Professor Frank Neumann
ARC Externally-Funded Research Fellow (E)
School of Computer and Mathematical Sciences
Faculty of Sciences, Engineering and Technology
Eligible to supervise Masters and PhD - email supervisor to discuss availability.
Frank Neumann is a professor and the leader of the Optimisation and Logistics group at the University of Adelaide. His current position is funded by the Australian Research Council through a Future Fellowship and focuses on AI-based optimisation methods for problems with stochastic constraints. Frank has been the general chair of the ACM GECCO 2016 and co-organised ACM FOGA 2013 in Adelaide. He is an Area Editor of the journal "ACM Transactions on Evolutionary Learning and Optimization" and an Associate Editor of the journal "Evolutionary Computation" (MIT Press). In his work, he considers algorithmic approaches in particular for combinatorial and multi-objective optimization problems and focuses on theoretical aspects of evolutionary computation as well as high impact applications in the areas of cybersecurity, renewable energy, logistics, and mining.
- My Research
- Career
- Publications
- Grants and Funding
- Teaching
- Supervision
- Professional Activities
- Contact
- artificial intelligence
- bio-inspired computing
- cybersecurity
- machine learning
- optimization
- renewable energy
- supply chain management
-
Appointments
Date Position Institution name 2016 - ongoing Professor The University of Adelaide 2015 - 2016 Associate Dean (Research) The University of Adelaide 2013 - 2015 Associate Professor The University of Adelaide 2011 - 2012 Senior Lecturer The University of Adelaide 2008 - 2010 Coordinator of the group "Bio-Inspired Computation” Max Planck Institute for Informatics (MPG) 2006 - 2008 Postdoctoral Researcher Max Planck Institute for Informatics (MPG) 2002 - 2006 Research Assistant Kiel University -
Education
Date Institution name Country Title 2006 Kiel University Germany PhD 2002 Kiel University Germany Diplom
-
Journals
Year Citation 2024 Neumann, F., & Witt, C. (2024). Runtime Analysis of Single- and Multi-Objective Evolutionary Algorithms for Chance Constrained Optimization Problems with Normally Distributed Random Variables.. Evolutionary computation, abs/2109.05799, 1-22.
2024 Nikfarjam, A., Neumann, A., & Neumann, F. (2024). On the Use of Quality Diversity Algorithms for the Travelling Thief Problem. ACM Transactions on Evolutionary Learning and Optimization, 4(2), 1-22.
2024 Neumann, F., & Sutton, A. M. (2024). Editor's Note: Special Issue with GECCO 2021. ALGORITHMICA, 86(6), 1 page.
2024 Ghasemi, Z., Neshat, M., Aldrich, C., Karageorgos, J., Zanin, M., Neumann, F., & Chen, L. (2024). An integrated intelligent framework for maximising SAG mill throughput: Incorporating expert knowledge, machine learning and evolutionary algorithms for parameter optimisation. Minerals Engineering, 212, 108733-1-108733-16.
Scopus32024 Yan, X., Neumann, A., & Neumann, F. (2024). Sampling-based Pareto Optimization for Chance-constrained Monotone Submodular Problems. GECCO 2024 - Proceedings of the 2024 Genetic and Evolutionary Computation Conference, abs/2404.11907, 621-629.
Scopus72024 Antipov, D., Neumann, A., Neumann, F., & Sutton, A. M. (2024). Runtime Analysis of Evolutionary Diversity Optimization on a Tri-Objective Version of the (LeadingOnes, TrailingZeros) Problem. Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 15150 LNCS, 19-35.
2024 Doerr, B., Knowles, J., Neumann, A., & Neumann, F. (2024). A Block-Coordinate Descent EMO Algorithm: Theoretical and Empirical Analysis.. CoRR, abs/2404.03838, 493-501.
2024 Opris, A., Dang, D. -C., Neumann, F., & Sudholt, D. (2024). Runtime Analyses of NSGA-III on Many-Objective Problems.. CoRR, abs/2404.11433, 1596-1604.
Scopus72024 Harder, J. G., Neumann, A., & Neumann, F. (2024). Analysis of Evolutionary Diversity Optimisation for the Maximum Matching Problem.. CoRR, abs/2404.11784. 2024 Hewa Pathiranage, I., Neumann, F., Antipov, D., & Neumann, A. (2024). Using 3-Objective Evolutionary Algorithms for the Dynamic Chance Constrained Knapsack Problem. GECCO 2024 - Proceedings of the 2024 Genetic and Evolutionary Computation Conference, abs/2404.06014, 520-528.
Scopus82024 Ghasemi, Z., Neumann, F., Zanin, M., Karageorgos, J., & Chen, L. (2024). A comparative study of prediction methods for semi-autogenous grinding mill throughput. Minerals Engineering, 205, 108458-1-108458-14.
Scopus42024 Do, A. V., Guo, M., Neumann, A., & Neumann, F. (2024). Evolutionary Multi-objective Diversity Optimization. Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 15151 LNCS, 117-134.
2024 Neumann, F., & Rudolph, G. (2024). Archive-Based Single-Objective Evolutionary Algorithms for Submodular Optimization. Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 15150 LNCS, 166-180.
2024 Neumann, F., & Witt, C. (2024). Sliding Window 3-Objective Pareto Optimization for Problems with Chance Constraints. Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 15150 LNCS, 36-52.
2024 Nikfarjam, A., Neumann, A., & Neumann, F. (2024). On the Use of Quality Diversity Algorithms for the Travelling Thief Problem.. ACM Trans. Evol. Learn. Optim., 4, 12. 2024 Martin, L. J., Whitmore, J. B., Shen, R. R., & Neumann, F. (2024). T-cell malignancies with anti-CD19 chimeric antigen receptor T-cell therapy. BLOOD ADVANCES, 8(15), 4144-4148.
2024 van Meerten, T., Kuruvilla, J., Song, K. W., Thieblemont, C., Minnema, M. C., Forcade, E., . . . Topp, M. S. (2024). Original Impact of debulking therapy on the clinical outcomes of axicabtagene ciloleucel in the treatment of relapsed or refractory large B-cell lymphoma. AMERICAN JOURNAL OF CANCER RESEARCH, 14(6), 25 pages.
2024 Elbert, M., Neumann, F., Kiefer, M., Christofyllakis, K., Balensiefer, B., Kos, I., . . . Bewarder, M. (2024). Hyper-N-glycosylated SEL1L3 as auto-antigenic B-cell receptor target of primary vitreoretinal lymphomas. SCIENTIFIC REPORTS, 14(1), 13 pages.
2024 Santoni, M. L., Raponi, E., Neumann, A., Neumann, F., Preuss, M., & Doerr, C. (2024). Illuminating the Diversity-Fitness Trade-Off in Black-Box Optimization.. CoRR, abs/2408.16393. 2024 Antipov, D., Neumann, A., & Neumann, F. (2024). Local Optima in Diversity Optimization: Non-trivial Offspring Population is Essential. Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 15150 LNCS, 181-196.
2024 Yan, X., Neumann, A., & Neumann, F. (2024). Sliding Window Bi-objective Evolutionary Algorithms for Optimizing Chance-Constrained Monotone Submodular Functions. Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 15148 LNCS, 20-35.
2023 Kiefer, M., Thurner, L., Bock, T., Cetin, O., Kos, I., Lesan, V., . . . Bewarder, M. (2023). Ars2-containing bispecific, Fab- and IgG1-format BAR-bodies to target DLBCL cells. EJHAEM, 4(1), 125-134.
2023 Jain, M. D., Miklos, D. B., Jacobson, C. A., Timmerman, J. M., Sun, J., Nater, J., . . . Reshef, R. (2023). Axicabtagene Ciloleucel in Combination with the 4-1BB Agonist Utomilumab in Patients with Relapsed/Refractory Large B-Cell Lymphoma: Phase 1 Results from ZUMA-11. CLINICAL CANCER RESEARCH, 29(20), 4118-4127.
2023 Thurner, L., Fadle, N., Regitz, E., Roth, S., Cetin, O., Kos, I. A., . . . Hartmann, S. (2023). B-cell receptor reactivity against<i> Rothia</i><i> mucilaginosa</i> in nodular lymphocyte-predominant Hodgkin lymphoma. HAEMATOLOGICA, 108(12), 3347-3358.
2023 Balu, D., Valencia-Olvera, A. C., Nguyen, A., Patnam, M., York, J., Peri, F., . . . Tai, L. M. (2023). A small-molecule TLR4 antagonist reduced neuroinflammation in female E4FAD mice. ALZHEIMERS RESEARCH & THERAPY, 15(1), 15 pages.
2023 Ye, F., Neumann, F., Nobel, J. D., Neumann, A., & Bäck, T. (2023). What Performance Indicators to Use for Self-Adaptation in Multi-Objective Evolutionary Algorithms.. CoRR, abs/2303.04611. 2023 Guo, M., Ward, M., Neumann, A., Neumann, F., & Hung, N. (2023). Scalable Edge Blocking Algorithms for Defending Active Directory Style Attack Graphs. THIRTY-SEVENTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, VOL 37 NO 5, abs/2212.04326, 5649-5656. 2023 Stimson, M., Reid, W., Neumann, A., Ratcliffe, S., & Neumann, F. (2023). Improving Confidence in Evolutionary Mine Scheduling via Uncertainty Discounting. 2023 IEEE Congress on Evolutionary Computation, CEC 2023, abs/2305.17957, 1-10.
Scopus32023 Guo, M., Ward, M., Neumann, A., Neumann, F., & Nguyen, H. (2023). Scalable Edge Blocking Algorithms for Defending Active Directory Style Attack Graphs. Proceedings of the 37th AAAI Conference on Artificial Intelligence, AAAI 2023, 37(5), 5649-5656.
Scopus112023 Neumann, F., Neumann, A., Qian, C., Do, A. V., Nobel, J. D., Vermetten, D., . . . Bäck, T. (2023). Benchmarking Algorithms for Submodular Optimization Problems Using IOHProfiler.. CEC, 1-9. 2023 Perera, K., Neumann, A., & Neumann, F. (2023). Evolutionary Multi-Objective Algorithms for the Knapsack Problems with Stochastic Profits.. CoRR, abs/2303.01695. 2022 Dumuid, D., Olds, T., Wake, M., Lund Rasmussen, C., Pedišić, Ž., Hughes, J. H., . . . Stanford, T. (2022). Your best day: An interactive app to translate how time reallocations within a 24-hour day are associated with health measures. PLoS One, 17(9), e0272343-1-e0272343-16.
Scopus6 WoS2 Europe PMC52022 Roostapour, V., Neumann, A., Neumann, F., & Friedrich, T. (2022). Pareto optimization for subset selection with dynamic cost constraints. Artificial Intelligence, 302, 103597-1-103597-17.
Scopus35 WoS22022 Roostapour, V., Neumann, A., & Neumann, F. (2022). Single- and multi-objective evolutionary algorithms for the knapsack problem with dynamically changing constraints. Theoretical Computer Science, 924, 129-147.
