Budget Exploratory Landscape Analysis on Multiple Peaks Models.. Poster session presented at the meeting of GECCO. ACM.
2016 Ge, Y. -F., Yu, W. -J., & Zhang, J. (2016). Diversity-Based Multi-Population Differential Evolution for Large-Scale Optimization.. Poster session presented at the meeting of GECCO (Companion). ACM.
2016 Greensmith, J., Jackson, A. M., & Spendlove, I. (2016). Exploiting the Plasticity of Primary and Secondary Response Mechanisms in Artificial Immune Systems.. Poster session presented at the meeting of GECCO (Companion). ACM.
2016 Martínez, S. Z., Moraglio, A., Aguirre, H. E., & Tanaka, K. (2016). Geometric Particle Swarm Optimization for Multi-objective Optimization Using Decomposition.. Poster session presented at the meeting of GECCO. ACM.
2016 Salomon, S., Purshouse, R. C., Giagkiozis, I., & Fleming, P. J. (2016). A Toolkit for Generating Scalable Stochastic Multiobjective Test Problems.. Poster session presented at the meeting of GECCO. ACM.
2016 Abdolmaleki, A., Lau, N., Reis, L. P., & Neumann, G. (2016). Contextual Stochastic Search.. Poster session presented at the meeting of GECCO (Companion). ACM.
2016 Doncieux, S., Auerbach, J. E., Duro, R. J., & Vladar, H. P. D. (2016). Evolution in Cognition 2016 Chairs' Welcome.. Poster session presented at the meeting of GECCO (Companion). ACM.
2016 Espinoza-Nevárez, D., Ortiz-Bayliss, J. C., Terashima-Marín, H., & Gatica, G. (2016). Selection and Generation Hyper-heuristics for Solving the Vehicle Routing Problem with Time Windows.. Poster session presented at the meeting of GECCO (Companion). ACM.
2016 Gómez, R. H., Coello, C. A. C., & Torres, E. A. (2016). A Multi-Objective Evolutionary Algorithm based on Parallel Coordinates.. Poster session presented at the meeting of GECCO. ACM.
2016 Kenny, A., Li, X., Qin, A. K., & Ernst, A. T. (2016). A Population-based Local Search Technique with Random Descent and Jump for the Steiner Tree Problem in Graphs.. Poster session presented at the meeting of GECCO. ACM.
2016 Mihoc, T. D., Lung, R. I., Gaskó, N., & Suciu, M. (2016). Approximation of (k, t)-robust Equilibria.. Poster session presented at the meeting of GECCO. ACM.
2016 Roy, P. C., Islam, M. M., & Deb, K. (2016). Best Order Sort: A New Algorithm to Non-dominated Sorting for Evolutionary Multi-objective Optimization.. Poster session presented at the meeting of GECCO (Companion). ACM.
2016 Santos, V. L. A., Arroyo, J. E. C., & Carvalho, T. F. M. (2016). Iterated Local Search Based Heuristic for Scheduling Jobs on Unrelated Parallel Machines with Machine Deterioration Effect.. Poster session presented at the meeting of GECCO (Companion). ACM.
2016 Steenkiste, S. V., Koutník, J., Driessens, K., & Schmidhuber, J. (2016). A Wavelet-based Encoding for Neuroevolution.. Poster session presented at the meeting of GECCO. ACM.
2016 Bartoli, A., Lorenzo, A. D., Medvet, E., & Tarlao, F. (2016). On the Automatic Construction of Regular Expressions from Examples (GP vs. Humans 1-0).. Poster session presented at the meeting of GECCO (Companion). ACM.
2016 Bergé, P., Guiban, K. L., Rimmel, A., & Tomasik, J. (2016). Search Space Exploration and an Optimization Criterion for Hard Design Problems.. Poster session presented at the meeting of GECCO (Companion). ACM.
2016 Duarte, M., Gomes, J. C., Oliveira, S. M., & Christensen, A. L. (2016). EvoRBC: Evolutionary Repertoire-based Control for Robots with Arbitrary Locomotion Complexity.. Poster session presented at the meeting of GECCO. ACM.
2016 Ellefsen, K. O., Lepikson, H. A., & Albiez, J. C. (2016). Planning Inspection Paths through Evolutionary Multi-objective Optimization.. Poster session presented at the meeting of GECCO. ACM.
2016 Benítez, C. M. V., Parpinelli, R. S., & Lopes, H. S. (2016). An Ecologically-inspired Parallel Approach Applied to the Protein Structure Reconstruction from Contact Maps.. Poster session presented at the meeting of GECCO (Companion). ACM.
2016 Garbelini, J. C., Kashiwabara, A. Y., & Sanches, D. S. (2016). Discovery Motifs by Evolutionary Computation.. Poster session presented at the meeting of GECCO (Companion). ACM.
2016 Labidi, M. K., Diarrassouba, I., Mahjoub, A. R., & Omrane, A. (2016). A Parallel Hybrid Genetic Algorithm for the k-Edge-Connected Hop-Constrained Network Design Problem.. Poster session presented at the meeting of GECCO. ACM.
