
Professor Frank Neumann
Professor
School of Computer Science
Faculty of Engineering, Computer and Mathematical Sciences
Eligible to supervise Masters and PhD - email supervisor to discuss availability.
Frank Neumann received his diploma and Ph.D. from the Christian-Albrechts-University of Kiel in 2002 and 2006, respectively. He is a professor and leader of the Optimisation and Logistics Group at the School of Computer Science, The University of Adelaide, Australia. Frank has been the general chair of the ACM GECCO 2016. With Kenneth De Jong he organised ACM FOGA 2013 in Adelaide and together with Carsten Witt he has written the textbook "Bioinspired Computation in Combinatorial Optimization - Algorithms and Their Computational Complexity" published by Springer. He is an Associate Editor of the journals "Evolutionary Computation" (MIT Press) and "IEEE Transactions on Evolutionary Computation" (IEEE). In his work, he considers artificial intelligence and optimisation methods in particular for combinatorial and multi-objective optimization problems and focuses on theoretical aspects of evolutionary computation as well as high impact applications in the areas of renewable energy, logistics, and mining.
- My Research
- Career
- Publications
- Grants and Funding
- Teaching
- Supervision
- Professional Activities
- Contact
- artificial intelligence
- bio-inspired computing
- optimization
- renewable energy
- supply chain management
-
Expand
-
Appointments
Date Position Institution name 2016 Professor The University of Adelaide 2015 - 2016 Associate Dean (Research) The University of Adelaide 2013 - 2015 Associate Professor The University of Adelaide 2011 - 2012 Senior Lecturer The University of Adelaide 2008 - 2010 Coordinator of the group "Bio-Inspired Computation” Max Planck Institute for Informatics (MPG) 2006 - 2008 Postdoctoral Researcher Max Planck Institute for Informatics (MPG) 2002 - 2006 Research Assistant Kiel University -
Education
Date Institution name Country Title 2006 Kiel University Germany PhD 2002 Kiel University Germany Diplom
-
Expand
-
Journals
Year Citation 2020 Ghasemishabankareh, B., Li, X., Ozlen, M., & Neumann, F. (2020). Probabilistic tree-based representation for solving minimum cost integer flow problems with nonlinear non-convex cost functions. Applied Soft Computing Journal, 86, 14 pages.
2020 Shi, F., Neumann, F., & Wang, J. (2020). Runtime Performances of Randomized Search Heuristics for the Dynamic Weighted Vertex Cover Problem. Algorithmica, abs/2001.08903.
2020 Hasani-Shoreh, M., Aragonés, R. H., & Neumann, F. (2020). Neural Networks in Evolutionary Dynamic Constrained Optimization: Computational Cost and Benefits.. CoRR, abs/2001.11588. 2019 Bossek, J., Kerschke, P., Neumann, A., Neumann, F., & Doerr, C. (2019). One-Shot Decision-Making with and without Surrogates.. CoRR, abs/1912.08956. 2019 Kerschke, P., Hoos, H. H., Neumann, F., & Trautmann, H. (2019). Automated Algorithm Selection: Survey and Perspectives.. Evolutionary Computation, 27, 3-45. 2019 Shi, F., Schirneck, M., Friedrich, T., Kötzing, T., & Neumann, F. (2019). Reoptimization Time Analysis of Evolutionary Algorithms on Linear Functions Under Dynamic Uniform Constraints.. Algorithmica, 81, 828-857. 2019 Bustos, Á. P., Chin, T. -J., Neumann, F., Friedrich, T., & Katzmann, M. (2019). A Practical Maximum Clique Algorithm for Matching with Pairwise Constraints.. CoRR, abs/1902.01534. 2019 Pourhassan, M., Shi, F., & Neumann, F. (2019). Parameterized Analysis of Multiobjective Evolutionary Algorithms and the Weighted Vertex Cover Problem.. Evolutionary computation, 27(4), 559-575.
2019 Chin, T., Cai, Z., & Neumann, F. (2019). Robust Fitting in Computer Vision: Easy or Hard?. International Journal of Computer Vision, 11216, 715-730.
2019 Hasani-Shoreh, M., Ameca-Alducin, M., Blaikie, W., & Schoenauer, M. (2019). On the Behaviour of Differential Evolution for Problems with Dynamic Linear Constraints. 2019 IEEE Congress on Evolutionary Computation, CEC 2019 - Proceedings, abs/1905.04099, 3045-3052.
Scopus12019 Pourhassan, M., Roostapour, V., & Neumann, F. (2019). Runtime analysis of RLS and (1 + 1) EA for the dynamic weighted vertex cover problem. Theoretical Computer Science, abs/1903.02195.
2019 Kerschke, P., Hoos, H., Neumann, F., & Trautmann, H. (2019). Automated algorithm selection: survey and perspectives. Evolutionary Computation, 27(1), 3-45.
Scopus19 WoS32019 Roostapour, V., Pourhassan, M., & Neumann, F. (2019). Analysis of Baseline Evolutionary Algorithms for the Packing While Travelling Problem.. CoRR, abs/1902.04692, 124-132.
2019 Pourhassan, M., & Neumann, F. (2019). Theoretical Analysis of Local Search and Simple Evolutionary Algorithms for the Generalized Travelling Salesperson Problem.. Evolutionary computation, 27(3), 525-558.
Scopus12019 Shi, F., Schirneck, M., Friedrich, T., Kötzing, T., & Neumann, F. (2019). Reoptimization Time Analysis of Evolutionary Algorithms on Linear Functions Under Dynamic Uniform Constraints. Algorithmica, 81(2), 1-30.
Scopus22019 Neumann, F., Polyakovskiy, S., Skutella, M., Stougie, L., & Wu, J. (2019). A Fully Polynomial Time Approximation Scheme for Packing While Traveling. Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 11409 LNCS, 59-72.
Scopus12018 Covantes Osuna, E., Gao, W., Neumann, F., & Sudholt, D. (2018). Design and analysis of diversity-based parent selection schemes for speeding up evolutionary multi-objective optimisation. Theoretical Computer Science, Online, 1-20.
2018 Friedrich, T., Kötzing, T., Lagodzinski, J., Neumann, F., & Schirneck, M. (2018). Analysis of the (1 + 1) EA on subclasses of linear functions under uniform and linear constraints. Theoretical Computer Science, 1-17.
Scopus32017 Bonyadi, M., Michalewicz, Z., Nallaperuma, S., & Neumann, F. (2017). Ahura: a heuristic-based racer for the open racing car simulator. IEEE Transactions on Computational Intelligence and AI in Games, 9(3), 290-304.
Scopus12017 Polyakovskiy, S., & Neumann, F. (2017). The Packing While Traveling Problem. European Journal of Operational Research, 258(2), 424-439.
Scopus7 WoS22017 Doerr, B., Neumann, F., & Sutton, A. (2017). Time Complexity Analysis of Evolutionary Algorithms on Random Satisfiable k-CNF Formulas. Algorithmica, 78(2), 561-586.
Scopus4 WoS32017 Nallaperuma, S., Neumann, F., & Sudholt, D. (2017). Expected Fitness Gains of Randomized Search Heuristics for the Traveling Salesperson Problem. Evolutionary Computation, 25(4), 673-705.
Scopus5 WoS1 Europe PMC12016 Polyakovskiy, S., Berghammer, R., & Neumann, F. (2016). Solving hard control problems in voting systems via integer programming. European Journal of Operational Research, 250(1), 204-213.