Scopus8 WoS22022 Roostapour, V., Neumann, A., Neumann, F., & Friedrich, T. (2022). Pareto optimization for subset selection with dynamic cost constraints.. Artif. Intell., 302, 103597. 2022 Bossek, J., & Neumann, F. (2022). Exploring the Feature Space of TSP Instances Using Quality Diversity.. CoRR, abs/2202.02077. 2022 Do, A. V., Guo, M., Neumann, A., & Neumann, F. (2022). Niching-based Evolutionary Diversity Optimization for the Traveling Salesperson Problem.. CoRR, abs/2201.10316. 2022 Friedrich, T., Kötzing, T., Neumann, F., & Radhakrishnan, A. (2022). Theoretical Study of Optimizing Rugged Landscapes with the cGA.. CoRR, abs/2211.13801. 2022 Roostapour, V., Neumann, A., & Neumann, F. (2022). Single- and multi-objective evolutionary algorithms for the knapsack problem with dynamically changing constraints.. Theor. Comput. Sci., 924, 129-147. 2022 Do, A. V., Guo, M., Neumann, A., & Neumann, F. (2022). Analysis of Evolutionary Diversity Optimization for Permutation Problems.. ACM Trans. Evol. Learn. Optim., 2, 11:1. 2022 Lengler, J., & Neumann, F. (2022). Editorial.. Algorithmica, 84, 1571-1572. 2021 Shi, F., Neumann, F., & Wang, J. (2021). Time Complexity Analysis of Evolutionary Algorithms for 2-Hop (1, 2)-Minimum Spanning Tree Problem.. CoRR, abs/2110.04701. 2021 Assimi, H., Koch, B., Garcia, C., Wagner, M., & Neumann, F. (2021). Run-of-Mine Stockyard Recovery Scheduling and Optimisation for Multiple Reclaimers.. CoRR, abs/2112.12294. 2021 Lesan, V., Bewarder, M., Metz, C., Becker, A., Mang, S., Regitz, E., . . . Rixecker, T. (2021). Killer immunoglobulin-like receptor 2DS5 is associated with recovery from coronavirus disease 2019. INTENSIVE CARE MEDICINE EXPERIMENTAL, 9(1), 10 pages.
WoS42021 Palmer, C., Facchini, F. A., Jones, R. P. O., Neumann, F., Peri, F., & Pirianov, G. (2021). Synthetic glycolipid-based TLR4 antagonists negatively regulate TRIF-dependent TLR4 signalling in human macrophages. INNATE IMMUNITY, 27(3), 275-284.
WoS32021 Doerr, B., & Neumann, F. (2021). A Survey on Recent Progress in the Theory of Evolutionary Algorithms for Discrete Optimization.. ACM Trans. Evol. Learn. Optim., 1, 16:1. 2021 Assimi, H., Neumann, F., Wagner, M., & Li, X. (2021). Novelty-Driven Binary Particle Swarm Optimisation for Truss Optimisation Problems.. CoRR, abs/2112.07875. 2021 Bossek, J., Neumann, F., Peng, P., & Sudholt, D. (2021). Time Complexity Analysis of Randomized Search Heuristics for the Dynamic Graph Coloring Problem.. Algorithmica, 83, 3148-3179. 2021 Neumann, F., Pourhassan, M., & Witt, C. (2021). Improved Runtime Results for Simple Randomised Search Heuristics on Linear Functions with a Uniform Constraint.. Algorithmica, 83, 3209-3237. 2021 Neumann, F., Pourhassan, M., & Witt, C. (2021). Improved runtime results for simple randomised search heuristics on linear functions with a uniform constraint. Algorithmica, 83(10), 3209-3237.
Scopus3 WoS62021 Doerr, B., & Neumann, F. (2021). A Survey on Recent Progress in the Theory of Evolutionary Algorithms for Discrete Optimization. ACM Transactions on Evolutionary Learning and Optimization, 1(4), 16-1-16-43.
Scopus212021 Guo, M., Li, J., Neumann, A., Neumann, F., & Nguyen, H. (2021). Practical Fixed-Parameter Algorithms for Defending Active Directory Style Attack Graphs.. CoRR, abs/2112.13175. 2021 Neumann, A., Alexander, B., & Neumann, F. (2021). Evolutionary Image Transition and Painting Using Random Walks. Evolutionary Computation, 28(4), 643-675.
2021 Shi, F., Neumann, F., & Wang, J. (2021). Time complexity analysis of evolutionary algorithms for 2-hop (1,2)-minimum spanning tree problem. Theoretical Computer Science, 893, 159-175.
Scopus3 WoS12021 Weber, D., & Neumann, F. (2021). Amplifying influence through coordinated behaviour in social networks. Social Network Analysis and Mining, 11(1), 1-42.
Scopus30 Europe PMC62021 Assenmacher, D., Weber, D., Preuss, M., Calero Valdez, A., Bradshaw, A., Ross, B., . . . Grimme, C. (2021). Benchmarking Crisis in Social Media Analytics: A Solution for the Data-Sharing Problem. Social Science Computer Review, 40(6), 089443932110122.
Scopus13 WoS72021 Bossek, J., Neumann, F., Peng, P., & Sudholt, D. (2021). Time complexity analysis of randomized search heuristics for the dynamic graph coloring problem. Algorithmica, 83(10), 3148-3179.
Scopus4 WoS22021 Weber, D., & Neumann, F. (2021). A General Method to Find Highly Coordinating Communities in Social Media through Inferred Interaction Links.. CoRR, abs/2103.03409(1), 42 pages.
WoS92021 Shi, F., Neumann, F., & Wang, J. (2021). Runtime Performances of Randomized Search Heuristics for the Dynamic Weighted Vertex Cover Problem. Algorithmica: an international journal in computer science, 83, 906-939.
2020 Neumann, A., Alexander, B., & Neumann, F. (2020). Evolutionary Image Transition and Painting Using Random Walks. Evolutionary Computation, 28(4), 643-675.
Scopus11 WoS82020 Chin, T. -J., Cai, Z., & Neumann, F. (2020). Robust fitting in computer vision: Easy or hard?. International Journal of Computer Vision, 128(3), 575-587.
Scopus17 WoS112020 Shi, F., Neumann, F., & Wang, J. (2020). Runtime Performances of Randomized Search Heuristics for the Dynamic Weighted Vertex Cover Problem. Algorithmica, 83(4), 906-939.
Scopus5 WoS52020 Do, A. V., & Neumann, F. (2020). Pareto Optimization for Subset Selection with Dynamic Partition Matroid Constraints.. CoRR, abs/2012.08738. 2020 Neumann, A., Bossek, J., & Neumann, F. (2020). Computing Diverse Sets of Solutions for Monotone Submodular Optimisation Problems.. CoRR, abs/2010.11486. 2020 Friedrich, T., Kötzing, T., Lagodzinski, J. A. G., Neumann, F., & Schirneck, M. (2020). Analysis of the (1 + 1) EA on subclasses of linear functions under uniform and linear constraints. Theoretical Computer Science, 832, 3-19.
Scopus12 WoS112020 Pourhassan, M., Roostapour, V., & Neumann, F. (2020). Runtime analysis of RLS and (1+1) EA for the dynamic weighted vertex cover problem. Theoretical Computer Science, 832, 20-41.
Scopus4 WoS22020 Ghasemishabankareh, B., Li, X., Ozlen, M., & Neumann, F. (2020). Probabilistic tree-based representation for solving minimum cost integer flow problems with nonlinear non-convex cost functions. Applied Soft Computing Journal, 86, 14 pages.
Scopus2 WoS12020 Bewarder, M., Kiefer, M., Moelle, C., Goerens, L., Stilgenbauer, S., Christofyllakis, K., . . . Thurner, L. (2020). Integration of the B-Cell Receptor Antigen Neurabin-I/SAMD14 Into an Antibody Format as New Therapeutic Approach for the Treatment of Primary CNS Lymphoma. FRONTIERS IN ONCOLOGY, 10, 12 pages.
WoS22020 Mechau, J., & Neumann, F. (2020). Small Water Projects, big Impact. WASSERWIRTSCHAFT, 110(9), 57-58. 2020 Ziemer, I., & Neumann, F. (2020). Photocatalytic reduction of nitrogen oxides - Numerical simulation for verification of efficiency. VAKUUM IN FORSCHUNG UND PRAXIS, 32(5), 42-44.
2020 Bewarder, M., Held, G., Thurner, L., Stilgenbauer, S., Smola, S., Preuss, K. -D., . . . Neumann, F. (2020). Characterization of an HLA-restricted and human cytomegalovirus-specific antibody repertoire with therapeutic potential. CANCER IMMUNOLOGY IMMUNOTHERAPY, 69(8), 1535-1548.
WoS22019 Azevedo, I. C., Duarte, P. M., Marinho, G. S., Neumann, F., & Sousa-Pinto, I. (2019). Growth of <i>Saccharina latissima</i> (Laminariales, Phaeophyceae) cultivated offshore under exposed conditions. PHYCOLOGIA, 58(5), 504-515.
WoS212019 Dalton, G., Bardocz, T., Blanch, M., Campbell, D., Johnson, K., Lawrence, G., . . . Masters, I. (2019). Feasibility of investment in Blue Growth multiple-use of space and multi-use platform projects; results of a novel assessment approach and case studies. RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 107, 338-359.
WoS382019 Doskoc, V., Friedrich, T., Göbel, A., Neumann, F., Neumann, A., & Quinzan, F. (2019). Non-Monotone Submodular Maximization with Multiple Knapsacks in Static and Dynamic Settings.. CoRR, abs/1911.06791. 2019 Bossek, J., Kerschke, P., Neumann, A., Neumann, F., & Doerr, C. (2019). One-Shot Decision-Making with and without Surrogates.. CoRR, abs/1912.08956. 2019 Kerschke, P., Hoos, H. H., Neumann, F., & Trautmann, H. (2019). Automated Algorithm Selection: Survey and Perspectives.. Evol. Comput., 27, 3-45. 2019 Shi, F., Schirneck, M., Friedrich, T., Kötzing, T., & Neumann, F. (2019). Reoptimization Time Analysis of Evolutionary Algorithms on Linear Functions Under Dynamic Uniform Constraints.. Algorithmica, 81(10), 828-857.
Scopus2 WoS22019 Bustos, Á. P., Chin, T. -J., Neumann, F., Friedrich, T., & Katzmann, M. (2019). A Practical Maximum Clique Algorithm for Matching with Pairwise Constraints.. CoRR, abs/1902.01534. 2019 Pourhassan, M., Shi, F., & Neumann, F. (2019). Parameterized analysis of multiobjective evolutionary algorithms and the weighted vertex cover problem. Evolutionary Computation, 27(4), 559-575.
Scopus6 WoS32019 Kerschke, P., Hoos, H. H., Neumann, F., & Trautmann, H. (2019). Automated algorithm selection: survey and perspectives. Evolutionary Computation, 27(1), 3-45.