2016 Mariani, T., Guizzo, G., Vergilio, S. R., & Pozo, A. T. (2016). Grammatical Evolution for the Multi-Objective Integration and Test Order Problem.. Poster session presented at the meeting of GECCO. ACM.
2016 Martí, L., Tchango, A. F., Navarro, L., & Schoenauer, M. (2016). VorAIS: A Multi-Objective Voronoi Diagram-based Artificial Immune System.. Poster session presented at the meeting of GECCO (Companion). ACM.
2016 Medernach, D., Fitzgerald, J., Azad, R. M. A., & Ryan, C. (2016). A New Wave: A Dynamic Approach to Genetic Programming.. Poster session presented at the meeting of GECCO. ACM.
2016 Nielsen, S. S., Torres, C. F., Danoy, G., & Bouvry, P. (2016). Tackling the IFP Problem with the Preference-Based Genetic Algorithm.. Poster session presented at the meeting of GECCO. ACM.
2016 Pagán, J., Risco-Martín, J. L., Moya, J. M., & Ayala, J. L. (2016). Grammatical Evolutionary Techniques for Prompt Migraine Prediction.. Poster session presented at the meeting of GECCO. ACM.
2016 Perez-Carabaza, S., Besada-Portas, E., Orozco, J. A. L., & Cruz, J. M. D. L. (2016). A Real World Multi-UAV Evolutionary Planner for Minimum Time Target Detection.. Poster session presented at the meeting of GECCO. ACM.
2016 Rocha, G. K., Custódio, F. L., Barbosa, H. J., & Dardenne, L. E. (2016). Using Crowding-Distance in a Multiobjective Genetic Algorithm for Protein Structure Prediction.. Poster session presented at the meeting of GECCO (Companion). ACM.
2016 Smith, R. J., Zincir-Heywood, A. N., Heywood, M. I., & Jacobs, J. T. (2016). Initiating a Moving Target Network Defense with a Real-time Neuro-evolutionary Detector.. Poster session presented at the meeting of GECCO (Companion). ACM.
2016 Sosa-Ascencio, A., Terashima-Marín, H., Ortiz-Bayliss, J. C., & Conant-Pablos, S. E. (2016). Grammar-based Selection Hyper-heuristics for Solving Irregular Bin Packing Problems.. Poster session presented at the meeting of GECCO (Companion). ACM.
2016 Sotto, L. F. D. P., Coelho, R. C., & Melo, V. V. D. (2016). Classification of Cardiac Arrhythmia by Random Forests with Features Constructed by Kaizen Programming with Linear Genetic Programming.. Poster session presented at the meeting of GECCO. ACM.
2016 Suciu, M., Lung, R. I., & Gaskó, N. (2016). Game theory, Extremal optimization, and Community Structure Detection in Complex Networks.. Poster session presented at the meeting of GECCO. ACM.
2016 Tran, C. T., Zhang, M., Andreae, P., & Xue, B. (2016). Directly Constructing Multiple Features for Classification with Missing Data using Genetic Programming with Interval Functions.. Poster session presented at the meeting of GECCO (Companion). ACM.
2016 Khadka, S., Tumer, K., Colby, M. K., Tucker, D., Pezzini, P., & Bryden, K. M. (2016). Neuroevolution of a Hybrid Power Plant Simulator.. Poster session presented at the meeting of GECCO. ACM.
2016 Abdolmaleki, A., Lioutikov, R., Lau, N., Reis, L. P., Peters, J., & Neumann, G. (2016). Model-Based Relative Entropy Stochastic Search.. Poster session presented at the meeting of GECCO (Companion). ACM.
2016 Bevilacqua, V., Brunetti, A., Triggiani, M., Magaletti, D., Telegrafo, M., & Moschetta, M. (2016). An Optimized Feed-forward Artificial Neural Network Topology to Support Radiologists in Breast Lesions Classification.. Poster session presented at the meeting of GECCO (Companion). ACM.
2016 Tatsumi, T., Komine, T., Nakata, M., Sato, H., Kovacs, T., & Takadama, K. (2016). Variance-based Learning Classifier System without Convergence of Reward Estimation.. Poster session presented at the meeting of GECCO (Companion). ACM.
2016 Larsen, S. J., Alkærsig, F. G., Ditzel, H. J., Jurisica, I., Alcaraz, N., & Baumbach, J. (2016). A Simulated Annealing Algorithm for Maximum Common Edge Subgraph Detection in Biological Networks.. Poster session presented at the meeting of GECCO. ACM.
2016 Liu, X., Li, F., Ding, Y., Wang, L., & Hao, K. (2016). Mechanical Modeling with Particle Swarm Optimization Algorithm for Braided Bicomponent Ureteral Stent.. Poster session presented at the meeting of GECCO (Companion). ACM.