Scopus1 WoS12016 Bonyadi, M. R., Michalewicz, Z., Neumann, F., & Wagner, M. (2016). Evolutionary computation for multicomponent problems: opportunities and future directions.. CoRR, abs/1606.06818. 2016 Hoos, H., Neumann, F., & Trautmann, H. (2016). Automated Algorithm Selection and Configuration (Dagstuhl Seminar 16412).. Dagstuhl Reports, 6, 33-74. 2016 Corus, D., Lehre, P. K., Neumann, F., & Pourhassan, M. (2016). A Parameterised Complexity Analysis of Bi-level Optimisation with Evolutionary Algorithms.. Evolutionary Computation, 24, 183-203. 2016 Corus, D., Lehre, P., Neumann, F., & Pourhassan, M. (2016). A Parameterised Complexity Analysis of Bi-level Optimisation with Evolutionary Algorithms. Evolutionary Computation, 24(1), 183-203.
Scopus8 WoS5 Europe PMC12016 Kaufmann, P., Kramer, O., Neumann, F., & Wagner, M. (2016). Optimization methods in renewable energy systems design. Renewable Energy, 87, 835-836.
Scopus3 WoS32015 Friedrich, T., & Neumann, F. (2015). Maximizing submodular functions under matroid constraints by evolutionary algorithms. Evolutionary Computation, 23(4), 543-558.
Scopus11 WoS92015 Nallaperuma, S., Wagner, M., & Neumann, F. (2015). Analyzing the effects of instance features and algorithm parameters for max-min ant system and the traveling salesperson problem. Frontiers in Robotics and AI, 2(JUL), 18-1-18-16.
Scopus132015 Friedrich, T., Neumann, F., & Thyssen, C. (2015). Multiplicative approximations, optimal hypervolume distributions, and the choice of the reference point. Evolutionary Computation, 23(1), 131-159.
Scopus6 WoS4 Europe PMC12015 Wagner, M., Neumann, F., & Urli, T. (2015). On the performance of different genetic programming approaches for the SORTING problem. Evolutionary Computation, 23(4), 583-609.
Scopus6 WoS42015 Nguyen, A., Sutton, A., & Neumann, F. (2015). Population size matters: rigorous runtime results for maximizing the hypervolume indicator. Theoretical Computer Science, 561(Part A), 24-36.
Scopus4 WoS22015 Wagner, M., Bringmann, K., Friedrich, T., & Neumann, F. (2015). Efficient optimization of many objectives by approximation-guided evolution. European Journal of Operational Research, 243(2), 465-479.
Scopus17 WoS132015 Polyakovskiy, S., & Neumann, F. (2015). The Packing While Traveling Problem.. CoRR, abs/1512.08831. 2014 Mei, H., Neumann, F., Yao, X., & Minku, L. L. (2014). Computational Intelligence for Software Engineering (NII Shonan Meeting 2014-13).. NII Shonan Meet. Rep., 2014. 2014 Sutton, A., Neumann, F., & Nallaperuma, S. (2014). Parameterized runtime analyses of evolutionary algorithms for the planar Euclidean traveling salesperson problem. Evolutionary Computation, 22(4), 595-628.
Scopus18 WoS11 Europe PMC12014 Neumann, F., Doerr, B., Lehre, P., & Haddow, P. (2014). Editorial for the special issue on theoretical foundations of evolutionary computation. IEEE Transactions on Evolutionary Computation, 18(5), 625-627.
2014 Kötzing, T., Sutton, A., Neumann, F., & O'Reilly, U. (2014). The Max problem revisited: The importance of mutation in genetic programming. Theoretical Computer Science, 545(C), 94-107.
Scopus7 WoS32013 Friedrich, T., Kroeger, T., & Neumann, F. (2013). Weighted preferences in evolutionary multi-objective optimization. International Journal of Machine Learning and Cybernetics, 4(2), 139-148.
Scopus15 WoS142013 Kratsch, S., & Neumann, F. (2013). Fixed-parameter evolutionary algorithms and the vertex cover problem. Algorithmica, 65(4), 754-771.
Scopus39 WoS242013 Doerr, B., Johannsen, D., Kotzing, T., Neumann, F., & Theile, M. (2013). More effective crossover operators for the all-pairs shortest path problem. Theoretical Computer Science, 471, 12-26.
Scopus13 WoS92013 Wagner, M., Day, J., & Neumann, F. (2013). A fast and effective local search algorithm for optimizing the placement of wind turbines. Renewable Energy, 51, 64-70.
Scopus56 WoS502013 Vladislavleva, E., Friedrich, T., Neumann, F., & Wagner, M. (2013). Predicting the energy output of wind farms based on weather data: important variables and their correlation. Renewable Energy, 50, 236-243.
Scopus40 WoS322013 Mersmann, O., Bischl, B., Trautmann, H., Wagner, M., Bossek, J., & Neumann, F. (2013). A novel feature-based approach to characterize algorithm performance for the traveling salesperson problem. Annals of Mathematics and Artificial Intelligence, 69(2), 151-182.
Scopus44 WoS232013 Doerr, B., Eremeev, A. V., Neumann, F., Theile, M., & Thyssen, C. (2013). Evolutionary Algorithms and Dynamic Programming. CoRR, abs/1301.4096. 2012 Mersmann, O., Bischl, B., Trautmann, H., Wagner, M., & Neumann, F. (2012). A Novel Feature-Based Approach to Characterize Algorithm Performance for the Traveling Salesman Problem. CoRR, abs/1208.2318. 2012 Berghammer, R., Friedrich, T., & Neumann, F. (2012). Convergence of set-based multi-objective optimization, indicators and deteriorative cycles. Theoretical Computer Science, 456, 2-17.
Scopus8 WoS72012 Lehre, P. K., Neumann, F., & Rowe, J. E. (2012). Editorial to the special issue on "Theoretical foundations of evolutionary computation". Theoretical Computer Science, 425, 2-3.
2012 Kotzing, T., Neumann, F., Roglin, H., & Witt, C. (2012). Theoretical analysis of two ACO approaches for the traveling salesman problem. Swarm Intelligence, 6(1), 1-21.
Scopus37 WoS242011 Doerr, B., Eremeev, A., Neumann, F., Theile, M., & Thyssen, C. (2011). Evolutionary algorithms and dynamic programming. Theoretical Computer Science, 412(43), 6020-6035.
Scopus10 WoS72011 Friedrich, T., Horoba, C., & Neumann, F. (2011). Illustration of fairness in evolutionary multi-objective optimization. Theoretical Computer Science, 412(17), 1546-1556.
Scopus6 WoS32011 Doerr, B., Neumann, F., Sudholt, D., & Witt, C. (2011). Runtime analysis of the 1-ANT ant colony optimizer. Theoretical Computer Science, 412(17), 1629-1644.
Scopus19 WoS132011 Neumann, F., Reichel, J., & Skutella, M. (2011). Computing minimum cuts by randomized search heuristics. Algorithmica (New York), 59(3), 323-342.
Scopus16 WoS162010 Friedrich, T., & Neumann, F. (2010). When to use bit-wise neutrality. Natural Computing, 9(1), 283-294.
Scopus1 WoS12010 Friedrich, T., He, J., Hebbinghaus, N., Neumann, F., & Witt, C. (2010). Approximating covering problems by randomized search heuristics using multi-objectivemodels. Evolutionary Computation, 18(4), 617-633.
Scopus61 WoS44 Europe PMC52010 Doerr, B., Neumann, F., & Wegener, I. (2010). Algorithmica (New York): Editorial. Algorithmica (New York), 57(1), 119-120.
2010 Jansen, T., & Neumann, F. (2010). Editorial for the special issue on theoretical aspects of evolutionary multi-objective optimization. Evolutionary Computation, 18(3), 333-334.