Scopus305 WoS167 Europe PMC62019 Pourhassan, M., & Neumann, F. (2019). Theoretical analysis of local search and simple evolutionary algorithms for the generalized travelling salesperson problem. Evolutionary Computation, 27(3), 525-558.
Scopus5 WoS12019 Shi, F., Schirneck, M., Friedrich, T., Kötzing, T., & Neumann, F. (2019). Reoptimization Time Analysis of Evolutionary Algorithms on Linear Functions Under Dynamic Uniform Constraints. Algorithmica, 81(2), 1-30.
Scopus17 WoS102018 Covantes Osuna, E., Gao, W., Neumann, F., & Sudholt, D. (2018). Design and analysis of diversity-based parent selection schemes for speeding up evolutionary multi-objective optimisation. Theoretical Computer Science, 832, 123-142.
Scopus28 WoS82017 Doerr, B., Neumann, F., & Sutton, A. (2017). Time Complexity Analysis of Evolutionary Algorithms on Random Satisfiable k-CNF Formulas. Algorithmica, 78(2), 561-586.
Scopus17 WoS122017 Bonyadi, M., Michalewicz, Z., Nallaperuma, S., & Neumann, F. (2017). Ahura: a heuristic-based racer for the open racing car simulator. IEEE Transactions on Computational Intelligence and AI in Games, 9(3), 290-304.
Scopus8 WoS32017 Nallaperuma, S., Neumann, F., & Sudholt, D. (2017). Expected Fitness Gains of Randomized Search Heuristics for the Traveling Salesperson Problem. Evolutionary Computation, 25(4), 673-705.
Scopus20 WoS12 Europe PMC12017 Polyakovskiy, S., & Neumann, F. (2017). The Packing While Traveling Problem. European Journal of Operational Research, 258(2), 424-439.
Scopus15 WoS72016 Keating, C. B., & Ireland, V. (2016). Editorial. International Journal of System of Systems Engineering, 7(1/2/3), 1-21.
Scopus62016 Polyakovskiy, S., Berghammer, R., & Neumann, F. (2016). Solving hard control problems in voting systems via integer programming. European Journal of Operational Research, 250(1), 204-213.
Scopus3 WoS32016 Hoos, H. H., Neumann, F., & Trautmann, H. (2016). Automated Algorithm Selection and Configuration (Dagstuhl Seminar 16412).. Dagstuhl Reports, 6, 33-74.
2016 Bonyadi, M. R., Michalewicz, Z., Neumann, F., & Wagner, M. (2016). Evolutionary computation for multicomponent problems: opportunities and future directions.. CoRR, abs/1606.06818. 2016 Corus, D., Lehre, P., Neumann, F., & Pourhassan, M. (2016). A Parameterised Complexity Analysis of Bi-level Optimisation with Evolutionary Algorithms. Evolutionary Computation, 24(1), 183-203.
Scopus17 WoS11 Europe PMC12016 Kaufmann, P., Kramer, O., Neumann, F., & Wagner, M. (2016). Optimization methods in renewable energy systems design. Renewable Energy, 87, 835-836.
Scopus4 WoS32015 Friedrich, T., & Neumann, F. (2015). Maximizing submodular functions under matroid constraints by evolutionary algorithms. Evolutionary Computation, 23(4), 543-558.
Scopus76 WoS422015 Nallaperuma, S., Wagner, M., & Neumann, F. (2015). Analyzing the effects of instance features and algorithm parameters for max-min ant system and the traveling salesperson problem. Frontiers in Robotics and AI, 2(JUL), 18-1-18-16.
Scopus24 WoS192015 Friedrich, T., Neumann, F., & Thyssen, C. (2015). Multiplicative approximations, optimal hypervolume distributions, and the choice of the reference point. Evolutionary Computation, 23(1), 131-159.
Scopus10 WoS8 Europe PMC12015 Wagner, M., Neumann, F., & Urli, T. (2015). On the performance of different genetic programming approaches for the SORTING problem. Evolutionary Computation, 23(4), 583-609.
Scopus6 WoS52015 Nguyen, A., Sutton, A., & Neumann, F. (2015). Population size matters: rigorous runtime results for maximizing the hypervolume indicator. Theoretical Computer Science, 561(Part A), 24-36.
Scopus22 WoS92015 Wagner, M., Bringmann, K., Friedrich, T., & Neumann, F. (2015). Efficient optimization of many objectives by approximation-guided evolution. European Journal of Operational Research, 243(2), 465-479.
Scopus27 WoS212015 Polyakovskiy, S., & Neumann, F. (2015). The Packing While Traveling Problem.. CoRR, abs/1512.08831. 2014 Mei, H., Neumann, F., Yao, X., & Minku, L. L. (2014). Computational Intelligence for Software Engineering (NII Shonan Meeting 2014-13).. NII Shonan Meet. Rep., 2014. 2014 Kötzing, T., Sutton, A., Neumann, F., & O'Reilly, U. (2014). The Max problem revisited: The importance of mutation in genetic programming. Theoretical Computer Science, 545(C), 94-107.
Scopus13 WoS102014 Neumann, F., Doerr, B., Lehre, P. K., & Haddow, P. C. (2014). Editorial for the special issue on theoretical foundations of evolutionary computation. IEEE Transactions on Evolutionary Computation, 18(5), 625-627.
2014 Sutton, A. M., Neumann, F., & Nallaperuma, S. (2014). Parameterized runtime analyses of evolutionary algorithms for the planar Euclidean traveling salesperson problem. Evolutionary Computation, 22(4), 595-628.
Scopus31 WoS20 Europe PMC12013 Friedrich, T., Kroeger, T., & Neumann, F. (2013). Weighted preferences in evolutionary multi-objective optimization. International Journal of Machine Learning and Cybernetics, 4(2), 139-148.
Scopus17 WoS152013 Kratsch, S., & Neumann, F. (2013). Fixed-parameter evolutionary algorithms and the vertex cover problem. Algorithmica, 65(4), 754-771.
Scopus65 WoS442013 Doerr, B., Johannsen, D., Kotzing, T., Neumann, F., & Theile, M. (2013). More effective crossover operators for the all-pairs shortest path problem. Theoretical Computer Science, 471, 12-26.
Scopus35 WoS252013 Wagner, M., Day, J., & Neumann, F. (2013). A fast and effective local search algorithm for optimizing the placement of wind turbines. Renewable Energy, 51, 64-70.
Scopus88 WoS782013 Vladislavleva, E., Friedrich, T., Neumann, F., & Wagner, M. (2013). Predicting the energy output of wind farms based on weather data: important variables and their correlation. Renewable Energy, 50, 236-243.
Scopus86 WoS602013 Mersmann, O., Bischl, B., Trautmann, H., Wagner, M., Bossek, J., & Neumann, F. (2013). A novel feature-based approach to characterize algorithm performance for the traveling salesperson problem. Annals of Mathematics and Artificial Intelligence, 69(2), 151-182.
Scopus69 WoS442013 Doerr, B., Eremeev, A. V., Neumann, F., Theile, M., & Thyssen, C. (2013). Evolutionary Algorithms and Dynamic Programming. CoRR, abs/1301.4096. 2013 Boettger, M., Graumann, T., Boughaled, R., Neumann, F., Jones, P. G., Kowalsky, W., & Johannes, H. -H. (2013). Development of a new qualification method for photocatalytically active surfaces based on a solid state luminescent dye (vol 253, pg 7, 2013). JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY A-CHEMISTRY, 272, 100.
2013 Arlt, G., Neumann, F., & Milkau, U. (2013). A simple model for pseudo-nonstationarity in operational risk loss data due to interest rate dependency and reporting threshold. JOURNAL OF OPERATIONAL RISK, 8(4), 27-37.
WoS22013 Mills, A., Hepburn, J., Hazafy, D., O'Rourke, C., Krysa, J., Baudys, M., . . . Graumann, T. (2013). A simple, inexpensive method for the rapid testing of the photocatalytic activity of self-cleaning surfaces. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY A-CHEMISTRY, 272, 18-20.
WoS492013 Boettger, M., Graumann, T., Boughaled, R., Neumann, F., Jones, P. G., Kowalsky, W., & Johannes, H. -H. (2013). Development of a new qualification method for photocatalytically active surfaces based on a solid state luminescent dye (vol 253, pg 7, 2013). JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY A-CHEMISTRY, 259, 66.
2013 Boettger, M., Graumann, T., Boughaled, R., Neumann, F., Kowalsky, W., & Johannes, H. -H. (2013). Development of a new qualification method for photocatalytically active surfaces based on a solid state luminescent dye. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY A-CHEMISTRY, 253, 7-15.
WoS62012 Mersmann, O., Bischl, B., Trautmann, H., Wagner, M., & Neumann, F. (2012). A Novel Feature-Based Approach to Characterize Algorithm Performance for the Traveling Salesman Problem. CoRR, abs/1208.2318. 2012 Berghammer, R., Friedrich, T., & Neumann, F. (2012). Convergence of set-based multi-objective optimization, indicators and deteriorative cycles. Theoretical Computer Science, 456, 2-17.
Scopus15 WoS122012 Lehre, P. K., Neumann, F., & Rowe, J. E. (2012). Editorial to the special issue on "Theoretical foundations of evolutionary computation". Theoretical Computer Science, 425, 2-3.
2012 Kotzing, T., Neumann, F., Roglin, H., & Witt, C. (2012). Theoretical analysis of two ACO approaches for the traveling salesman problem. Swarm Intelligence, 6(1), 1-21.
Scopus44 WoS302011 Doerr, B., Eremeev, A., Neumann, F., Theile, M., & Thyssen, C. (2011). Evolutionary algorithms and dynamic programming. Theoretical Computer Science, 412(43), 6020-6035.
Scopus16 WoS102011 Friedrich, T., Horoba, C., & Neumann, F. (2011). Illustration of fairness in evolutionary multi-objective optimization. Theoretical Computer Science, 412(17), 1546-1556.
Scopus17 WoS82011 Doerr, B., Neumann, F., Sudholt, D., & Witt, C. (2011). Runtime analysis of the 1-ANT ant colony optimizer. Theoretical Computer Science, 412(17), 1629-1644.
Scopus31 WoS192011 Neumann, F., Reichel, J., & Skutella, M. (2011). Computing minimum cuts by randomized search heuristics. Algorithmica (New York), 59(3), 323-342.
Scopus24 WoS222011 Kagan, E., Stein, M., Agnon, A., & Neumann, F. (2011). Intrabasin paleoearthquake and quiescence correlation of the late Holocene Dead Sea (vol 116, B04311, 2011). JOURNAL OF GEOPHYSICAL RESEARCH-SOLID EARTH, 116(B11), 2 pages.