2016 Lynch, D., Fenton, M., Kucera, S., Claussen, H., & O'Neill, M. (2016). Evolutionary Learning of Scheduling Heuristics for Heterogeneous Wireless Communications Networks.. Poster session presented at the meeting of GECCO. ACM.
2016 Guervós, J. J. M., Castillo, P. A., García-Sánchez, P., Cuevas, P. D. L., & Valdez, M. G. (2016). NodIO: A Framework and Architecture for Pool-based Evolutionary Computation.. Poster session presented at the meeting of GECCO (Companion). ACM.
2016 Osaba, E., López-García, P., Masegosa, A. D., Onieva, E., Landaluce, H., & Perallos, A. (2016). TIMON Project: Description and Preliminary Tests for Traffic Prediction Using Evolutionary Techniques.. Poster session presented at the meeting of GECCO (Companion). ACM.
2016 Kordmahalleh, M. M., Sefidmazgi, M. G., & Homaifar, A. (2016). A Sparse Recurrent Neural Network for Trajectory Prediction of Atlantic Hurricanes.. Poster session presented at the meeting of GECCO. ACM.
2016 Sorrosal, G., Borges, C. E., Holeña, M., Macarulla, A. M., Andonegui, C. M., & Alonso-Vicario, A. (2016). Evolutionary Dynamic Optimization of Control Trajectories for the Catalytic Transformation of the Bioethanol-To-Olefins Process using Neural Networks.. Poster session presented at the meeting of GECCO (Companion). ACM.
2016 Ahrari, A., Lei, H., Sharif, M. A., Deb, K., & Tan, X. (2016). Optimum Design of Artificial Lateral Line Systems for Object Tracking under Uncertain Conditions.. Poster session presented at the meeting of GECCO (Companion). ACM.
2016 Scheibenpflug, A., Karder, J., Schaller, S., Wagner, S., & Affenzeller, M. (2016). Evolutionary Procedural 2D Map Generation using Novelty Search.. Poster session presented at the meeting of GECCO (Companion). ACM.
2016 Szubert, M., Kodali, A., Ganguly, S., Das, K., & Bongard, J. C. (2016). Reducing Antagonism between Behavioral Diversity and Fitness in Semantic Genetic Programming.. Poster session presented at the meeting of GECCO. ACM.
2016 Vallejo, M., Cosgrove, J., Alty, J. E., Smith, S. L., Corne, D. W., & Lones, M. A. (2016). Using Multiobjective Evolutionary Algorithms to Understand Parkinson's Disease.. Poster session presented at the meeting of GECCO (Companion). ACM.
2016 Auger, A., Brockhoff, D., Hansen, N., Tusar, D., Tusar, T., & Wagner, T. (2016). GECCO'16 Black-Box Optimization Benchmarking Workshop (BBOB-2016): Workshop Chairs' Welcome Message.. Poster session presented at the meeting of GECCO (Companion). ACM.
2016 Sanches, D. S., Jr, J. B. A. L., & Delbem, A. C. (2016). Multiobjective Discrete Differential Evolution for Service Restoration in Energy Distribution Systems.. Poster session presented at the meeting of GECCO (Companion). ACM.
2016 Badr, G., Hosny, M. I., Bintayyash, N., Albilali, E., & Marie-Sainte, S. L. (2016). BeamGA Median: A Hybrid Heuristic Search Framework.. Poster session presented at the meeting of GECCO (Companion). ACM.
2016 Butcher, S., Strasser, S., Hoole, J., Demeo, B., & Sheppard, J. W. (2016). Relaxing Consensus in Distributed Factored Evolutionary Algorithms.. Poster session presented at the meeting of GECCO. ACM.
2016 Cumbo, K. C., Heck, S., Tanimoto, I., DeVault, T., Heckendorn, R. B., & Soule, T. (2016). Bee-Inspired Landmark Recognition in Robotic Navigation.. Poster session presented at the meeting of GECCO (Companion). ACM.
2016 Derbel, B., Liefooghe, A., Zhang, Q., Aguirre, H. E., & Tanaka, K. (2016). Local Search Move Strategies within MOEA/D.. Poster session presented at the meeting of GECCO (Companion). ACM.
2016 Fernandez, S., Valledor, P., Díaz, D., Malatsetxebarria, E., & Iglesias, M. (2016). Criticality of Response Time in the usage of Metaheuristics in Industry.. Poster session presented at the meeting of GECCO (Companion). ACM.
2016 Salgado, R., Prieto, A., Bellas, F., Calvo-Varela, L., & Duro, R. J. (2016). Neuroevolutionary Motivational Engine for Autonomous Robots.. Poster session presented at the meeting of GECCO (Companion). ACM.
2016 Stolfi, D. H., Armas, R., Alba, E., Aguirre, H. E., & Tanaka, K. (2016). Fine Tuning of Traffic in our Cities with Smart Panels: The Quito City Case Study.. Poster session presented at the meeting of GECCO. ACM.
2016 Vallejo, M., Cosgrove, J., Alty, J. E., Jamieson, S., Smith, S. L., Corne, D. W., & Lones, M. A. (2016). A Multi-Objective Approach to Predicting Motor and Cognitive Deficit in Parkinson's Disease Patients.. Poster session presented at the meeting of GECCO (Companion). ACM.