Scopus1 WoS12010 Friedrich, T., Hebbinghaus, N., & Neumann, F. (2010). Plateaus can be harder in multi-objective optimization. Theoretical Computer Science, 411(6), 854-864.
Scopus5 WoS42010 Neumann, F., & Witt, C. (2010). Ant Colony Optimization and the minimum spanning tree problem. Theoretical Computer Science, 411(25), 2406-2413.
Scopus38 WoS282009 Doerr, B., & Neumann, F. (2009). In Memoriam: Ingo Wegener. Algorithmica (New York), 58(3), 1-2.
2009 Neumann, F., Sudholt, D., & Witt, C. (2009). Analysis of different MMAS ACO algorithms on unimodal functions and plateaus. Swarm Intelligence, 3(1), 35-68.
Scopus542009 Neumann, F., & Witt, C. (2009). Runtime analysis of a simple ant colony optimization algorithm. Algorithmica, 54(2), 243-255.
Scopus58 WoS372009 Friedrich, T., He, J., Hebbinghaus, N., Neumann, F., & Witt, C. (2009). Analyses of simple hybrid algorithms for the vertex cover problem. Evolutionary Computation, 17(1), 3-19.
Scopus25 WoS192009 Friedrich, T., Hebbinghaus, N., & Neumann, F. (2009). Comparison of simple diversity mechanisms on plateau functions. Theoretical Computer Science, 410(26), 2455-2462.
Scopus9 WoS82009 Brockhoff, D., Friedrich, T., Hebbinghaus, N., Klein, C., Neumann, F., & Zitzler, E. (2009). On the effects of adding objectives to plateau functions. IEEE Transactions on Evolutionary Computation, 13(3), 591-603.
Scopus57 WoS422009 Jansen, T., Schmidt, M., Sudholt, D., Witt, C., & Zarges, C. (2009). In Memoriam: Ingo Wegener. EVOLUTIONARY COMPUTATION, 17(1), 1-2.
2008 Neumann, F. (2008). Expected runtimes of evolutionary algorithms for the Eulerian cycle problem. Computers & Operations Research, 35(9), 2750-2759.
Scopus30 WoS222007 Neumann, F. (2007). Expected runtimes of a simple evolutionary algorithm for the multi-objective minimum spanning tree problem. European Journal of Operational Research, 181(3), 1620-1629.
Scopus55 WoS402007 Neumann, F., & Wegener, I. (2007). Randomized local search, evolutionary algorithms, and the minimum spanning tree problem. Theoretical Computer Science, 378(1), 32-40.
Scopus130 WoS982007 Doerr, B., Hebbinghaus, N., & Neumann, F. (2007). Speeding Up Evolutionary Algorithms through Asymmetric Mutation Operators. Evolutionary Computation, 15(4), 401-410.
Scopus24 WoS23 Europe PMC22006 Neumann, F., & Wegener, I. (2006). Minimum spanning trees made easier via multi-objective optimization. Natural Computing, 5(3), 305-319.
Scopus86— Bossek, J., Casel, K., Kerschke, P., & Neumann, F. (n.d.). The Node Weight Dependent Traveling Salesperson Problem: Approximation
Algorithms and Randomized Search Heuristics. -
Books
Year Citation 2010 Neumann, F., & Witt, C. (2010). Bioinspired computation in combinatorial optimization : algorithms and their computational complexity. Berlin: Springer.
2010 Neumann, F., & Witt, C. (2010). Bioinspired Computation in Combinatorial Optimization. Springer. -
Book Chapters
-
Conference Papers
-
Conference Items
Year Citation 2018 Neumann, A., & Neumann, F. (2018). Evolutionary computation for digital art. Poster session presented at the meeting of Proceedings of the Genetic and Evolutionary Computation Conference Companion, GECCO 2018, Kyoto, Japan, July 15-19, 2018. ACM.
Scopus12016 Urselmann, M., Foussette, C., Janus, T., Tlatlik, S., Gottschalk, A., Emmerich, M. T., . . . Bäck, T. (2016). Selection of a DFO Method for the Efficient Solution of Continuous Constrained Sub-Problems within a Memetic Algorithm for Chemical Process Synthesis.. Poster session presented at the meeting of GECCO. ACM. 2016 Friedrich, T., Kötzing, T., Krejca, M. S., & Sutton, A. M. (2016). The Benefit of Recombination in Noisy Evolutionary Search.. Poster session presented at the meeting of GECCO (Companion). ACM. 2016 Friedrich, T., Kötzing, T., Quinzan, F., & Sutton, A. M. (2016). Ant Colony Optimization Beats Resampling on Noisy Functions.. Poster session presented at the meeting of GECCO (Companion). ACM. 2016 Colmenar, J. M., Winkler, S. M., Kronberger, G., Maqueda, E., Botella, M., & Hidalgo, J. I. (2016). Predicting Glycemia in Diabetic Patients By Evolutionary Computation and Continuous Glucose Monitoring.. Poster session presented at the meeting of GECCO (Companion). ACM. 2016 Duarte, M., Costa, V., Gomes, J. C., Rodrigues, T., Silva, F., Oliveira, S. M., & Christensen, A. L. (2016). Unleashing the Potential of Evolutionary Swarm Robotics in the Real World.. Poster session presented at the meeting of GECCO (Companion). ACM. 2016 Kheng, C. W., Ku, D. C., Ng, H. F., Khattab, M., & Chong, S. Y. (2016). Curvature Flight Path for Particle Swarm Optimisation.. Poster session presented at the meeting of GECCO. ACM. 2016 Martins, M. S., Delgado, M. R. D. B. D. S., Santana, R., Lüders, R., Gonçalves, R. A., & Almeida, C. P. D. (2016). HMOBEDA: Hybrid Multi-objective Bayesian Estimation of Distribution Algorithm.. Poster session presented at the meeting of GECCO. ACM. 2016 Guervós, J. J. M., Castillo, P. A., García-Sánchez, P., Cuevas, P. D. L., Rico, N., & Valdez, M. G. (2016). Performance for the Masses: Experiments with A Web Based Architecture to Harness Volunteer Resources for Low Cost Distributed Evolutionary Computation.. Poster session presented at the meeting of GECCO. ACM. 2016 Paula, L. C. D., Soares, A. D. S., Lima, T. W. D., Filho, A. R., & Coelho, C. J. (2016). Variable Selection for Multivariate Calibration in Chemometrics: A Real-World Application with Building Blocks Disruption Problem.. Poster session presented at the meeting of GECCO (Companion). ACM. 2016 Dang, D. -C., Friedrich, T., Kötzing, T., Krejca, M. S., Lehre, P. K., Oliveto, P. S., . . . Sutton, A. M. (2016). Escaping Local Optima with Diversity Mechanisms and Crossover.. Poster session presented at the meeting of GECCO. ACM. 2016 Fernando, C., Banarse, D., Reynolds, M., Besse, F., Pfau, D., Jaderberg, M., . . . Wierstra, D. (2016). Convolution by Evolution: Differentiable Pattern Producing Networks.. Poster session presented at the meeting of GECCO. ACM. 2016 Larson, A., Bernatskiy, A., Cappelle, C., Livingston, K. R., Livingston, N., Long, J. H., . . . Bongard, J. C. (2016). Recombination Hotspots Promote the Evolvability of Modular Systems.. Poster session presented at the meeting of GECCO (Companion). ACM. 2016 Scott, E., & De Jong, K. (2016). Evaluation-time bias in quasi-generational and steady-state asynchronous evolutionary algorithms. Poster session presented at the meeting of GECCO 2016 - Proceedings of the 2016 Genetic and Evolutionary Computation Conference. Denver, CO: ASSOC COMPUTING MACHINERY.