2011 Kurz, J., Eberle, F., Graumann, T., Kaschel, M. -E., Saehr, A., Neumann, F., . . . Erdinger, L. (2011). Inactivation of LPS and RNase A on photocatalytically active surfaces. CHEMOSPHERE, 84(9), 1188-1193.
WoS72011 Kagan, E., Stein, M., Agnon, A., & Neumann, F. (2011). Intrabasin paleoearthquake and quiescence correlation of the late Holocene Dead Sea. JOURNAL OF GEOPHYSICAL RESEARCH-SOLID EARTH, 116(B4), 27 pages.
WoS582011 Lovdal, N., & Neumann, F. (2011). Internationalization as a strategy to overcome industry barriers-An assessment of the marine energy industry. ENERGY POLICY, 39(3), 1093-1100.
WoS282010 Hohenstein, C., Neumann, F., & Kornath, A. (2010). Reactivity of Tetramethylphosphonium Fluoride in Acetonitrile Solutions. ZEITSCHRIFT FUR NATURFORSCHUNG SECTION B-A JOURNAL OF CHEMICAL SCIENCES, 65(11), 1327-1333.
2010 Hohenstein, C., Kornath, A., Neumann, F., & Ludwig, R. (2010). Preparation and Properties of Dimethyltetrafluorophosphate. INORGANIC CHEMISTRY, 49(14), 6421-6427.
2010 Friedrich, T., & Neumann, F. (2010). When to use bit-wise neutrality. Natural Computing, 9(1), 283-294.
Scopus1 WoS12010 Friedrich, T., He, J., Hebbinghaus, N., Neumann, F., & Witt, C. (2010). Approximating covering problems by randomized search heuristics using multi-objectivemodels. Evolutionary Computation, 18(4), 617-633.
Scopus107 WoS73 Europe PMC52010 Doerr, B., Neumann, F., & Wegener, I. (2010). Algorithmica (New York): Editorial. Algorithmica (New York), 57(1), 119-120.
2010 Jansen, T., & Neumann, F. (2010). Editorial for the special issue on theoretical aspects of evolutionary multi-objective optimization. Evolutionary Computation, 18(3), 333-334.
Scopus1 WoS12010 Friedrich, T., Hebbinghaus, N., & Neumann, F. (2010). Plateaus can be harder in multi-objective optimization. Theoretical Computer Science, 411(6), 854-864.
Scopus14 WoS92010 Neumann, F., & Witt, C. (2010). Ant Colony Optimization and the minimum spanning tree problem. Theoretical Computer Science, 411(25), 2406-2413.
Scopus57 WoS422009 Doerr, B., & Neumann, F. (2009). In Memoriam: Ingo Wegener. Algorithmica (New York), 58(3), 1-2.
2009 Neumann, F., Sudholt, D., & Witt, C. (2009). Analysis of different MMAS ACO algorithms on unimodal functions and plateaus. Swarm Intelligence, 3(1), 35-68.
Scopus722009 Neumann, F., & Witt, C. (2009). Runtime analysis of a simple ant colony optimization algorithm. Algorithmica, 54(2), 243-255.
Scopus75 WoS462009 Friedrich, T., He, J., Hebbinghaus, N., Neumann, F., & Witt, C. (2009). Analyses of simple hybrid algorithms for the vertex cover problem. Evolutionary Computation, 17(1), 3-19.
Scopus40 WoS272009 Friedrich, T., Hebbinghaus, N., & Neumann, F. (2009). Comparison of simple diversity mechanisms on plateau functions. Theoretical Computer Science, 410(26), 2455-2462.
Scopus18 WoS82009 Brockhoff, D., Friedrich, T., Hebbinghaus, N., Klein, C., Neumann, F., & Zitzler, E. (2009). On the effects of adding objectives to plateau functions. IEEE Transactions on Evolutionary Computation, 13(3), 591-603.
Scopus74 WoS562009 Huertas-Olivares, C., & Neumann, F. (2009). Environmental Impacts of Ocean Energy Systems. WASSERWIRTSCHAFT, 99(3), 33-37.
WoS12009 Jansen, T., Schmidt, M., Sudholt, D., Witt, C., & Zarges, C. (2009). In Memoriam: Ingo Wegener. EVOLUTIONARY COMPUTATION, 17(1), 1-2.
2008 Neumann, F. (2008). Expected runtimes of evolutionary algorithms for the Eulerian cycle problem. Computers & Operations Research, 35(9), 2750-2759.
Scopus38 WoS272007 Neumann, F. (2007). Expected runtimes of a simple evolutionary algorithm for the multi-objective minimum spanning tree problem. European Journal of Operational Research, 181(3), 1620-1629.
Scopus84 WoS542007 Neumann, F., & Wegener, I. (2007). Randomized local search, evolutionary algorithms, and the minimum spanning tree problem. Theoretical Computer Science, 378(1), 32-40.
Scopus190 WoS1382007 Doerr, B., Hebbinghaus, N., & Neumann, F. (2007). Speeding Up Evolutionary Algorithms through Asymmetric Mutation Operators. Evolutionary Computation, 15(4), 401-410.
Scopus38 WoS29 Europe PMC22007 Neumann, F., Schoelzel, C., Litt, T., Hense, A., & Stein, M. (2007). Holocene vegetation and climate history of the northern Golan heights (Near East) (vol 16, pg 329, 2007). VEGETATION HISTORY AND ARCHAEOBOTANY, 16(4), 347.
WoS22007 Neugebauer, M., Hilpert, U., Bartscher, M., Gerwien, N., Kunz, S., Neumann, F., . . . Weidemann, G. (2007). A geometrical standard for testing of X-ray computer tomography. TM-TECHNISCHES MESSEN, 74(11), 565-571.
WoS142006 Neumann, F., & Wegener, I. (2006). Minimum spanning trees made easier via multi-objective optimization. Natural Computing, 5(3), 305-319.
Scopus1181938 Neumann, F. (1938). Introduction to Theoretical Seismology, pt 1, Geodynamics. GEOGRAPHICAL REVIEW, 28(1), 173-174.
- Goel, D., Ward, M., Neumann, A., Neumann, F., Nguyen, H., & Guo, M. (n.d.). Hardening Active Directory Graphs via Evolutionary Diversity Optimization based Policies. ACM Transactions on Evolutionary Learning and Optimization.
- Ghasemi, Z., Neshat, M., Aldrich, C., Karageorgos, J., Zanin, M., Neumann, F., & Chen, L. (n.d.). A Hybrid Intelligent Framework for Maximising Sag Mill Throughput: An Integration of Expert Knowledge, Machine Learning and Evolutionary Algorithms for Parameter Optimisation. -
Books
Year Citation 2020 Doerr, B., & Neumann, F. (Eds.) (2020). Theory of Evolutionary Computation - Recent Developments in Discrete Optimization. Springer. 2010 Neumann, F., & Witt, C. (2010). Bioinspired Computation in Combinatorial Optimization. Springer.
DOI2010 Neumann, F., & Witt, C. (2010). Bioinspired computation in combinatorial optimization : algorithms and their computational complexity. Berlin: Springer.
DOI -
Book Chapters
-
Conference Papers
-
Conference Items
Year Citation 2022 Goel, D., Ward-Graham, M. H., Neumann, A., Neumann, F., Nguyen, H., & Guo, M. (2022). Defending active directory by combining neural network based dynamic program and evolutionary diversity optimisation.. Poster session presented at the meeting of GECCO. ACM. 2020 Neumann, A., & Neumann, F. (2020). Evolutionary computation for digital art. Poster session presented at the meeting of GECCO 2020 Companion - Proceedings of the 2020 Genetic and Evolutionary Computation Conference Companion. ACM.
DOI2020 Bossek, J., Neumann, A., & Neumann, F. (2020). Evolutionary Diversity Optimisation. Poster session presented at the meeting of Parallel Problem Solving from Nature, PPSN 2020. 2019 Neumann, A., & Neumann, F. (2019). Evolutionary computation for digital art. Poster session presented at the meeting of Abstracts of the Genetic and Evolutionary Computation Conference Companion (GECCO 2019). Prague, The Czech Republic: Association for Computing Machinery (ACM).
DOI Scopus1 WoS12018 Neumann, A., & Neumann, F. (2018). Evolutionary computation for digital art. Poster session presented at the meeting of Abstracts of the Genetic and Evolutionary Computation Conference Companion (GECCO 2018). Kyoto, Japan: Association for Computing Machinery.
DOI Scopus22016 Friedrich, T., Kötzing, T., Krejca, M. S., & Sutton, A. M. (2016). The Benefit of Recombination in Noisy Evolutionary Search.. Poster session presented at the meeting of GECCO (Companion). ACM. 2016 Friedrich, T., Kötzing, T., Quinzan, F., & Sutton, A. M. (2016). Ant Colony Optimization Beats Resampling on Noisy Functions.. Poster session presented at the meeting of GECCO (Companion). ACM. 2016 Colmenar, J. M., Winkler, S. M., Kronberger, G., Maqueda, E., Botella, M., & Hidalgo, J. I. (2016). Predicting Glycemia in Diabetic Patients By Evolutionary Computation and Continuous Glucose Monitoring.. Poster session presented at the meeting of GECCO (Companion). ACM. 2016 Duarte, M., Costa, V., Gomes, J. C., Rodrigues, T., Silva, F., Oliveira, S. M., & Christensen, A. L. (2016). Unleashing the Potential of Evolutionary Swarm Robotics in the Real World.. Poster session presented at the meeting of GECCO (Companion). ACM. 2016 Kheng, C. W., Ku, D. C., Ng, H. -F., Khattab, M., & Chong, S. Y. (2016). Curvature Flight Path for Particle Swarm Optimisation.. Poster session presented at the meeting of GECCO. ACM. 2016 Martins, M. S., Delgado, M. R. D. B. D. S., Santana, R., Lüders, R., Gonçalves, R. A., & Almeida, C. P. D. (2016). HMOBEDA: Hybrid Multi-objective Bayesian Estimation of Distribution Algorithm.. Poster session presented at the meeting of GECCO. ACM. 2016 Guervós, J. J. M., Castillo, P. A., García-Sánchez, P., Cuevas, P. D. L., Rico, N., & Valdez, M. G. (2016). Performance for the Masses: Experiments with A Web Based Architecture to Harness Volunteer Resources for Low Cost Distributed Evolutionary Computation.. Poster session presented at the meeting of GECCO. ACM. 2016 Paula, L. C. D., Soares, A. D. S., Lima, T. W. D., Filho, A. R., & Coelho, C. J. (2016). Variable Selection for Multivariate Calibration in Chemometrics: A Real-World Application with Building Blocks Disruption Problem.. Poster session presented at the meeting of GECCO (Companion). ACM. 2016 Dang, D. -C., Friedrich, T., Kötzing, T., Krejca, M. S., Lehre, P. K., Oliveto, P. S., . . . Sutton, A. M. (2016). Escaping Local Optima with Diversity Mechanisms and Crossover.. Poster session presented at the meeting of GECCO. ACM. 2016 Fernando, C., Banarse, D., Reynolds, M., Besse, F., Pfau, D., Jaderberg, M., . . . Wierstra, D. (2016). Convolution by Evolution: Differentiable Pattern Producing Networks.. Poster session presented at the meeting of GECCO. ACM. 2016 Larson, A., Bernatskiy, A., Cappelle, C., Livingston, K. R., Livingston, N., Jr, J. H. L., . . . Bongard, J. C. (2016). Recombination Hotspots Promote the Evolvability of Modular Systems.. Poster session presented at the meeting of GECCO (Companion). ACM. 2016 Urselmann, M., Foussette, C., Janus, T., Tlatlik, S., Gottschalk, A., Emmerich, M. T., . . . Bäck, T. (2016). Selection of a DFO Method for the Efficient Solution of Continuous Constrained Sub-Problems within a Memetic Algorithm for Chemical Process Synthesis.. Poster session presented at the meeting of GECCO. ACM. 2016 Scott, E. O., & De Jong, K. A. (2016). Evaluation-time bias in quasi-generational and steady-state asynchronous evolutionary algorithms. Poster session presented at the meeting of GECCO 2016 - Proceedings of the 2016 Genetic and Evolutionary Computation Conference. Denver, CO: ASSOC COMPUTING MACHINERY.