2016 Vladar, H. P. D., Fedor, A., Szilágyi, A., Zachar, I., & Szathmáry, E. (2016). An Attractor Network-Based Model with Darwinian Dynamics.. Poster session presented at the meeting of GECCO (Companion). ACM.
2016 Wang, Y., Qian, Y., Li, Y., Gong, M., & Banzhaf, W. (2016). Artificial Multi-Bee-Colony Algorithm for k-Nearest-Neighbor Fields Search.. Poster session presented at the meeting of GECCO. ACM.
2016 Colby, M. K., Yliniemi, L. M., Pezzini, P., Tucker, D., Bryden, K. M., & Tumer, K. (2016). Multiobjective Neuroevolutionary Control for a Fuel Cell Turbine Hybrid Energy System.. Poster session presented at the meeting of GECCO. ACM.
2016 Paula, L. C. D., Soares, A. D. S., Lima, T. W. D., & Coelho, C. J. (2016). Feature Selection using Genetic Algorithm: An Analysis of the Bias-Property for One-Point Crossover.. Poster session presented at the meeting of GECCO (Companion). ACM.
2016 Khalifa, A., Liebana, D. P., Lucas, S. M., & Togelius, J. (2016). General Video Game Level Generation.. Poster session presented at the meeting of GECCO. ACM.
2016 Stefano, C. D., Fontanella, F., & Freca, A. S. D. (2016). A Novel GA-based Feature Selection Approach for High Dimensional Data.. Poster session presented at the meeting of GECCO (Companion). ACM.
2016 Liu, X. F., Zhan, Z. -H., Lin, J. -H., & Zhang, J. (2016). Parallel Differential Evolution Based on Distributed Cloud Computing Resources for Power Electronic Circuit Optimization.. Poster session presented at the meeting of GECCO (Companion). ACM.
2016 Duro, R. J., Becerra, J. A., Monroy, J., & Caamaño, P. (2016). Considering Memory Networks in the LTM Structure of the Multilevel Darwinist Brain.. Poster session presented at the meeting of GECCO (Companion). ACM.
2016 Volz, V., Rudolph, G., & Naujoks, B. (2016). Demonstrating the Feasibility of Automatic Game Balancing.. Poster session presented at the meeting of GECCO. ACM.
2016 Plachkov, A., Abielmona, R. S., Harb, M., Falcon, R., Inkpen, D., Groza, V., & Petriu, E. M. (2016). Automatic Course of Action Generation using Soft Data for Maritime Domain Awareness.. Poster session presented at the meeting of GECCO (Companion). ACM.
2016 Marmion, M. -E., Aguirre, H. E., Dhaenens, C., Jourdan, L., & Tanaka, K. (2016). Multi-objective Neutral Neighbors': What could be the definition(s)?. Poster session presented at the meeting of GECCO. ACM.
2016 Langdon, W. B., Vilella, A., Lam, B. Y. H., Petke, J., & Harman, M. (2016). Benchmarking Genetically Improved BarraCUDA on Epigenetic Methylation NGS datasets and nVidia GPUs.. Poster session presented at the meeting of GECCO (Companion). ACM.
2016 Auger, A., Brockhoff, D., Hansen, N., Tusar, D., Tusar, T., & Wagner, T. (2016). The Impact of Search Volume on the Performance of RANDOMSEARCH on the Bi-objective BBOB-2016 Test Suite.. Poster session presented at the meeting of GECCO (Companion). ACM.
2016 Auger, A., Brockhoff, D., Hansen, N., Tusar, D., Tusar, T., & Wagner, T. (2016). Benchmarking MATLAB's gamultiobj (NSGA-II) on the Bi-objective BBOB-2016 Test Suite.. Poster session presented at the meeting of GECCO (Companion). ACM.
2016 Spector, L., McPhee, N. F., Helmuth, T., Casale, M. M., & Oks, J. (2016). Evolution Evolves with Autoconstruction.. Poster session presented at the meeting of GECCO (Companion). ACM.
2016 Rahat, A. A. -A., Everson, R. M., Fieldsend, J. E., Jin, Y., & Wang, H. (2016). Surrogate-Assisted Evolutionary Optimisation (SAEOpt'16) Chairs' Welcome & Organization.. Poster session presented at the meeting of GECCO (Companion). ACM.
2016 Panichella, A., Alexandru, C. V., Panichella, S., Bacchelli, A., & Gall, H. C. (2016). A Search-based Training Algorithm for Cost-aware Defect Prediction.. Poster session presented at the meeting of GECCO. ACM.
2016 McPhee, N. F., Casale, M. M., Finzel, M., Helmuth, T., & Spector, L. (2016). Visualizing Genetic Programming Ancestries.. Poster session presented at the meeting of GECCO (Companion). ACM.