Scopus3 WoS12016 Shim, Y., Auerbach, J. E., & Husbands, P. (2016). Darwinian Dynamics of Embodied Chaotic Exploration.. Poster session presented at the meeting of GECCO (Companion). ACM. 2016 Urbanowicz, R. J., Browne, W. N., & Kuber, K. (2016). Hands-on Workshop on Learning Classifier Systems.. Poster session presented at the meeting of GECCO (Companion). ACM. 2016 Pugh, J. K., Soros, L. B., & Stanley, K. O. (2016). An Extended Study of Quality Diversity Algorithms.. Poster session presented at the meeting of GECCO (Companion). ACM. 2016 Smith, S. L., Cagnoni, S., & Patton, R. (2016). MedGEC'16 Chairs' Welcome.. Poster session presented at the meeting of GECCO (Companion). ACM. 2016 Tarapore, D., Clune, J., Cully, A., & Mouret, J. -B. (2016). How do Different Encodings Influence the Performance of the MAP-Elites Algorithm?. Poster session presented at the meeting of GECCO. ACM. 2016 Woodward, J. R., Johnson, C. G., & Brownlee, A. E. (2016). Connecting Automatic Parameter Tuning, Genetic Programming as a Hyper-heuristic, and Genetic Improvement Programming.. Poster session presented at the meeting of GECCO (Companion). ACM. 2016 Toosi, F. G., Nikolov, N. S., & Eaton, M. (2016). A GA-Inspired Approach to the Reduction of Edge Crossings in Force-Directed Layouts.. Poster session presented at the meeting of GECCO (Companion). ACM. 2016 Wilson, D., Cussat-Blanc, S., & Luga, H. (2016). The Evolution of Artificial Neurogenesis.. Poster session presented at the meeting of GECCO (Companion). ACM. 2016 Zuin, G. L., Macedo, Y. P., Chaimowicz, L., & Pappa, G. L. (2016). Discovering Combos in Fighting Games with Evolutionary Algorithms.. Poster session presented at the meeting of GECCO. ACM. 2016 Zutty, J., Long, D., & Rohling, G. (2016). Increasing the Throughput of Expensive Evaluations Through a Vector Based Genetic Programming Framework.. Poster session presented at the meeting of GECCO (Companion). ACM. 2016 Alvarez, I. M., Browne, W. N., & Zhang, M. (2016). Human-inspired Scaling in Learning Classifier Systems: Case Study on the n-bit Multiplexer Problem Set.. Poster session presented at the meeting of GECCO. ACM. 2016 Andersson, M., Bandaru, S., & Ng, A. H. (2016). Tuning of Multiple Parameter Sets in Evolutionary Algorithms.. Poster session presented at the meeting of GECCO. ACM. 2016 Arrieta, A., Wang, S., Sagardui, G., & Etxeberria, L. (2016). Test Case Prioritization of Configurable Cyber-Physical Systems with Weight-Based Search Algorithms.. Poster session presented at the meeting of GECCO. ACM. 2016 Arnaldo, I., Hemberg, E., & O'Reilly, U. -M. (2016). Multi-Line Batch Scheduling by Similarity.. Poster session presented at the meeting of GECCO (Companion). ACM. 2016 Asafuddoula, M., Singh, H. K., & Ray, T. (2016). A CUDA Implementation of an Improved Decomposition Based Evolutionary Algorithm for Multi-Objective Optimization.. Poster session presented at the meeting of GECCO (Companion). ACM. 2016 Basseur, M., Derbel, B., Goëffon, A., & Liefooghe, A. (2016). Experiments on Greedy and Local Search Heuristics for ddimensional Hypervolume Subset Selection.. Poster session presented at the meeting of GECCO. ACM. 2016 Brotánková, J., Urli, T., & Kilby, P. (2016). Planning Habitat Restoration with Genetic Algorithms.. Poster session presented at the meeting of GECCO. ACM. 2016 Bulanova, N., Buzdalova, A., & Buzdalov, M. (2016). Fitness-Dependent Hybridization of Clonal Selection Algorithm and Random Local Search.. Poster session presented at the meeting of GECCO (Companion). ACM. 2016 Chen, Q., Xue, B., Shang, L., & Zhang, M. (2016). Improving Generalisation of Genetic Programming for Symbolic Regression with Structural Risk Minimisation.. Poster session presented at the meeting of GECCO. ACM. 2016 Contreras, S. F., Cortés, C. A., & Guzmán, M. A. (2016). Bio-inspired Multi-objective Optimization Design of a Highly Efficient Squirrel Cage Induction Motor.. Poster session presented at the meeting of GECCO. ACM. 2016 Cruz, C., Karakiewicz, J., & Kirley, M. (2016). A Morphogenetic Design Strategy Using a Composite CA Model.. Poster session presented at the meeting of GECCO (Companion). ACM. 2016 Doerr, B., Doerr, C., & Yang, J. (2016). Optimal Parameter Choices via Precise Black-Box Analysis.. Poster session presented at the meeting of GECCO. ACM. 2016 Fernandes, C. M., Guervós, J. J. M., & Rosa, A. C. (2016). Asynchronous Steady State Particle Swarm.. Poster session presented at the meeting of GECCO (Companion). ACM. 2016 Fernandez, S., Stützle, T., & Pellicer, P. V. (2016). IAM 2016 Chairs' Welcome & Organization.. Poster session presented at the meeting of GECCO (Companion). ACM. 2016 Gilan, S. S., Goyal, N., & Dilkina, B. (2016). Active Learning in Multi-objective Evolutionary Algorithms for Sustainable Building Design.. Poster session presented at the meeting of GECCO. ACM. 2016 Ha, S., Lee, S., & Moon, B. -R. (2016). Inspecting the Latent Space of Stock Market Data with Genetic Programming.. Poster session presented at the meeting of GECCO (Companion). ACM. 2016 Helmuth, T., McPhee, N. F., & Spector, L. (2016). The Impact of Hyperselection on Lexicase Selection.. Poster session presented at the meeting of GECCO. ACM. 2016 Helmuth, T., McPhee, N. F., & Spector, L. (2016). Effects of Lexicase and Tournament Selection on Diversity Recovery and Maintenance.. Poster session presented at the meeting of GECCO (Companion). ACM. 2016 Cramer, S., Kampouridis, M., & Freitas, A. A. (2016). A Genetic Decomposition Algorithm for Predicting Rainfall within Financial Weather Derivatives.. Poster session presented at the meeting of GECCO. ACM. 2016 Huizinga, J., Mouret, J. -B., & Clune, J. (2016). Does Aligning Phenotypic and Genotypic Modularity Improve the Evolution of Neural Networks?. Poster session presented at the meeting of GECCO. ACM. 2016 Kamizono, M., Shimomura, K., Tajiri, M., & Ono, S. (2016). Two-Dimensional Barcode Decoration Using Module-wise Non-systematic Coding and Cooperative Evolution by User and System.. Poster session presented at the meeting of GECCO. ACM. 2016 Kerschke, P., Preuss, M., Wessing, S., & Trautmann, H. (2016). Low-Budget Exploratory Landscape Analysis on Multiple Peaks Models.. Poster session presented at the meeting of GECCO. ACM. 2016 Ge, Y. -F., Yu, W. -J., & Zhang, J. (2016). Diversity-Based Multi-Population Differential Evolution for Large-Scale Optimization.. Poster session presented at the meeting of GECCO (Companion). ACM. 2016 Greensmith, J., Jackson, A. M., & Spendlove, I. (2016). Exploiting the Plasticity of Primary and Secondary Response Mechanisms in Artificial Immune Systems.. Poster session presented at the meeting of GECCO (Companion). ACM. 2016 