DOI Scopus10 WoS72016 Shim, Y., Auerbach, J. E., & Husbands, P. (2016). Darwinian Dynamics of Embodied Chaotic Exploration.. Poster session presented at the meeting of GECCO (Companion). ACM. 2016 Urbanowicz, R. J., Browne, W. N., & Kuber, K. (2016). Hands-on Workshop on Learning Classifier Systems.. Poster session presented at the meeting of GECCO (Companion). ACM. 2016 Pugh, J. K., Soros, L. B., & Stanley, K. O. (2016). An Extended Study of Quality Diversity Algorithms.. Poster session presented at the meeting of GECCO (Companion). ACM. 2016 Smith, S. L., Cagnoni, S., & Patton, R. M. (2016). MedGEC'16 Chairs' Welcome.. Poster session presented at the meeting of GECCO (Companion). ACM. 2016 Tarapore, D., Clune, J., Cully, A., & Mouret, J. -B. (2016). How do Different Encodings Influence the Performance of the MAP-Elites Algorithm?. Poster session presented at the meeting of GECCO. ACM. 2016 Woodward, J. R., Johnson, C. G., & Brownlee, A. E. (2016). Connecting Automatic Parameter Tuning, Genetic Programming as a Hyper-heuristic, and Genetic Improvement Programming.. Poster session presented at the meeting of GECCO (Companion). ACM. 2016 Toosi, F. G., Nikolov, N. S., & Eaton, M. (2016). A GA-Inspired Approach to the Reduction of Edge Crossings in Force-Directed Layouts.. Poster session presented at the meeting of GECCO (Companion). ACM. 2016 Wilson, D., Cussat-Blanc, S., & Luga, H. (2016). The Evolution of Artificial Neurogenesis.. Poster session presented at the meeting of GECCO (Companion). ACM. 2016 Zuin, G. L., Macedo, Y. P., Chaimowicz, L., & Pappa, G. L. (2016). Discovering Combos in Fighting Games with Evolutionary Algorithms.. Poster session presented at the meeting of GECCO. ACM. 2016 Zutty, J., Long, D., & Rohling, G. (2016). Increasing the Throughput of Expensive Evaluations Through a Vector Based Genetic Programming Framework.. Poster session presented at the meeting of GECCO (Companion). ACM. 2016 Alvarez, I. M., Browne, W. N., & Zhang, M. (2016). Human-inspired Scaling in Learning Classifier Systems: Case Study on the n-bit Multiplexer Problem Set.. Poster session presented at the meeting of GECCO. ACM. 2016 Andersson, M., Bandaru, S., & Ng, A. H. (2016). Tuning of Multiple Parameter Sets in Evolutionary Algorithms.. Poster session presented at the meeting of GECCO. ACM. 2016 Arrieta, A., Wang, S., Sagardui, G., & Etxeberria, L. (2016). Test Case Prioritization of Configurable Cyber-Physical Systems with Weight-Based Search Algorithms.. Poster session presented at the meeting of GECCO. ACM. 2016 Arnaldo, I., Hemberg, E., & O'Reilly, U. -M. (2016). Multi-Line Batch Scheduling by Similarity.. Poster session presented at the meeting of GECCO (Companion). ACM. 2016 Asafuddoula, M., Singh, H. K., & Ray, T. (2016). A CUDA Implementation of an Improved Decomposition Based Evolutionary Algorithm for Multi-Objective Optimization.. Poster session presented at the meeting of GECCO (Companion). ACM. 2016 Basseur, M., Derbel, B., Goëffon, A., & Liefooghe, A. (2016). Experiments on Greedy and Local Search Heuristics for ddimensional Hypervolume Subset Selection.. Poster session presented at the meeting of GECCO. ACM. 2016 Brotánková, J., Urli, T., & Kilby, P. (2016). Planning Habitat Restoration with Genetic Algorithms.. Poster session presented at the meeting of GECCO. ACM. 2016 Bulanova, N., Buzdalova, A., & Buzdalov, M. (2016). Fitness-Dependent Hybridization of Clonal Selection Algorithm and Random Local Search.. Poster session presented at the meeting of GECCO (Companion). ACM. 2016 Chen, Q., Xue, B., Shang, L., & Zhang, M. (2016). Improving generalisation of genetic programming for symbolic regression with structural risk minimisation. Poster session presented at the meeting of GECCO 2016 - Proceedings of the 2016 Genetic and Evolutionary Computation Conference. ACM.
DOI Scopus222016 Contreras, S. F., Cortés, C. A., & Guzmán, M. A. (2016). Bio-inspired Multi-objective Optimization Design of a Highly Efficient Squirrel Cage Induction Motor.. Poster session presented at the meeting of GECCO. ACM. 2016 Cruz, C., Karakiewicz, J., & Kirley, M. (2016). A Morphogenetic Design Strategy Using a Composite CA Model.. Poster session presented at the meeting of GECCO (Companion). ACM. 2016 Doerr, B., Doerr, C., & Yang, J. (2016). Optimal Parameter Choices via Precise Black-Box Analysis.. Poster session presented at the meeting of GECCO. ACM. 2016 Fernandes, C. M., Guervós, J. J. M., & Rosa, A. C. (2016). Asynchronous Steady State Particle Swarm.. Poster session presented at the meeting of GECCO (Companion). ACM. 2016 Fernandez, S., Stützle, T., & Pellicer, P. V. (2016). IAM 2016 Chairs' Welcome & Organization.. Poster session presented at the meeting of GECCO (Companion). ACM. 2016 Gilan, S. S., Goyal, N., & Dilkina, B. (2016). Active Learning in Multi-objective Evolutionary Algorithms for Sustainable Building Design.. Poster session presented at the meeting of GECCO. ACM. 2016 Ha, S., Lee, S., & Moon, B. -R. (2016). Inspecting the Latent Space of Stock Market Data with Genetic Programming.. Poster session presented at the meeting of GECCO (Companion). ACM. 2016 Helmuth, T., McPhee, N. F., & Spector, L. (2016). The Impact of Hyperselection on Lexicase Selection.. Poster session presented at the meeting of GECCO. ACM. 2016 Helmuth, T., McPhee, N. F., & Spector, L. (2016). Effects of Lexicase and Tournament Selection on Diversity Recovery and Maintenance.. Poster session presented at the meeting of GECCO (Companion). ACM. 2016 Cramer, S., Kampouridis, M., & Freitas, A. A. (2016). A Genetic Decomposition Algorithm for Predicting Rainfall within Financial Weather Derivatives.. Poster session presented at the meeting of GECCO. ACM. 2016 Huizinga, J., Mouret, J. -B., & Clune, J. (2016). Does Aligning Phenotypic and Genotypic Modularity Improve the Evolution of Neural Networks?. Poster session presented at the meeting of GECCO. ACM. 2016 Kamizono, M., Shimomura, K., Tajiri, M., & Ono, S. (2016). Two-Dimensional Barcode Decoration Using Module-wise Non-systematic Coding and Cooperative Evolution by User and System.. Poster session presented at the meeting of GECCO. ACM. 2016 Kerschke, P., Preuss, M., Wessing, S., & Trautmann, H. (2016). Low-Budget Exploratory Landscape Analysis on Multiple Peaks Models.. Poster session presented at the meeting of GECCO. ACM. 2016 Ge, Y. -F., Yu, W. -J., & Zhang, J. (2016). Diversity-Based Multi-Population Differential Evolution for Large-Scale Optimization.. Poster session presented at the meeting of GECCO (Companion). ACM. 2016 Greensmith, J., Jackson, A. M., & Spendlove, I. (2016). Exploiting the Plasticity of Primary and Secondary Response Mechanisms in Artificial Immune Systems.. Poster session presented at the meeting of GECCO (Companion). ACM. 2016 Martínez, S. Z., Moraglio, A., Aguirre, H. E., & Tanaka, K. (2016). Geometric Particle Swarm Optimization for Multi-objective Optimization Using Decomposition.. Poster session presented at the meeting of GECCO. ACM. 2016 Salomon, S., Purshouse, R. C., Giagkiozis, I., & Fleming, P. J. (2016). A Toolkit for Generating Scalable Stochastic Multiobjective Test Problems.. Poster session presented at the meeting of GECCO. ACM. 2016 Abdolmaleki, A., Lau, N., Reis, L. P., & Neumann, G. (2016). Contextual Stochastic Search.. Poster session presented at the meeting of GECCO (Companion). ACM. 2016 Doncieux, S., Auerbach, J. E., Duro, R. J., & Vladar, H. P. D. (2016). Evolution in Cognition 2016 Chairs' Welcome.. Poster session presented at the meeting of GECCO (Companion). ACM. 2016 Espinoza-Nevárez, D., Ortiz-Bayliss, J. C., Terashima-Marín, H., & Gatica, G. (2016). Selection and Generation Hyper-heuristics for Solving the Vehicle Routing Problem with Time Windows.. Poster session presented at the meeting of GECCO (Companion). ACM. 2016 Gómez, R. H., Coello, C. A. C., & Torres, E. A. (2016). A Multi-Objective Evolutionary Algorithm based on Parallel Coordinates.. Poster session presented at the meeting of GECCO. ACM. 2016 Kenny, A., Li, X., Qin, A. K., & Ernst, A. T. (2016). A Population-based Local Search Technique with Random Descent and Jump for the Steiner Tree Problem in Graphs.. Poster session presented at the meeting of GECCO. ACM. 2016 Mihoc, T. D., Lung, R. I., Gaskó, N., & Suciu, M. (2016). Approximation of (k, t)-robust Equilibria.. Poster session presented at the meeting of GECCO. ACM. 2016 Roy, P. C., Islam, M. M., & Deb, K. (2016). Best Order Sort: A New Algorithm to Non-dominated Sorting for Evolutionary Multi-objective Optimization.. Poster session presented at the meeting of GECCO (Companion). ACM. 2016 Santos, V. L. A., Arroyo, J. E. C., & Carvalho, T. F. M. (2016). Iterated Local Search Based Heuristic for Scheduling Jobs on Unrelated Parallel Machines with Machine Deterioration Effect.. Poster session presented at the meeting of GECCO (Companion). ACM. 2016 Steenkiste, S. V., Koutník, J., Driessens, K., & Schmidhuber, J. (2016). A Wavelet-based Encoding for Neuroevolution.. Poster session presented at the meeting of GECCO. ACM. 2016 Bartoli, A., Lorenzo, A. D., Medvet, E., & Tarlao, F. (2016). On the Automatic Construction of Regular Expressions from Examples (GP vs. Humans 1-0).. Poster session presented at the meeting of GECCO (Companion). ACM. 2016 Bergé, P., Guiban, K. L., Rimmel, A., & Tomasik, J. (2016). Search Space Exploration and an Optimization Criterion for Hard Design Problems.. Poster session presented at the meeting of GECCO (Companion). ACM. 2016 Duarte, M., Gomes, J. C., Oliveira, S. M., & Christensen, A. L. (2016). EvoRBC: Evolutionary Repertoire-based Control for Robots with Arbitrary Locomotion Complexity.. Poster session presented at