2016 Auger, A., Brockhoff, D., Hansen, N., Tusar, D., Tusar, T., & Wagner, T. (2016). Benchmarking RM-MEDA on the Bi-objective BBOB-2016 Test Suite.. Poster session presented at the meeting of GECCO (Companion). ACM.
2016 Auger, A., Brockhoff, D., Hansen, N., Tusar, D., Tusar, T., & Wagner, T. (2016). The Impact of Variation Operators on the Performance of SMS-EMOA on the Bi-objective BBOB-2016 Test Suite.. Poster session presented at the meeting of GECCO (Companion). ACM.
2016 Leclerc, G., Auerbach, J. E., Iacca, G., & Floreano, D. (2016). The Seamless Peer and Cloud Evolution Framework.. Poster session presented at the meeting of GECCO. ACM.
2016 Auger, A., Brockhoff, D., Hansen, N., Tusar, D., Tusar, T., & Wagner, T. (2016). Benchmarking the Pure Random Search on the Bi-objective BBOB-2016 Testbed.. Poster session presented at the meeting of GECCO (Companion). ACM.
2012 Neumann, F., & Witt, C. (2012). Bioinspired computation in combinatorial optimization: algorithms and their computational complexity. Poster session presented at the meeting of GECCO'12 - Proceedings of the 14th International Conference on Genetic and Evolutionary Computation. Philadelphia, U.S.A.: ACM.
DOI Scopus12 WoS9
2011 Friedrich, T., & Neumann, F. (2011). Foundations of evolutionary multi-objective optimization. Poster session presented at the meeting of Genetic and Evolutionary Computation Conference, GECCO'11 - Companion Publication. Dublin, Ireland: ACM.
DOI
2011 Jansen, T., & Neumann, F. (2011). Computational complexity and evolutionary computation. Poster session presented at the meeting of Genetic and Evolutionary Computation Conference, GECCO'11 - Companion Publication. Dublin, Ireland: ACM.
DOI

Year Citation
2017 Hoeltgen, L., Mainberger, M., Hoffmann, S., Weickert, J., Tang, C. H., Setzer, S., . . . Doerr, B. (2017). Optimizing spatial and tonal data for PDE-based inpainting.
Scopus13
2016 Pourhassan, M., Shi, F., & Neumann, F. (2016). Parameterized analysis of multi-objective evolutionary algorithms and the weighted vertex cover problem. SPRINGER INTERNATIONAL PUBLISHING AG.
DOI Scopus12 WoS8
2014 Polyakovskiy, S., Berghammer, R., & Neumann, F. (2014). Solving Hard Control Problems in Voting Systems via Integer Programming..
2013 Friedrich, T., Neumann, F., & Thyssen, C. (2013). Multiplicative Approximations, Optimal Hypervolume Distributions, and the Choice of the Reference Point..
2012 Doerr, B., Johannsen, D., Kötzing, T., Neumann, F., & Theile, M. (2012). More Effective Crossover Operators for the All-Pairs Shortest Path Problem.
2011 Wagner, M., & Neumann, F. (2011). Computational Complexity Results for Genetic Programming and the Sorting Problem.

Year Citation
2019 Xie, Y., Harper, O., Assimi, H., Neumann, A., & Neumann, F. (2019). Evolutionary algorithms for the chance-constrained knapsack problem.. ACM.
2019 Neumann, A., Neumann, F., & Friedrich, T. (2019). Quasi-random Image Transition and Animation..
2017 Neumann, A., Neumann, F., & Friedrich, T. (2017). Quasi-random Agents for Image Transition and Animation..
2016 Neumann, A., Alexander, B., & Neumann, F. (2016). Evolutionary Image Transition Based on Theoretical Insights of Random Processes..

Year Citation
2025 Pan, S., Patel, Y. J., Neumann, A., Neumann, F., Bäck, T., & Wang, H. (2025). Evolving Hard Maximum Cut Instances for Quantum Approximate Optimization
Algorithms.
2024 Santoni, M. L., Raponi, E., Neumann, A., Neumann, F., Preuss, M., & Doerr, C. (2024). Illuminating the Diversity-Fitness Trade-Off in Black-Box Optimization.
2024 Antipov, D., Neumann, A., Neumann, F., & Sutton, A. M. (2024). Runtime Analysis of Evolutionary Diversity Optimization on the Multi-objective (LeadingOnes, TrailingZeros) Problem..
2024 Yan, X., Neumann, A., & Neumann, F. (2024). Sampling-based Pareto Optimization for Chance-constrained Monotone Submodular Problems..
2024 Doerr, B., Knowles, J., Neumann, A., & Neumann, F. (2024). A Block-Coordinate Descent EMO Algorithm: Theoretical and Empirical
Analysis.
2024 Yan, X., Neumann, A., & Neumann, F. (2024). Sliding Window Bi-Objective Evolutionary Algorithms for Optimizing Chance-Constrained Monotone Submodular Functions..
2024 Neumann, F., & Rudolph, G. (2024). Archive-based Single-Objective Evolutionary Algorithms for Submodular Optimization..