Martínez, S. Z., Moraglio, A., Aguirre, H. E., & Tanaka, K. (2016). Geometric Particle Swarm Optimization for Multi-objective Optimization Using Decomposition.. Poster session presented at the meeting of GECCO. ACM. 2016 Salomon, S., Purshouse, R. C., Giaghiozis, I., & Fleming, P. J. (2016). A Toolkit for Generating Scalable Stochastic Multiobjective Test Problems.. Poster session presented at the meeting of GECCO. ACM. 2016 Abdolmaleki, A., Lau, N., Reis, L. P., & Neumann, G. (2016). Contextual Stochastic Search.. Poster session presented at the meeting of GECCO (Companion). ACM. 2016 Doncieux, S., Auerbach, J. E., Duro, R. J., & Vladar, H. P. D. (2016). Evolution in Cognition 2016 Chairs' Welcome.. Poster session presented at the meeting of GECCO (Companion). ACM. 2016 Espinoza-Nevárez, D., Ortiz-Bayliss, J. C., Terashima-Marín, H., & Gatica, G. (2016). Selection and Generation Hyper-heuristics for Solving the Vehicle Routing Problem with Time Windows.. Poster session presented at the meeting of GECCO (Companion). ACM. 2016 Gómez, R. H., Coello, C. A. C., & Torres, E. A. (2016). A Multi-Objective Evolutionary Algorithm based on Parallel Coordinates.. Poster session presented at the meeting of GECCO. ACM. 2016 Kenny, A., Li, X., Qin, A. K., & Ernst, A. T. (2016). A Population-based Local Search Technique with Random Descent and Jump for the Steiner Tree Problem in Graphs.. Poster session presented at the meeting of GECCO. ACM. 2016 Mihoc, T. D., Lung, R. I., Gaskó, N., & Suciu, M. A. (2016). Approximation of (k, t)-robust Equilibria.. Poster session presented at the meeting of GECCO. ACM. 2016 Roy, P. C., Islam, M. M., & Deb, K. (2016). Best Order Sort: A New Algorithm to Non-dominated Sorting for Evolutionary Multi-objective Optimization.. Poster session presented at the meeting of GECCO (Companion). ACM. 2016 Santos, V. L. A., Arroyo, J. E. C., & Carvalho, T. F. (2016). Iterated Local Search Based Heuristic for Scheduling Jobs on Unrelated Parallel Machines with Machine Deterioration Effect.. Poster session presented at the meeting of GECCO (Companion). ACM. 2016 Steenkiste, S. V., Koutník, J., Driessens, K., & Schmidhuber, J. (2016). A Wavelet-based Encoding for Neuroevolution.. Poster session presented at the meeting of GECCO. ACM. 2016 Bartoli, A., Lorenzo, A. D., Medvet, E., & Tarlao, F. (2016). On the Automatic Construction of Regular Expressions from Examples (GP vs. Humans 1-0).. Poster session presented at the meeting of GECCO (Companion). ACM. 2016 Bergé, P., Guiban, K. L., Rimmel, A., & Tomasik, J. (2016). Search Space Exploration and an Optimization Criterion for Hard Design Problems.. Poster session presented at the meeting of GECCO (Companion). ACM. 2016 Duarte, M., Gomes, J. C., Oliveira, S. M., & Christensen, A. L. (2016). EvoRBC: Evolutionary Repertoire-based Control for Robots with Arbitrary Locomotion Complexity.. Poster session presented at the meeting of GECCO. ACM. 2016 Ellefsen, K. O., Lepikson, H. A., & Albiez, J. C. (2016). Planning Inspection Paths through Evolutionary Multi-objective Optimization.. Poster session presented at the meeting of GECCO. ACM. 2016 Benítez, C. M. V., Parpinelli, R. S., & Lopes, H. S. (2016). An Ecologically-inspired Parallel Approach Applied to the Protein Structure Reconstruction from Contact Maps.. Poster session presented at the meeting of GECCO (Companion). ACM. 2016 Garbelini, J. C., Kashiwabara, A. Y., & Sanches, D. S. (2016). Discovery Motifs by Evolutionary Computation.. Poster session presented at the meeting of GECCO (Companion). ACM. 2016 Labidi, M. K., Diarrassouba, I., Mahjoub, A. R., & Omrane, A. (2016). A Parallel Hybrid Genetic Algorithm for the k-Edge-Connected Hop-Constrained Network Design Problem.. Poster session presented at the meeting of GECCO. ACM. 2016 Mariani, T., Guizzo, G., Vergilio, S. R., & Pozo, A. T. (2016). Grammatical Evolution for the Multi-Objective Integration and Test Order Problem.. Poster session presented at the meeting of GECCO. ACM. 2016 Martí, L., Tchango, A. F., Navarro, L., & Schoenauer, M. (2016). VorAIS: A Multi-Objective Voronoi Diagram-based Artificial Immune System.. Poster session presented at the meeting of GECCO (Companion). ACM. 2016 Medernach, D., Fitzgerald, J., Azad, R. M. A., & Ryan, C. (2016). A New Wave: A Dynamic Approach to Genetic Programming.. Poster session presented at the meeting of GECCO. ACM. 2016 Nielsen, S. S., Torres, C. F., Danoy, G., & Bouvry, P. (2016). Tackling the IFP Problem with the Preference-Based Genetic Algorithm.. Poster session presented at the meeting of GECCO. ACM. 2016 Pagán, J., Risco-Martín, J. L., Moya, J. M., & Ayala, J. L. (2016). Grammatical Evolutionary Techniques for Prompt Migraine Prediction.. Poster session presented at the meeting of GECCO. ACM. 2016 Perez-Carabaza, S., Besada-Portas, E., Orozco, J. A. L., & Cruz, J. M. D. L. (2016). A Real World Multi-UAV Evolutionary Planner for Minimum Time Target Detection.. Poster session presented at the meeting of GECCO. ACM. 2016 Rocha, G. K., Custódio, F. L., Barbosa, H. J., & Dardenne, L. E. (2016). Using Crowding-Distance in a Multiobjective Genetic Algorithm for Protein Structure Prediction.. Poster session presented at the meeting of GECCO (Companion). ACM. 2016 Smith, R. J., Zincir-Heywood, A. N., Heywood, M. I., & Jacobs, J. T. (2016). Initiating a Moving Target Network Defense with a Real-time Neuro-evolutionary Detector.. Poster session presented at the meeting of GECCO (Companion). ACM. 2016 Sosa-Ascencio, A., Terashima-Marín, H., Ortiz-Bayliss, J. C., & Conant-Pablos, S. E. (2016). Grammar-based Selection Hyper-heuristics for Solving Irregular Bin Packing Problems.. Poster session presented at the meeting of GECCO (Companion). ACM. 2016 Sotto, L. F. D. P., Coelho, R. C., & Melo, V. V. D. (2016). Classification of Cardiac Arrhythmia by Random Forests with Features Constructed by Kaizen Programming with Linear Genetic Programming.. Poster session presented at the meeting of GECCO. ACM. 2016 Suciu, M. A., Lung, R. I., & Gaskó, N. (2016). Game theory, Extremal optimization, and Community Structure Detection in Complex Networks.. Poster session presented at the meeting of GECCO. ACM. 2016 Tran, C. T., Zhang, M., Andreae, P., & Xue, B. (2016). Directly Constructing Multiple Features for Classification with Missing Data using Genetic Programming with Interval Functions.. Poster session presented at the meeting of GECCO (Companion). ACM. 2016 Khadka, S., Tumer, K., Colby, M. K., Tucker, D., Pezzini, P., & Bryden, K. M. (2016). Neuroevolution of a Hybrid Power Plant Simulator.. Poster session presented at the meeting of GECCO. ACM. 2016 Abdolmaleki, A., Lioutikov, R., Lau, N., Reis, L. P., Peters, J., & Neumann, G. (2016). Model-Based