the meeting of GECCO. ACM. 2016 Ellefsen, K. O., Lepikson, H. A., & Albiez, J. C. (2016). Planning Inspection Paths through Evolutionary Multi-objective Optimization.. Poster session presented at the meeting of GECCO. ACM. 2016 Benítez, C. M. V., Parpinelli, R. S., & Lopes, H. S. (2016). An Ecologically-inspired Parallel Approach Applied to the Protein Structure Reconstruction from Contact Maps.. Poster session presented at the meeting of GECCO (Companion). ACM. 2016 Garbelini, J. C., Kashiwabara, A. Y., & Sanches, D. S. (2016). Discovery Motifs by Evolutionary Computation.. Poster session presented at the meeting of GECCO (Companion). ACM. 2016 Labidi, M. K., Diarrassouba, I., Mahjoub, A. R., & Omrane, A. (2016). A Parallel Hybrid Genetic Algorithm for the k-Edge-Connected Hop-Constrained Network Design Problem.. Poster session presented at the meeting of GECCO. ACM. 2016 Mariani, T., Guizzo, G., Vergilio, S. R., & Pozo, A. T. (2016). Grammatical Evolution for the Multi-Objective Integration and Test Order Problem.. Poster session presented at the meeting of GECCO. ACM. 2016 Martí, L., Tchango, A. F., Navarro, L., & Schoenauer, M. (2016). VorAIS: A Multi-Objective Voronoi Diagram-based Artificial Immune System.. Poster session presented at the meeting of GECCO (Companion). ACM. 2016 Medernach, D., Fitzgerald, J., Azad, R. M. A., & Ryan, C. (2016). A New Wave: A Dynamic Approach to Genetic Programming.. Poster session presented at the meeting of GECCO. ACM. 2016 Nielsen, S. S., Torres, C. F., Danoy, G., & Bouvry, P. (2016). Tackling the IFP Problem with the Preference-Based Genetic Algorithm.. Poster session presented at the meeting of GECCO. ACM. 2016 Pagán, J., Risco-Martín, J. L., Moya, J. M., & Ayala, J. L. (2016). Grammatical Evolutionary Techniques for Prompt Migraine Prediction.. Poster session presented at the meeting of GECCO. ACM. 2016 Perez-Carabaza, S., Besada-Portas, E., Orozco, J. A. L., & Cruz, J. M. D. L. (2016). A Real World Multi-UAV Evolutionary Planner for Minimum Time Target Detection.. Poster session presented at the meeting of GECCO. ACM. 2016 Rocha, G. K., Custódio, F. L., Barbosa, H. J., & Dardenne, L. E. (2016). Using Crowding-Distance in a Multiobjective Genetic Algorithm for Protein Structure Prediction.. Poster session presented at the meeting of GECCO (Companion). ACM. 2016 Smith, R. J., Zincir-Heywood, A. N., Heywood, M. I., & Jacobs, J. T. (2016). Initiating a Moving Target Network Defense with a Real-time Neuro-evolutionary Detector.. Poster session presented at the meeting of GECCO (Companion). ACM. 2016 Sosa-Ascencio, A., Terashima-Marín, H., Ortiz-Bayliss, J. C., & Conant-Pablos, S. E. (2016). Grammar-based Selection Hyper-heuristics for Solving Irregular Bin Packing Problems.. Poster session presented at the meeting of GECCO (Companion). ACM. 2016 Sotto, L. F. D. P., Coelho, R. C., & Melo, V. V. D. (2016). Classification of Cardiac Arrhythmia by Random Forests with Features Constructed by Kaizen Programming with Linear Genetic Programming.. Poster session presented at the meeting of GECCO. ACM. 2016 Suciu, M., Lung, R. I., & Gaskó, N. (2016). Game theory, Extremal optimization, and Community Structure Detection in Complex Networks.. Poster session presented at the meeting of GECCO. ACM. 2016 Tran, C. T., Zhang, M., Andreae, P., & Xue, B. (2016). Directly Constructing Multiple Features for Classification with Missing Data using Genetic Programming with Interval Functions.. Poster session presented at the meeting of GECCO (Companion). ACM. 2016 Khadka, S., Tumer, K., Colby, M. K., Tucker, D., Pezzini, P., & Bryden, K. M. (2016). Neuroevolution of a Hybrid Power Plant Simulator.. Poster session presented at the meeting of GECCO. ACM. 2016 Abdolmaleki, A., Lioutikov, R., Lau, N., Reis, L. P., Peters, J., & Neumann, G. (2016). Model-Based Relative Entropy Stochastic Search.. Poster session presented at the meeting of GECCO (Companion). ACM. 2016 Bevilacqua, V., Brunetti, A., Triggiani, M., Magaletti, D., Telegrafo, M., & Moschetta, M. (2016). An Optimized Feed-forward Artificial Neural Network Topology to Support Radiologists in Breast Lesions Classification.. Poster session presented at the meeting of GECCO (Companion). ACM. 2016 Tatsumi, T., Komine, T., Nakata, M., Sato, H., Kovacs, T., & Takadama, K. (2016). Variance-based Learning Classifier System without Convergence of Reward Estimation.. Poster session presented at the meeting of GECCO (Companion). ACM. 2016 Larsen, S. J., Alkærsig, F. G., Ditzel, H. J., Jurisica, I., Alcaraz, N., & Baumbach, J. (2016). A Simulated Annealing Algorithm for Maximum Common Edge Subgraph Detection in Biological Networks.. Poster session presented at the meeting of GECCO. ACM. 2016 Liu, X., Li, F., Ding, Y., Wang, L., & Hao, K. (2016). Mechanical Modeling with Particle Swarm Optimization Algorithm for Braided Bicomponent Ureteral Stent.. Poster session presented at the meeting of GECCO (Companion). ACM. 2016 Lynch, D., Fenton, M., Kucera, S., Claussen, H., & O'Neill, M. (2016). Evolutionary Learning of Scheduling Heuristics for Heterogeneous Wireless Communications Networks.. Poster session presented at the meeting of GECCO. ACM. 2016 Guervós, J. J. M., Castillo, P. A., García-Sánchez, P., Cuevas, P. D. L., & Valdez, M. G. (2016). NodIO: A Framework and Architecture for Pool-based Evolutionary Computation.. Poster session presented at the meeting of GECCO (Companion). ACM. 2016 Osaba, E., López-García, P., Masegosa, A. D., Onieva, E., Landaluce, H., & Perallos, A. (2016). TIMON Project: Description and Preliminary Tests for Traffic Prediction Using Evolutionary Techniques.. Poster session presented at the meeting of GECCO (Companion). ACM. 2016 Kordmahalleh, M. M., Sefidmazgi, M. G., & Homaifar, A. (2016). A Sparse Recurrent Neural Network for Trajectory Prediction of Atlantic Hurricanes.. Poster session presented at the meeting of GECCO. ACM. 2016 Sorrosal, G., Borges, C. E., Holeña, M., Macarulla, A. M., Andonegui, C. M., & Alonso-Vicario, A. (2016). Evolutionary Dynamic Optimization of Control Trajectories for the Catalytic Transformation of the Bioethanol-To-Olefins Process using Neural Networks.. Poster session presented at the meeting of GECCO (Companion). ACM. 2016 Ahrari, A., Lei, H., Sharif, M. A., Deb, K., & Tan, X. (2016). Optimum Design of Artificial Lateral Line Systems for Object Tracking under Uncertain Conditions.. Poster session presented at the meeting of GECCO (Companion). ACM. 2016 Scheibenpflug, A., Karder, J., Schaller, S., Wagner, S., & Affenzeller, M. (2016). Evolutionary Procedural 2D Map Generation using Novelty Search.. Poster session presented at the meeting of GECCO (Companion). ACM. 2016 Szubert, M., Kodali, A., Ganguly, S., Das, K., & Bongard, J. C. (2016). Reducing Antagonism between Behavioral Diversity and Fitness in Semantic Genetic Programming.. Poster session presented at the meeting of GECCO. ACM. 2016 Vallejo, M., Cosgrove, J., Alty, J. E., Smith, S. L., Corne, D. W., & Lones, M. A. (2016). Using Multiobjective Evolutionary Algorithms to Understand Parkinson's Disease.. Poster session presented at the meeting of GECCO (Companion). ACM. 2016 Auger, A., Brockhoff, D., Hansen, N., Tusar, D., Tusar, T., & Wagner, T. (2016). GECCO'16 Black-Box Optimization Benchmarking Workshop (BBOB-2016): Workshop Chairs' Welcome Message.. Poster session presented at the meeting of GECCO (Companion). ACM. 2016 Sanches, D. S., Jr, J. B. A. L., & Delbem, A. C. (2016). Multiobjective Discrete Differential Evolution for Service Restoration in Energy Distribution Systems.. Poster session presented at the meeting of GECCO (Companion). ACM. 2016 Badr, G., Hosny, M. I., Bintayyash, N., Albilali, E., & Marie-Sainte, S. L. (2016). BeamGA Median: A Hybrid Heuristic Search Framework.. Poster session presented at the meeting of GECCO (Companion). ACM. 2016 Butcher, S., Strasser, S., Hoole, J., Demeo, B., & Sheppard, J. W. (2016). Relaxing Consensus in Distributed Factored Evolutionary Algorithms.. Poster session presented at the meeting of GECCO. ACM. 2016 Cumbo, K. C., Heck, S., Tanimoto, I., DeVault, T., Heckendorn, R. B., & Soule, T. (2016). Bee-Inspired Landmark Recognition in Robotic Navigation.. Poster session presented at the meeting of GECCO (Companion). ACM. 2016 Derbel, B., Liefooghe, A., Zhang, Q., Aguirre, H. E., & Tanaka, K. (2016). Local Search Move Strategies within MOEA/D.. Poster session presented at the meeting of GECCO (Companion). ACM. 2016 Fernandez, S., Valledor, P., Díaz, D., Malatsetxebarria, E., & Iglesias, M. (2016). Criticality of Response Time in the usage of Metaheuristics in Industry.. Poster session presented at the meeting of GECCO (Companion). ACM. 2016 Salgado, R., Prieto, A., Bellas, F., Calvo-Varela, L., & Duro, R. J. (2016). Neuroevolutionary Motivational Engine for Autonomous Robots.. Poster session presented at the meeting of GECCO (Companion). ACM. 2016 Stolfi, D. H., Armas, R., Alba, E., Aguirre, H. E., & Tanaka, K. (2016). Fine Tuning of Traffic in our Cities with Smart Panels: The Quito City Case Study.. Poster session presented at the meeting of GECCO. ACM. 2016 Vallejo, M., Cosgrove, J., Alty, J. E., Jamieson, S., Smith, S. L., Corne, D. W., & Lones, M. A. (2016). A Multi-Objective Approach to Predicting Motor and Cognitive Deficit in Parkinson's Disease Patients.. Poster session presented at the meeting of GECCO (Companion). ACM. 2016 Vladar, H. P. D., Fedor, A., Szilágyi, A., Zachar, I., & Szathmáry, E. (2016). An Attractor Network-Based Model with Darwinian Dynamics.. Poster session presented at the meeting of GECCO (Companion). ACM. 2016 Wang, Y., Qian, Y., Li, Y., Gong, M., & Banzhaf, W. (2016). Artificial