2024 Opris, A., Dang, D. -C., Neumann, F., & Sudholt, D. (2024). Runtime Analyses of NSGA-III on Many-Objective Problems..
2024 Neumann, F., & Witt, C. (2024). Sliding Window 3-Objective Pareto Optimization for Problems with Chance Constraints..
2024 Do, A. V., Guo, M., Neumann, A., & Neumann, F. (2024). Evolutionary Multi-Objective Diversity Optimization..
2024 Pathiranage, I. H., Neumann, F., Antipov, D., & Neumann, A. (2024). Using 3-Objective Evolutionary Algorithms for the Dynamic Chance Constrained Knapsack Problem..
2024 Antipov, D., Neumann, A., & Neumann, F. (2024). Local Optima in Diversity Optimization: Non-trivial Offspring Population is Essential..
2024 Ahouei, S. S., Nobel, J. D., Neumann, A., Bäck, T., & Neumann, F. (2024). Evolving Reliable Differentiating Constraints for the Chance-constrained
Maximum Coverage Problem.
2024 Harder, J. G., Neumann, A., & Neumann, F. (2024). Analysis of Evolutionary Diversity Optimisation for the Maximum Matching Problem..
2023 Guo, M., Li, J., Neumann, A., Neumann, F., & Nguyen, H. (2023). Limited Query Graph Connectivity Test.
2023 Friedrich, T., Kötzing, T., Neumann, A., Neumann, F., & Radhakrishnan, A. (2023). Analysis of the (1+1) EA on LeadingOnes with Constraints..
2023 Ye, F., Neumann, F., Nobel, J. D., Neumann, A., & Bäck, T. (2023). Towards Self-adaptive Mutation in Evolutionary Multi-Objective
Algorithms.
2023 Ghasemi, Z., Neshat, M., Aldrich, C., Karageorgos, J., Zanin, M., Neumann, F., & Chen, L. (2023). A Hybrid Intelligent Framework for Maximising SAG Mill Throughput: An Integration of Expert Knowledge, Machine Learning and Evolutionary Algorithms for Parameter Optimisation..
2023 Antipov, D., Neumann, A., & Neumann, F. (2023). Rigorous Runtime Analysis of Diversity Optimization with GSEMO on OneMinMax..
2023 Yan, X., Do, A. V., Shi, F., Qin, X., & Neumann, F. (2023). Optimizing Chance-Constrained Submodular Problems with Variable Uncertainties..
2023 Goel, D., Neumann, A., Neumann, F., Nguyen, H., & Guo, M. (2023). Evolving Reinforcement Learning Environment to Minimize Learner's Achievable Reward: An Application on Hardening Active Directory Systems..
2023 Guo, M., Li, J., Neumann, A., Neumann, F., & Nguyen, H. (2023). Limited Query Graph Connectivity Test..
2023 Do, A. V., Neumann, A., Neumann, F., & Sutton, A. M. (2023). Rigorous Runtime Analysis of MOEA/D for Solving Multi-Objective Minimum Weight Base Problems..
2023 Do, A. V., Guo, M., Neumann, A., & Neumann, F. (2023). Diverse Approximations for Monotone Submodular Maximization Problems with a Matroid Constraint..
2023 Zoltai, G., Xie, Y., & Neumann, F. (2023). A Study of Fitness Gains in Evolving Finite State Machines..
2023 Neumann, F., Neumann, A., Qian, C., Do, A. V., Nobel, J. D., Vermetten, D., . . . Bäck, T. (2023). Benchmarking Algorithms for Submodular Optimization Problems Using IOHProfiler..
2022 Guo, M., Ward, M., Neumann, A., Neumann, F., & Nguyen, H. (2022). Scalable Edge Blocking Algorithms for Defending Active Directory Style Attack Graphs..
2022 Shi, F., Yan, X., & Neumann, F. (2022). Runtime Performance of Evolutionary Algorithms for the Chance-constrained Makespan Scheduling Problem..
  • NHMRC Ideas Grant "Optimising time use for health and wellbeing", National Health and Medical Research Council, 2020-2023 (led by Dorothea Dumuid at the University of South Australia, several investigators).
  • ARC Discovery Project "Evolutionary diversity optimisation", Australian Research Council, 2019-2021 (with Tobias Friedrich).
  • Humboldt Fellowship for Experienced Researchers, Alexander von Humboldt Foundation, 2019-2021.
  • ARC Industrial Transformation Training Centre for Integrated Operations for Complex Resources, Australian Research Council, 2019-2023 (several chief investigators and industry partners).
  • Project "Detection and classification of malicious virtual grassroots influence campaigns in social media", Australia-Germany Joint Research Co-operation Scheme, 2020-2021 (with Lewis Mitchell, Christian Grimme, Mewish Nasim, Derek Weber, Dennis Assenmacher, Lena Adam, Heike Trautmann).
  • Research Consortium – Unlocking Complex Resources through Lean Processing, Research Consortia Program, State Government of South Australia, 2017-2021 (several chief investigators and industry partners).