Relative Entropy Stochastic Search.. Poster session presented at the meeting of GECCO (Companion). ACM. 2016 Bevilacqua, V., Brunetti, A., Triggiani, M., Magaletti, D., Telegrafo, M., & Moschetta, M. (2016). An Optimized Feed-forward Artificial Neural Network Topology to Support Radiologists in Breast Lesions Classification.. Poster session presented at the meeting of GECCO (Companion). ACM. 2016 Tatsumi, T., Komine, T., Nakata, M., Sato, H., Kovacs, T., & Takadama, K. (2016). Variance-based Learning Classifier System without Convergence of Reward Estimation.. Poster session presented at the meeting of GECCO (Companion). ACM. 2016 Larsen, S. J., Alkærsig, F. G., Ditzel, H. J., Jurisica, I., Alcaraz, N., & Baumbach, J. (2016). A Simulated Annealing Algorithm for Maximum Common Edge Subgraph Detection in Biological Networks.. Poster session presented at the meeting of GECCO. ACM. 2016 Liu, X., Li, F., Ding, Y., Wang, L., & Hao, K. (2016). Mechanical Modeling with Particle Swarm Optimization Algorithm for Braided Bicomponent Ureteral Stent.. Poster session presented at the meeting of GECCO (Companion). ACM. 2016 Lynch, D., Fenton, M., Kucera, S., Claussen, H., & O'Neill, M. (2016). Evolutionary Learning of Scheduling Heuristics for Heterogeneous Wireless Communications Networks.. Poster session presented at the meeting of GECCO. ACM. 2016 Guervós, J. J. M., Castillo, P. A., García-Sánchez, P., Cuevas, P. D. L., & Valdez, M. G. (2016). NodIO: A Framework and Architecture for Pool-based Evolutionary Computation.. Poster session presented at the meeting of GECCO (Companion). ACM. 2016 Osaba, E., López-García, P., Masegosa, A. D., Onieva, E., Landaluce, H., & Perallos, A. (2016). TIMON Project: Description and Preliminary Tests for Traffic Prediction Using Evolutionary Techniques.. Poster session presented at the meeting of GECCO (Companion). ACM. 2016 Kordmahalleh, M. M., Sefidmazgi, M. G., & Homaifar, A. (2016). A Sparse Recurrent Neural Network for Trajectory Prediction of Atlantic Hurricanes.. Poster session presented at the meeting of GECCO. ACM. 2016 Sorrosal, G., Borges, C. E., Holeña, M., Macarulla, A. M., Andonegui, C. M., & Alonso-Vicario, A. (2016). Evolutionary Dynamic Optimization of Control Trajectories for the Catalytic Transformation of the Bioethanol-To-Olefins Process using Neural Networks.. Poster session presented at the meeting of GECCO (Companion). ACM. 2016 Ahrari, A., Lei, H., Sharif, M. A., Deb, K., & Tan, X. (2016). Optimum Design of Artificial Lateral Line Systems for Object Tracking under Uncertain Conditions.. Poster session presented at the meeting of GECCO (Companion). ACM. 2016 Scheibenpflug, A., Karder, J., Schaller, S., Wagner, S., & Affenzeller, M. (2016). Evolutionary Procedural 2D Map Generation using Novelty Search.. Poster session presented at the meeting of GECCO (Companion). ACM. 2016 Szubert, M., Kodali, A., Ganguly, S., Das, K., & Bongard, J. C. (2016). Reducing Antagonism between Behavioral Diversity and Fitness in Semantic Genetic Programming.. Poster session presented at the meeting of GECCO. ACM. 2016 Vallejo, M., Cosgrove, J., Alty, J. E., Smith, S. L., Corne, D. W., & Lones, M. A. (2016). Using Multiobjective Evolutionary Algorithms to Understand Parkinson's Disease.. Poster session presented at the meeting of GECCO (Companion). ACM. 2016 Auger, A., Brockhoff, D., Hansen, N., Tusar, D., Tusar, T., & Wagner, T. (2016). GECCO'16 Black-Box Optimization Benchmarking Workshop (BBOB-2016): Workshop Chairs' Welcome Message.. Poster session presented at the meeting of GECCO (Companion). ACM. 2016 Sanches, D. S., Jr, J. B. A. L., & Delbem, A. C. (2016). Multiobjective Discrete Differential Evolution for Service Restoration in Energy Distribution Systems.. Poster session presented at the meeting of GECCO (Companion). ACM. 2016 Badr, G., Hosny, M., Bintayyash, N., Albilali, E., & Marie-Sainte, S. L. (2016). BeamGA Median: A Hybrid Heuristic Search Framework.. Poster session presented at the meeting of GECCO (Companion). ACM. 2016 Butcher, S., Strasser, S., Hoole, J., Demeo, B., & Sheppard, J. W. (2016). Relaxing Consensus in Distributed Factored Evolutionary Algorithms.. Poster session presented at the meeting of GECCO. ACM. 2016 Cumbo, K. C., Heck, S., Tanimoto, I., DeVault, T., Heckendorn, R. B., & Soule, T. (2016). Bee-Inspired Landmark Recognition in Robotic Navigation.. Poster session presented at the meeting of GECCO (Companion). ACM. 2016 Derbel, B., Liefooghe, A., Zhang, Q., Aguirre, H. E., & Tanaka, K. (2016). Local Search Move Strategies within MOEA/D.. Poster session presented at the meeting of GECCO (Companion). ACM. 2016 Fernandez, S., Valledor, P., Díaz, D., Malatsetxebarria, E., & Iglesias, M. (2016). Criticality of Response Time in the usage of Metaheuristics in Industry.. Poster session presented at the meeting of GECCO (Companion). ACM. 2016 Salgado, R., Prieto, A., Bellas, F., Calvo-Varela, L., & Duro, R. J. (2016). Neuroevolutionary Motivational Engine for Autonomous Robots.. Poster session presented at the meeting of GECCO (Companion). ACM. 2016 Stolfi, D. H., Armas, R., Alba, E., Aguirre, H. E., & Tanaka, K. (2016). Fine Tuning of Traffic in our Cities with Smart Panels: The Quito City Case Study.. Poster session presented at the meeting of GECCO. ACM. 2016 Vallejo, M., Cosgrove, J., Alty, J. E., Jamieson, S., Smith, S. L., Corne, D. W., & Lones, M. A. (2016). A Multi-Objective Approach to Predicting Motor and Cognitive Deficit in Parkinson's Disease Patients.. Poster session presented at the meeting of GECCO (Companion). ACM. 2016 Vladar, H. P. D., Fedor, A., Szilágyi, A., Zachar, I., & Szathmáry, E. (2016). An Attractor Network-Based Model with Darwinian Dynamics.. Poster session presented at the meeting of GECCO (Companion). ACM. 2016 Wang, Y., Qian, Y., Li, Y., Gong, M., & Banzhaf, W. (2016). Artificial Multi-Bee-Colony Algorithm for k-Nearest-Neighbor Fields Search.. Poster session presented at the meeting of GECCO. ACM. 2016 Colby, M. K., Yliniemi, L. M., Pezzini, P., Tucker, D., Bryden, K. M., & Tumer, K. (2016). Multiobjective Neuroevolutionary Control for a Fuel Cell Turbine Hybrid Energy System.. Poster session presented at the meeting of GECCO. ACM. 2016 Paula, L. C. D., Soares, A. D. S., Lima, T. W. D., & Coelho, C. J. (2016). Feature Selection using Genetic Algorithm: An Analysis of the Bias-Property for One-Point Crossover.. Poster session presented at the meeting of GECCO (Companion). ACM. 2016 Khalifa, A., Liebana, D. P., Lucas, S. M., & Togelius, J. (2016). General Video Game Level Generation.. Poster session presented at the meeting of GECCO. ACM. 2016 Stefano, C. D., Fontanella, F., & Freca, A. S. D. (2016). A Novel GA-based Feature