Multi-Bee-Colony Algorithm for k-Nearest-Neighbor Fields Search.. Poster session presented at the meeting of GECCO. ACM. 2016 Colby, M. K., Yliniemi, L. M., Pezzini, P., Tucker, D., Bryden, K. M., & Tumer, K. (2016). Multiobjective Neuroevolutionary Control for a Fuel Cell Turbine Hybrid Energy System.. Poster session presented at the meeting of GECCO. ACM. 2016 Paula, L. C. D., Soares, A. D. S., Lima, T. W. D., & Coelho, C. J. (2016). Feature Selection using Genetic Algorithm: An Analysis of the Bias-Property for One-Point Crossover.. Poster session presented at the meeting of GECCO (Companion). ACM. 2016 Khalifa, A., Liebana, D. P., Lucas, S. M., & Togelius, J. (2016). General Video Game Level Generation.. Poster session presented at the meeting of GECCO. ACM. 2016 Stefano, C. D., Fontanella, F., & Freca, A. S. D. (2016). A Novel GA-based Feature Selection Approach for High Dimensional Data.. Poster session presented at the meeting of GECCO (Companion). ACM. 2016 Liu, X. F., Zhan, Z. -H., Lin, J. -H., & Zhang, J. (2016). Parallel Differential Evolution Based on Distributed Cloud Computing Resources for Power Electronic Circuit Optimization.. Poster session presented at the meeting of GECCO (Companion). ACM. 2016 Duro, R. J., Becerra, J. A., Monroy, J., & Caamaño, P. (2016). Considering Memory Networks in the LTM Structure of the Multilevel Darwinist Brain.. Poster session presented at the meeting of GECCO (Companion). ACM. 2016 Volz, V., Rudolph, G., & Naujoks, B. (2016). Demonstrating the Feasibility of Automatic Game Balancing.. Poster session presented at the meeting of GECCO. ACM. 2016 Plachkov, A., Abielmona, R. S., Harb, M., Falcon, R., Inkpen, D., Groza, V., & Petriu, E. M. (2016). Automatic Course of Action Generation using Soft Data for Maritime Domain Awareness.. Poster session presented at the meeting of GECCO (Companion). ACM. 2016 Marmion, M. -E., Aguirre, H. E., Dhaenens, C., Jourdan, L., & Tanaka, K. (2016). Multi-objective Neutral Neighbors': What could be the definition(s)?. Poster session presented at the meeting of GECCO. ACM. 2016 Langdon, W. B., Vilella, A., Lam, B. Y. H., Petke, J., & Harman, M. (2016). Benchmarking Genetically Improved BarraCUDA on Epigenetic Methylation NGS datasets and nVidia GPUs.. Poster session presented at the meeting of GECCO (Companion). ACM. 2016 Auger, A., Brockhoff, D., Hansen, N., Tusar, D., Tusar, T., & Wagner, T. (2016). The Impact of Search Volume on the Performance of RANDOMSEARCH on the Bi-objective BBOB-2016 Test Suite.. Poster session presented at the meeting of GECCO (Companion). ACM. 2016 Auger, A., Brockhoff, D., Hansen, N., Tusar, D., Tusar, T., & Wagner, T. (2016). Benchmarking MATLAB's gamultiobj (NSGA-II) on the Bi-objective BBOB-2016 Test Suite.. Poster session presented at the meeting of GECCO (Companion). ACM. 2016 Spector, L., McPhee, N. F., Helmuth, T., Casale, M. M., & Oks, J. (2016). Evolution Evolves with Autoconstruction.. Poster session presented at the meeting of GECCO (Companion). ACM. 2016 Rahat, A. A. -A., Everson, R. M., Fieldsend, J. E., Jin, Y., & Wang, H. (2016). Surrogate-Assisted Evolutionary Optimisation (SAEOpt'16) Chairs' Welcome & Organization.. Poster session presented at the meeting of GECCO (Companion). ACM. 2016 Panichella, A., Alexandru, C. V., Panichella, S., Bacchelli, A., & Gall, H. C. (2016). A Search-based Training Algorithm for Cost-aware Defect Prediction.. Poster session presented at the meeting of GECCO. ACM. 2016 McPhee, N. F., Casale, M. M., Finzel, M., Helmuth, T., & Spector, L. (2016). Visualizing Genetic Programming Ancestries.. Poster session presented at the meeting of GECCO (Companion). ACM. 2016 Auger, A., Brockhoff, D., Hansen, N., Tusar, D., Tusar, T., & Wagner, T. (2016). Benchmarking RM-MEDA on the Bi-objective BBOB-2016 Test Suite.. Poster session presented at the meeting of GECCO (Companion). ACM. 2016 Auger, A., Brockhoff, D., Hansen, N., Tusar, D., Tusar, T., & Wagner, T. (2016). The Impact of Variation Operators on the Performance of SMS-EMOA on the Bi-objective BBOB-2016 Test Suite.. Poster session presented at the meeting of GECCO (Companion). ACM. 2016 Leclerc, G., Auerbach, J. E., Iacca, G., & Floreano, D. (2016). The Seamless Peer and Cloud Evolution Framework.. Poster session presented at the meeting of GECCO. ACM. 2016 Auger, A., Brockhoff, D., Hansen, N., Tusar, D., Tusar, T., & Wagner, T. (2016). Benchmarking the Pure Random Search on the Bi-objective BBOB-2016 Testbed.. Poster session presented at the meeting of GECCO (Companion). ACM. 2012 Neumann, F., & Witt, C. (2012). Bioinspired computation in combinatorial optimization: algorithms and their computational complexity. Poster session presented at the meeting of GECCO'12 - Proceedings of the 14th International Conference on Genetic and Evolutionary Computation. Philadelphia, U.S.A.: ACM.
DOI Scopus12 WoS92011 Friedrich, T., & Neumann, F. (2011). Foundations of evolutionary multi-objective optimization. Poster session presented at the meeting of Genetic and Evolutionary Computation Conference, GECCO'11 - Companion Publication. Dublin, Ireland: ACM.
DOI2011 Jansen, T., & Neumann, F. (2011). Computational complexity and evolutionary computation. Poster session presented at the meeting of Genetic and Evolutionary Computation Conference, GECCO'11 - Companion Publication. Dublin, Ireland: ACM.
DOI -
Working Paper
Year Citation 2017 Hoeltgen, L., Mainberger, M., Hoffmann, S., Weickert, J., Tang, C. H., Setzer, S., . . . Doerr, B. (2017). Optimizing spatial and tonal data for PDE-based inpainting.
Scopus122016 Pourhassan, M., Shi, F., & Neumann, F. (2016). Parameterized analysis of multi-objective evolutionary algorithms and the weighted vertex cover problem. SPRINGER INTERNATIONAL PUBLISHING AG.
DOI Scopus11 WoS72014 Polyakovskiy, S., Berghammer, R., & Neumann, F. (2014). Solving Hard Control Problems in Voting Systems via Integer Programming.. 2013 Friedrich, T., Neumann, F., & Thyssen, C. (2013). Multiplicative Approximations, Optimal Hypervolume Distributions, and the Choice of the Reference Point.. 2012 Doerr, B., Johannsen, D., Kötzing, T., Neumann, F., & Theile, M. (2012). More Effective Crossover Operators for the All-Pairs Shortest Path Problem. 2011 Wagner, M., & Neumann, F. (2011). Computational Complexity Results for Genetic Programming and the Sorting Problem. -
Internet Publications
Year Citation 2019 Xie, Y., Harper, O., Assimi, H., Neumann, A., & Neumann, F. (2019). Evolutionary algorithms for the chance-constrained knapsack problem.. ACM. 2019 Neumann, A., Neumann, F., & Friedrich, T. (2019). Quasi-random Image Transition and Animation.. 2017 Neumann, A., Neumann, F., & Friedrich, T. (2017). Quasi-random Agents for Image Transition and Animation.. 2016 Neumann, A., Alexander, B., & Neumann, F. (2016). Evolutionary Image Transition Based on Theoretical Insights of Random Processes.. -
Preprint
Year Citation 2024 Antipov, D., Neumann, A., & Neumann, F. (2024). Local Optima in Diversity Optimization: Non-trivial Offspring Population
is Essential.2024 Yan, X., Neumann, A., & Neumann, F. (2024). Sliding Window Bi-Objective Evolutionary Algorithms for Optimizing
Chance-Constrained Monotone Submodular Functions.2024 Do, A. V., Guo, M., Neumann, A., & Neumann, F. (2024). Evolutionary Multi-Objective Diversity Optimization. 2024 Ahouei, S. S., Nobel, J. D., Neumann, A., Bäck, T., & Neumann, F. (2024). Evolving Reliable Differentiating Constraints for the Chance-constrained
Maximum Coverage Problem.2024 Harder, J. G., Neumann, A., & Neumann, F. (2024). Analysis of Evolutionary Diversity Optimisation for the Maximum Matching
Problem.2024 Pathiranage, I. H., Neumann, F., Antipov, D., & Neumann, A. (2024). Using 3-Objective Evolutionary Algorithms for the Dynamic Chance
Constrained Knapsack Problem.2024 Antipov, D., Neumann, A., Neumann, F., & Sutton, A. M. (2024). Runtime Analysis of Evolutionary Diversity Optimization on the
Multi-objective (LeadingOnes, TrailingZeros) Problem.2024 Yan, X., Neumann, A., & Neumann, F. (2024). Sampling-based Pareto Optimization for Chance-constrained Monotone
Submodular Problems.2024 Doerr, B., Knowles, J., Neumann, A., & Neumann, F. (2024). A Block-Coordinate Descent EMO Algorithm: Theoretical and Empirical
Analysis.2023 Guo, M., Li, J., Neumann, A., Neumann, F., & Nguyen, H. (2023). Limited Query Graph Connectivity Test. 2023 Friedrich, T., Kötzing, T., Neumann, A., Neumann, F., & Radhakrishnan, A. (2023). Analysis of the (1+1) EA on LeadingOnes with Constraints. 2023 Ye, F., Neumann, F., Nobel, J. D., Neumann, A., & Bäck, T. (2023). Towards Self-adaptive Mutation in Evolutionary Multi-Objective
Algorithms.2023 Ghasemi, Z., Neshat, M., Aldrich, C., Karageorgos, J., Zanin, M., Neumann, F., & Chen, L. (2023). A Hybrid Intelligent Framework for Maximising SAG Mill Throughput: An Integration of Expert Knowledge, Machine Learning and Evolutionary Algorithms for Parameter Optimisation.. 2023 Zoltai, G., Xie, Y., & Neumann, F. (2023). A Study of Fitness Gains in Evolving Finite State Machines.. 2023 Do, A. V., Neumann, A., Neumann, F., & Sutton, A. M. (2023). Rigorous Runtime Analysis of MOEA/D for Solving Multi-Objective Minimum Weight Base Problems.. 2023 Do, A. V., Guo, M., Neumann, A., & Neumann, F. (2023). Diverse Approximations for Monotone Submodular Maximization Problems with a Matroid Constraint.. 2023 Goel, D., Neumann, A., Neumann, F., Nguyen, H., & Guo, M. (2023). Evolving Reinforcement Learning Environment to Minimize Learner's Achievable Reward: An Application on Hardening Active Directory Systems.. 2023 Guo, M., Li, J., Neumann, A., Neumann, F., & Nguyen, H. (2023). Limited Query Graph Connectivity Test..