  • ARC Discovery Project "Bio-inspired Computing for Problems with Dynamically Changing Constraints", Australian Research Council, 2016-2018 (with Zbigniew Michalewicz, Tobias Friedrich, Marc Schoenauer)
  • Project "Modelling and optimisation of submerged buoys for improved ocean wave energy production", Interdisciplinary Research Fund, The University of Adelaide, 2015 (with Markus Wagner, Boyin Ding, Benjamin Cazzolato, Maziar Arjomandi).
  • ARC Discovery Project "Parameterised analysis of bio-inspired computing - from theory to high performing algorithms", Australian Research Council, 2014-2016 (with Tobias Friedrich)
  • ARC Discovery Project "Advanced planning systems for vertically integrated supply chain management", Australian Research Council, 2013-2015 (with Zbigniew Michalewicz and Adam Ghandar)
  • Project "Exploring the evolutionary diversity of Australia's marine snakes to develop a bio-mimetic sea snake robot", Interdisciplinary Research Fund, The University of Adelaide, 2013-2014 (with Lei Chen, Kate Sanders, Amy Watson, Gustavo Carneiro, Brett Goodman, Marc Jones)
  • Evolutionary Computation, semester 2, 2018
  • Grand Challenges in Computer Science, semester 2, 2017
  • Evolutionary Computation, semester 1, 2017
  • Mining Big Data, semester 1, 2017.
  • Evolutionary Computation, semester 2, 2016
  • Mining Big Data, semester 1, 2015.
  • Mining Big Data, semester 1, 2014.
  • Evolutionary Computation, semester 2, 2013.
  • Advanced Algorithms, semester 1, 2013.
  • Evolutionary Computation, semester 2, 2012.
  • Algorithm and Data Structure Analysis, semester 1, 2012.
  • Evolutionary Computation, semester 2, 2011.
  • Data Structures and Algorithms, semester 2, 2011.
  • Data Structures and Algorithms, semester 1, 2011.
  • Algorithms and Data Structures, winter semester, 2009/2010. (Saarland University, Germany)

Date Role Research Topic Program Degree Type Student Load Student Name
2025 Principal Supervisor Optimizing Multiple Travelling Thieves Problem (MTTP) for Perishable Items under Chance Deadlines Constraint using Metaheuristic Algorithms Doctor of Philosophy Doctorate Full Time Helen Angmalisang
2025 Principal Supervisor Optimizing Multiple Travelling Thieves Problem (MTTP) for Perishable Items under Chance Deadlines Constraint using Metaheuristic Algorithms Doctor of Philosophy Doctorate Full Time Helen Yuliana Angmalisang
2024 Co-Supervisor Leveraging Machine Learning Agents for Military Application Doctor of Philosophy Doctorate Full Time Mr Josh Dylan Francis
2024 Principal Supervisor Multitasking evolutionary algorithms for combinatorial optimisation Doctor of Philosophy Doctorate Full Time Mr Liam Joshua Daly Wigney
2024 Co-Supervisor Realisation of Deep Learning Algorithms and Computer Vision on Quantum Computers Doctor of Philosophy Doctorate Full Time Ms Fengyi Yang
2024 Co-Supervisor Leveraging Machine Learning Agents for Military Application Doctor of Philosophy Doctorate Full Time Mr Josh Dylan Francis
2024 Co-Supervisor Realisation of Deep Learning Algorithms and Computer Vision on Quantum Computers Doctor of Philosophy Doctorate Full Time Ms Fengyi Yang
2024 Principal Supervisor Multitasking evolutionary algorithms for combinatorial optimisation Doctor of Philosophy Doctorate Full Time Mr Liam Joshua Daly Wigney
2022 Principal Supervisor Evolutionary Algorithms for Solving Chance Constrained Combinatorial Optimization Problems Doctor of Philosophy Doctorate Full Time Miss Saba Sadeghi Ahouei
2022 Co-Supervisor Bio-inspired Computing for Problems with Chance Constraints Doctor of Philosophy Doctorate Full Time Mrs Kokila Perera
2022 Principal Supervisor Bio-inspired algorithms for stochastic multi-component problems Doctor of Philosophy Doctorate Full Time Mr Thilina Pathirage Don
2022 Co-Supervisor Bio-inspired Computing for Problems with Chance Constraints Doctor of Philosophy Doctorate Full Time Mrs Kokila Perera
2022 Principal Supervisor Evolutionary Algorithms for Solving Chance Constrained Combinatorial Optimization Problems Doctor of Philosophy Doctorate Full Time Miss Saba Sadeghi Ahouei
2022 Principal Supervisor Bio-inspired algorithms for stochastic multi-component problems Doctor of Philosophy Doctorate Full Time Mr Thilina Pathirage Don
2021 Co-Supervisor Maximising throughput through intelligent online sensing and health monitoring Doctor of Philosophy Doctorate Part Time Mr Zeqi Li
2021 Principal Supervisor Is complexity an evolutionary response to selection change? Master of Philosophy Master Part Time Mr Gabor Zoltai