Selection Approach for High Dimensional Data.. Poster session presented at the meeting of GECCO (Companion). ACM. 2016 Liu, X. F., Zhan, Z. -H., Lin, J. -H., & Zhang, J. (2016). Parallel Differential Evolution Based on Distributed Cloud Computing Resources for Power Electronic Circuit Optimization.. Poster session presented at the meeting of GECCO (Companion). ACM. 2016 Duro, R. J., Becerra, J. A., Monroy, J., & Caamaño, P. (2016). Considering Memory Networks in the LTM Structure of the Multilevel Darwinist Brain.. Poster session presented at the meeting of GECCO (Companion). ACM. 2016 Volz, V., Rudolph, G., & Naujoks, B. (2016). Demonstrating the Feasibility of Automatic Game Balancing.. Poster session presented at the meeting of GECCO. ACM. 2016 Plachkov, A., Abielmona, R. S., Harb, M., Falcon, R., Inkpen, D., Groza, V., & Petriu, E. M. (2016). Automatic Course of Action Generation using Soft Data for Maritime Domain Awareness.. Poster session presented at the meeting of GECCO (Companion). ACM. 2016 Marmion, M. -E., Aguirre, H. E., Dhaenens, C., Jourdan, L., & Tanaka, K. (2016). Multi-objective Neutral Neighbors': What could be the definition(s)?. Poster session presented at the meeting of GECCO. ACM. 2016 Langdon, W. B., Vilella, A., Lam, B. Y. H., Petke, J., & Harman, M. (2016). Benchmarking Genetically Improved BarraCUDA on Epigenetic Methylation NGS datasets and nVidia GPUs.. Poster session presented at the meeting of GECCO (Companion). ACM. 2016 Auger, A., Brockhoff, D., Hansen, N., Tusar, D., Tusar, T., & Wagner, T. (2016). The Impact of Search Volume on the Performance of RANDOMSEARCH on the Bi-objective BBOB-2016 Test Suite.. Poster session presented at the meeting of GECCO (Companion). ACM. 2016 Auger, A., Brockhoff, D., Hansen, N., Tusar, D., Tusar, T., & Wagner, T. (2016). Benchmarking MATLAB's gamultiobj (NSGA-II) on the Bi-objective BBOB-2016 Test Suite.. Poster session presented at the meeting of GECCO (Companion). ACM. 2016 Spector, L., McPhee, N. F., Helmuth, T., Casale, M. M., & Oks, J. (2016). Evolution Evolves with Autoconstruction.. Poster session presented at the meeting of GECCO (Companion). ACM. 2016 Rahat, A. A. -A., Everson, R. M., Fieldsend, J. E., Jin, Y., & Wang, H. (2016). Surrogate-Assisted Evolutionary Optimisation (SAEOpt'16) Chairs' Welcome & Organization.. Poster session presented at the meeting of GECCO (Companion). ACM. 2016 Panichella, A., Alexandru, C. V., Panichella, S., Bacchelli, A., & Gall, H. C. (2016). A Search-based Training Algorithm for Cost-aware Defect Prediction.. Poster session presented at the meeting of GECCO. ACM. 2016 McPhee, N. F., Casale, M. M., Finzel, M., Helmuth, T., & Spector, L. (2016). Visualizing Genetic Programming Ancestries.. Poster session presented at the meeting of GECCO (Companion). ACM. 2016 Auger, A., Brockhoff, D., Hansen, N., Tusar, D., Tusar, T., & Wagner, T. (2016). Benchmarking RM-MEDA on the Bi-objective BBOB-2016 Test Suite.. Poster session presented at the meeting of GECCO (Companion). ACM. 2016 Auger, A., Brockhoff, D., Hansen, N., Tusar, D., Tusar, T., & Wagner, T. (2016). The Impact of Variation Operators on the Performance of SMS-EMOA on the Bi-objective BBOB-2016 Test Suite.. Poster session presented at the meeting of GECCO (Companion). ACM. 2016 Leclerc, G., Auerbach, J. E., Iacca, G., & Floreano, D. (2016). The Seamless Peer and Cloud Evolution Framework.. Poster session presented at the meeting of GECCO. ACM. 2016 Auger, A., Brockhoff, D., Hansen, N., Tusar, D., Tusar, T., & Wagner, T. (2016). Benchmarking the Pure Random Search on the Bi-objective BBOB-2016 Testbed.. Poster session presented at the meeting of GECCO (Companion). ACM. 2012 Neumann, F., & Witt, C. (2012). Bioinspired computation in combinatorial optimization: algorithms and their computational complexity. Poster session presented at the meeting of GECCO'12 - Proceedings of the 14th International Conference on Genetic and Evolutionary Computation. Philadelphia, U.S.A.: ACM.
Scopus9 WoS52011 Jansen, T., & Neumann, F. (2011). Computational complexity and evolutionary computation. Poster session presented at the meeting of Genetic and Evolutionary Computation Conference, GECCO'11 - Companion Publication. Dublin, Ireland: ACM.
2011 Friedrich, T., & Neumann, F. (2011). Foundations of evolutionary multi-objective optimization. Poster session presented at the meeting of Genetic and Evolutionary Computation Conference, GECCO'11 - Companion Publication. Dublin, Ireland: ACM.
-
Working Paper
Year Citation 2018 Neumann, A., Gao, W., Wagner, M., & Neumann, F. (2018). Evolutionary Diversity Optimization Using Multi-Objective Indicators.. 2016 Neumann, A., Alexander, B., & Neumann, F. (2016). The Evolutionary Process of Image Transition in Conjunction with Box and Strip Mutation. 2016 Neumann, A., Alexander, B., & Neumann, F. (2016). Evolutionary Image Transition Based on Theoretical Insights of Random Processes.. 2016 Pourhassan, M., Shi, F., & Neumann, F. (2016). Parameterized analysis of multi-objective evolutionary algorithms and the weighted vertex cover problem. SPRINGER INTERNATIONAL PUBLISHING AG.
Scopus10 WoS12016 Neumann, F., & Poursoltan, S. (2016). Feature-based algorithm selection for constrained continuous optimisation. IEEE.
Scopus2 WoS22015 Hoeltgen, L., Mainberger, M., Hoffmann, S., Weickert, J., Tang, C. H., Setzer, S., . . . Doerr, B. (2015). Optimising Spatial and Tonal Data for PDE-based Inpainting.. 2014 Polyakovskiy, S., Berghammer, R., & Neumann, F. (2014). Solving Hard Control Problems in Voting Systems via Integer Programming.. 2013 Friedrich, T., Neumann, F., & Thyssen, C. (2013). Multiplicative Approximations, Optimal Hypervolume Distributions, and the Choice of the Reference Point.. 2012 Doerr, B., Johannsen, D., Kötzing, T., Neumann, F., & Theile, M. (2012). More Effective Crossover Operators for the All-Pairs Shortest Path Problem. 2011 Wagner, M., & Neumann, F. (2011). Computational Complexity Results for Genetic Programming and the Sorting Problem. -
Internet Publications
Year Citation 2019 Xie, Y., Harper, O., Assimi, H., Neumann, A., & Neumann, F. (2019). Evolutionary algorithms for the chance-constrained knapsack problem.. 2019 Doerr, B., Doerr, C., Neumann, A., Neumann, F., & Sutton, A. M. (2019). Optimization of Chance-Constrained Submodular Functions. 2018 Roostapour, V., Neumann, A., Neumann, F., & Friedrich, T. (2018). Pareto optimization for subset selection with dynamic cost constraints. 2018 Neumann, A., Gao, W., Doerr, C., Neumann, F., & Wagner, M. (2018). Discrepancy-based Evolutionary Diversity Optimization. 2017 Neumann, A., Neumann, F., & Friedrich, T. (2017). Quasi-random Agents for Image Transition and Animation..