- NHMRC Ideas Grant "Optimising time use for health and wellbeing", National Health and Medical Research Council, 2020-2023 (led by Dorothea Dumuid at the University of South Australia, several investigators).
- ARC Discovery Project "Evolutionary diversity optimisation", Australian Research Council, 2019-2021 (with Tobias Friedrich).
- Humboldt Fellowship for Experienced Researchers, Alexander von Humboldt Foundation, 2019-2021.
- ARC Industrial Transformation Training Centre for Integrated Operations for Complex Resources, Australian Research Council, 2019-2023 (several chief investigators and industry partners).
- Project "Detection and classification of malicious virtual grassroots influence campaigns in social media", Australia-Germany Joint Research Co-operation Scheme, 2020-2021 (with Lewis Mitchell, Christian Grimme, Mewish Nasim, Derek Weber, Dennis Assenmacher, Lena Adam, Heike Trautmann).
- Research Consortium – Unlocking Complex Resources through Lean Processing, Research Consortia Program, State Government of South Australia, 2017-2021 (several chief investigators and industry partners).
- ARC Discovery Project "Bio-inspired Computing for Problems with Dynamically Changing Constraints", Australian Research Council, 2016-2018 (with Zbigniew Michalewicz, Tobias Friedrich, Marc Schoenauer)
- Project "Modelling and optimisation of submerged buoys for improved ocean wave energy production", Interdisciplinary Research Fund, The University of Adelaide, 2015 (with Markus Wagner, Boyin Ding, Benjamin Cazzolato, Maziar Arjomandi).
- ARC Discovery Project "Parameterised analysis of bio-inspired computing - from theory to high performing algorithms", Australian Research Council, 2014-2016 (with Tobias Friedrich)
- ARC Discovery Project "Advanced planning systems for vertically integrated supply chain management", Australian Research Council, 2013-2015 (with Zbigniew Michalewicz and Adam Ghandar)
- Project "Exploring the evolutionary diversity of Australia's marine snakes to develop a bio-mimetic sea snake robot", Interdisciplinary Research Fund, The University of Adelaide, 2013-2014 (with Lei Chen, Kate Sanders, Amy Watson, Gustavo Carneiro, Brett Goodman, Marc Jones)
- Evolutionary Computation, semester 2, 2018
- Grand Challenges in Computer Science, semester 2, 2017
- Evolutionary Computation, semester 1, 2017
- Mining Big Data, semester 1, 2017.
- Evolutionary Computation, semester 2, 2016
- Mining Big Data, semester 1, 2015.
- Mining Big Data, semester 1, 2014.
- Evolutionary Computation, semester 2, 2013.
- Advanced Algorithms, semester 1, 2013.
- Evolutionary Computation, semester 2, 2012.
- Algorithm and Data Structure Analysis, semester 1, 2012.
- Evolutionary Computation, semester 2, 2011.
- Data Structures and Algorithms, semester 2, 2011.
- Data Structures and Algorithms, semester 1, 2011.
- Algorithms and Data Structures, winter semester, 2009/2010. (Saarland University, Germany)
-
Current Higher Degree by Research Supervision (University of Adelaide)
Date Role Research Topic Program Degree Type Student Load Student Name 2024 Co-Supervisor Leveraging Machine Learning Agents for Military Application Doctor of Philosophy Doctorate Full Time Mr Josh Dylan Francis 2024 Principal Supervisor Heuristic search algorithms for complex optimisation problems in space and energy Doctor of Philosophy Doctorate Full Time Mr Liam Joshua Wigney 2023 Co-Supervisor Maximising Mill Throughput using Machine Learning Techniques and Evolutionary Algorithms. Doctor of Philosophy Doctorate Full Time Mrs Zahra Ghasemi 2022 Principal Supervisor Bio-inspired Computing for Problems with Chance Constraints Doctor of Philosophy Doctorate Full Time Mr Xiankun Yan 2022 Principal Supervisor Evolutionary Algorithms for Solving Chance Constrained Combinatorial Optimization Problems Doctor of Philosophy Doctorate Full Time Miss Saba Sadeghi Ahouei 2022 Co-Supervisor Bio-inspired Computing for Problems with Chance Constraints Doctor of Philosophy Doctorate Full Time Mrs Kokila Perera 2022 Principal Supervisor Bio-inspired algorithms for stochastic multi-component problems Doctor of Philosophy Doctorate Full Time Mr Thilina Pathirage Don 2021 Co-Supervisor Maximising throughput through intelligent online sensing and health monitoring Doctor of Philosophy Doctorate Part Time Mr Zeqi Li 2021 Co-Supervisor Rapid updating of resource knowledge with sensor information including structures Doctor of Philosophy Doctorate Full Time Mr Sultan Abulkhair 2021 Principal Supervisor Is complexity an evolutionary response to selection change? Master of Philosophy Master Part Time Mr Gabor Zoltai -
Past Higher Degree by Research Supervision (University of Adelaide)
Date Role Research Topic Program Degree Type Student Load Student Name 2020 - 2023 Principal Supervisor Evolutionary Diversity Optimisation for Combinatorial Problems Doctor of Philosophy Doctorate Full Time Mr Adel Nikfarjam 2020 - 2024 Principal Supervisor Analysis of Search Heuristics for Diverse Solutions to Combinatorial Problems Doctor of Philosophy Doctorate Full Time Mr Viet Anh Do 2019 - 2023 Co-Supervisor Mathematical Optimisation for Vision-based Problems in Space Domain
AwarenessDoctor of Philosophy Doctorate Full Time Mr Chee Kheng Chng 2018 - 2021 Principal Supervisor Bio-Inspired Computing for Chance-Constrained Combinatorial Optimisation Problems Doctor of Philosophy Doctorate Full Time Miss Yue Xie 2018 - 2023 Principal Supervisor Application of Bio-inspired Algorithms to Selected Real-World Problems Doctor of Philosophy Doctorate Part Time Dr Hirad Assimi 2017 - 2020 Principal Supervisor Bio-Inspired Computing for Complex and Dynamic Constrained Problems Doctor of Philosophy Doctorate Full Time Mr Vahid Roostapour 2017 - 2020 Principal Supervisor Differential Evolution for Dynamic Constrained Continuous Optimisation Doctor of Philosophy Doctorate Full Time Mrs Maryam Hasani Shoreh 2017 - 2022 Principal Supervisor Towards Exposing Coordinating Inauthentic Groups on Social Media Doctor of Philosophy Doctorate Part Time Mr Derek Christopher Weber 2015 - 2017 Principal Supervisor Ambulatory Monitoring using Passive RFID Technology Doctor of Philosophy Doctorate Full Time Mr Asanga Wickramasinghe 2015 - 2018 Principal Supervisor Exact and Heuristic Approaches for Multi-component Optimisation Problems Doctor of Philosophy Doctorate Full Time Mr Junhua Wu 2013 - 2016 Principal Supervisor Diversity Optimization and Parameterized Analysis of Heuristic Search Methods for Combinatorial Optimization Problems Doctor of Philosophy Doctorate Full Time Dr Wanru Gao 2013 - 2017 Principal Supervisor Parameterised Complexity Analysis of Evolutionary Algorithms for Combinatorial Optimization Problems Doctor of Philosophy Doctorate Full Time Dr Mojgan Pourhassan 2012 - 2015 Principal Supervisor Parameterized Analysis of Bio-inspired Computation and the Traveling Salesperson Problem Doctor of Philosophy Doctorate Full Time Mrs Samadhi Nethmini Nallaperuma 2012 - 2016 Principal Supervisor Feature-Based Selection of Bio-Inspired Algorithms for Constrained Continuous Optimisation Doctor of Philosophy Doctorate Full Time Mr Shayan Poursoltan 2011 - 2015 Co-Supervisor Particle swarm optimization: Theoretical analysis, Modifications, and Applications to Constrained Optimization Problems Doctor of Philosophy Doctorate Full Time Mr Mohammadreza Bonyadi 2011 - 2013 Principal Supervisor Theory and Applications of Bio-Inspired Algorithms Doctor of Philosophy Doctorate Full Time APrf Markus Wagner
-
Committee Memberships
-
Consulting/Advisories
Date Institution Department Organisation Type Country 2018 - ongoing Daitum - Business and professional Australia 2015 - ongoing Complexica - Business and professional Australia 2015 - ongoing Optimatics - Business and professional Australia 2014 - 2016 Project SAGE Speed of Adaptation in Population Genetics and Evolutionary Computation - Scientific research United Kingdom -
Editorial Boards
Date Role Editorial Board Name Institution Country 2017 - ongoing Associate Editor IEEE Transactions on Evolutionary Computation - - 2014 - ongoing Associate Editor Evolutionary Computation - -
Connect With Me
External Profiles