2021 Principal Supervisor Is complexity an evolutionary response to selection change? Master of Philosophy Master Full Time Mr Gabor Zoltai
2021 Co-Supervisor Maximising throughput through intelligent online sensing and health monitoring Doctor of Philosophy Doctorate Full Time Mr Zeqi Li

Date Role Research Topic Program Degree Type Student Load Student Name
2023 - 2025 Co-Supervisor Maximising mill throughput using machine learning techniques and evolutionary algorithms Doctor of Philosophy Doctorate Full Time Mrs Zahra Ghasemi
2022 - 2025 Principal Supervisor Theoretical and Experimental Analysis of Search Heuristics for Problems with Chance Constraints Doctor of Philosophy Doctorate Full Time Mr Xiankun Yan
2021 - 2025 Co-Supervisor Rapid Updating of Resource Knowledge with Sensor Information Including Structures Doctor of Philosophy Doctorate Full Time Mr Sultan Abulkhair
2020 - 2023 Principal Supervisor Evolutionary Diversity Optimisation for Combinatorial Problems Doctor of Philosophy Doctorate Full Time Mr Adel Nikfarjam
2020 - 2024 Principal Supervisor Analysis of Search Heuristics for Diverse Solutions to Combinatorial Problems Doctor of Philosophy Doctorate Full Time Mr Viet Anh Do
2019 - 2023 Co-Supervisor Mathematical Optimisation for Vision-based Problems in Space Domain
Awareness
Doctor of Philosophy Doctorate Full Time Mr Chee Kheng Chng
2018 - 2021 Principal Supervisor Bio-Inspired Computing for Chance-Constrained Combinatorial Optimisation Problems Doctor of Philosophy Doctorate Full Time Miss Yue Xie
2018 - 2023 Principal Supervisor Application of Bio-inspired Algorithms to Selected Real-World Problems Doctor of Philosophy Doctorate Part Time Dr Hirad Assimi
2017 - 2020 Principal Supervisor Bio-Inspired Computing for Complex and Dynamic Constrained Problems Doctor of Philosophy Doctorate Full Time Mr Vahid Roostapour
2017 - 2020 Principal Supervisor Differential Evolution for Dynamic Constrained Continuous Optimisation Doctor of Philosophy Doctorate Full Time Mrs Maryam Hasani Shoreh
2017 - 2022 Principal Supervisor Towards Exposing Coordinating Inauthentic Groups on Social Media Doctor of Philosophy Doctorate Part Time Mr Derek Christopher Weber
2015 - 2017 Principal Supervisor Ambulatory Monitoring using Passive RFID Technology Doctor of Philosophy Doctorate Full Time Mr Asanga Wickramasinghe
2015 - 2018 Principal Supervisor Exact and Heuristic Approaches for Multi-component Optimisation Problems Doctor of Philosophy Doctorate Full Time Mr Junhua Wu
2013 - 2016 Principal Supervisor Diversity Optimization and Parameterized Analysis of Heuristic Search Methods for Combinatorial Optimization Problems Doctor of Philosophy Doctorate Full Time Dr Wanru Gao
2013 - 2017 Principal Supervisor Parameterised Complexity Analysis of Evolutionary Algorithms for Combinatorial Optimization Problems Doctor of Philosophy Doctorate Full Time Dr Mojgan Pourhassan
2012 - 2015 Principal Supervisor Parameterized Analysis of Bio-inspired Computation and the Traveling Salesperson Problem Doctor of Philosophy Doctorate Full Time Mrs Samadhi Nethmini Nallaperuma
2012 - 2016 Principal Supervisor Feature-Based Selection of Bio-Inspired Algorithms for Constrained Continuous Optimisation Doctor of Philosophy Doctorate Full Time Mr Shayan Poursoltan
2011 - 2015 Co-Supervisor Particle swarm optimization: Theoretical analysis, Modifications, and Applications to Constrained Optimization Problems Doctor of Philosophy Doctorate Full Time Mr Mohammadreza Bonyadi
2011 - 2013 Principal Supervisor Theory and Applications of Bio-Inspired Algorithms Doctor of Philosophy Doctorate Full Time APrf Markus Wagner

Date Role Committee Institution Country
2016 - 2016 Chair General Chair Genetic and Evolutionary Computation Conference 2016 - United States
2013 - 2013 Co-Chair Chair Foundations of Genetic Algorithms 2013 - Australia

Date Institution Department Organisation Type Country
2018 - ongoing Daitum - Business and professional Australia
2015 - ongoing Complexica - Business and professional Australia
2015 - ongoing Optimatics - Business and professional Australia
2014 - 2016 Project SAGE Speed of Adaptation in Population Genetics and Evolutionary Computation - Scientific research United Kingdom

Date Role Editorial Board Name Institution Country
2017 - ongoing Associate Editor IEEE Transactions on Evolutionary Computation - -
2014 - ongoing Associate Editor Evolutionary Computation - -