- NHMRC Ideas Grant "Optimising time use for health and wellbeing", National Health and Medical Research Council, 2020-2023 (led by Dorothea Dumuid at the University of South Australia, several investigators).
- ARC Discovery Project "Evolutionary diversity optimisation", Australian Research Council, 2019-2021 (with Tobias Friedrich).
- Humboldt Fellowship for Experienced Researchers, Alexander von Humboldt Foundation, 2019-2021.
- ARC Industrial Transformation Training Centre for Integrated Operations for Complex Resources, Australian Research Council, 2019-2023 (several chief investigators and industry partners).
- Project "Detection and classification of malicious virtual grassroots influence campaigns in social media", Australia-Germany Joint Research Co-operation Scheme, 2020-2021 (with Lewis Mitchell, Christian Grimme, Mewish Nasim, Derek Weber, Dennis Assenmacher, Lena Adam, Heike Trautmann).
- Research Consortium – Unlocking Complex Resources through Lean Processing, Research Consortia Program, State Government of South Australia, 2017-2021 (several chief investigators and industry partners).
- ARC Discovery Project "Bio-inspired Computing for Problems with Dynamically Changing Constraints", Australian Research Council, 2016-2018 (with Zbigniew Michalewicz, Tobias Friedrich, Marc Schoenauer)
- Project "Modelling and optimisation of submerged buoys for improved ocean wave energy production", Interdisciplinary Research Fund, The University of Adelaide, 2015 (with Markus Wagner, Boyin Ding, Benjamin Cazzolato, Maziar Arjomandi).
- ARC Discovery Project "Parameterised analysis of bio-inspired computing - from theory to high performing algorithms", Australian Research Council, 2014-2016 (with Tobias Friedrich)
- ARC Discovery Project "Advanced planning systems for vertically integrated supply chain management", Australian Research Council, 2013-2015 (with Zbigniew Michalewicz and Adam Ghandar)
- Project "Exploring the evolutionary diversity of Australia's marine snakes to develop a bio-mimetic sea snake robot", Interdisciplinary Research Fund, The University of Adelaide, 2013-2014 (with Lei Chen, Kate Sanders, Amy Watson, Gustavo Carneiro, Brett Goodman, Marc Jones)
- Evolutionary Computation, semester 2, 2018
- Grand Challenges in Computer Science, semester 2, 2017
- Evolutionary Computation, semester 1, 2017
- Mining Big Data, semester 1, 2017.
- Evolutionary Computation, semester 2, 2016
- Mining Big Data, semester 1, 2015.
- Mining Big Data, semester 1, 2014.
- Evolutionary Computation, semester 2, 2013.
- Advanced Algorithms, semester 1, 2013.
- Evolutionary Computation, semester 2, 2012.
- Algorithm and Data Structure Analysis, semester 1, 2012.
- Evolutionary Computation, semester 2, 2011.
- Data Structures and Algorithms, semester 2, 2011.
- Data Structures and Algorithms, semester 1, 2011.
- Algorithms and Data Structures, winter semester, 2009/2010. (Saarland University, Germany)
-
Expand
-
Current Higher Degree by Research Supervision (University of Adelaide)
Date Role Research Topic Program Degree Type Student Load Student Name 2020 Principal Supervisor Many Objective Evolutionary Diversity Optimization Doctor of Philosophy Doctorate Full Time Mr Adel Nikfarjam 2019 Co-Supervisor Towards Faster Scene Text Detection: A Comprehension Video Text Dataset and a Real-Time Video Text Detection Algorithm Doctor of Philosophy Doctorate Full Time Mr Chee Kheng Chng 2018 Principal Supervisor Unlocking Complex Resources through Lean Processing Doctor of Philosophy Doctorate Full Time Miss Yue Xie 2018 Principal Supervisor Optimisation of Supply Chains Under Uncertainty Doctor of Philosophy Doctorate Full Time Mr Hirad Assimi 2017 Principal Supervisor Bio-Inspired computing for problems with Dynamically changing constraints Doctor of Philosophy Doctorate Full Time Mr Vahid Roostapour 2017 Principal Supervisor Optimization of Energy Systems with Dynamic Constraints Doctor of Philosophy Doctorate Full Time Mrs Maryam Hasani Shoreh 2017 Principal Supervisor Automation and Coordination in Social Media Behaviour Doctor of Philosophy Doctorate Part Time Mr Derek Christopher Weber -
Past Higher Degree by Research Supervision (University of Adelaide)
Date Role Research Topic Program Degree Type Student Load Student Name 2015 - 2017 Principal Supervisor Ambulatory Monitoring using Passive RFID Technology Doctor of Philosophy Doctorate Full Time Mr Asanga Wickramasinghe 2015 - 2018 Principal Supervisor Exact and Heuristic Approaches for Multi-component Optimisation Problems Doctor of Philosophy Doctorate Full Time Mr Junhua Wu 2013 - 2016 Principal Supervisor Diversity Optimization and Parameterized Analysis of Heuristic Search Methods for Combinatorial Optimization Problems Doctor of Philosophy Doctorate Full Time Dr Wanru Gao 2013 - 2017 Principal Supervisor Parameterised Complexity Analysis of Evolutionary Algorithms for Combinatorial Optimization Problems Doctor of Philosophy Doctorate Full Time Mrs Mojgan Pourhassan 2012 - 2015 Principal Supervisor Parameterized Analysis of Bio-inspired Computation and the Traveling Salesperson Problem Doctor of Philosophy Doctorate Full Time Mrs Samadhi Nethmini Nallaperuma 2012 - 2016 Principal Supervisor Feature-Based Selection of Bio-Inspired Algorithms for Constrained Continuous Optimisation Doctor of Philosophy Doctorate Full Time Mr Shayan Poursoltan 2011 - 2015 Co-Supervisor Particle swarm optimization: Theoretical analysis, Modifications, and Applications to Constrained Optimization Problems Doctor of Philosophy Doctorate Full Time Mr Mohammadreza Bonyadi 2011 - 2013 Principal Supervisor Theory and Applications of Bio-Inspired Algorithms Doctor of Philosophy Doctorate Full Time Dr Markus Wagner
-
Expand
-
Committee Memberships
Date Role Committee Institution Country 2016 - 2016 Chair General Chair Genetic and Evolutionary Computation Conference 2016 — United States 2013 - 2013 Co-Chair Chair Foundations of Genetic Algorithms 2013 — Australia -
Consulting/Advisories
Date Institution Department Organisation Type Country 2018 - ongoing Daitum — Business and professional Australia 2015 - ongoing Complexica — Business and professional Australia 2015 - ongoing Optimatics — Business and professional Australia 2014 - 2016 Project SAGE Speed of Adaptation in Population Genetics and Evolutionary Computation — Scientific research United Kingdom -
Editorial Boards
Date Role Editorial Board Name Institution Country 2017 - ongoing Associate Editor IEEE Transactions on Evolutionary Computation — — 2014 - ongoing Associate Editor Evolutionary Computation — —
Connect With Me
External Profiles