Mr Bemah Ibrahim

Higher Degree by Research Candidate

School of Civil Engineering and Construction

College of Engineering and Information Technology


Year Citation
2024 Ibrahim, B., Tetteh Asare, A., & Ahenkorah, I. (2024). A transparent and valid framework for rockburst assessment: unifying Interpretable machine learning and conformal prediction. Rock Mechanics and Rock Engineering, 57(8), 6211-6225.
DOI Scopus5 WoS5
2024 Ibrahim, B., & Ahenkorah, I. (2024). Classifying rockburst with confidence: a novel conformal prediction approach. International Journal of Mining Science and Technology, 34(1), 51-64.
DOI Scopus16 WoS14
2023 Ibrahim, B., Ewusi, A., Ziggah, Y. Y., & Ahenkorah, I. (2023). A new implementation of stacked generalisation approach for modelling arsenic concentration in multiple water sources. International Journal of Environmental Science and Technology, 21(5), 5035-5052.
DOI Scopus4 WoS4
2023 Ibrahim, B., Konduah, J. O., & Ahenkorah, I. (2023). Predicting reservoir temperature of geothermal systems in Western Anatolia, Turkey: a focus on predictive performance and explainability of machine learning models. Geothermics, 112(102727), 1-14.
DOI Scopus20 WoS18
2022 Majeed, F., Ziggah, Y. Y., Kusi Manu, C., Ibrahim, B., & Ahenkorah, I. (2022). A novel artificial intelligence approach for regolith geochemical grade prediction using multivariate adaptive regression splines. Geosystems and Geoenvironment, 1(2, 100038), 1-16.
DOI Scopus19
2022 Ibrahim, B., Majeed, F., Ewusi, A., & Ahenkorah, I. (2022). Residual geochemical gold grade prediction using extreme gradient boosting. Environmental Challenges, 6(article no. 100421), 1-9.
DOI Scopus22
2022 Ibrahim, B., Ewusi, A., Ahenkorah, I., & Ziggah, Y. Y. (2022). Modelling of arsenic concentration in multiple water sources: a comparison of different machine learning methods. Groundwater for Sustainable Development, 17(100745), 1-14.
DOI Scopus23 WoS21
2022 Ibrahim, B., Ewusi, A., & Ahenkorah, I. (2022). Assessing the suitability of boosting machine-learning algorithms for classifying arsenic-contaminated waters: a novel model-explainable approach using SHapley Additive exPlanations. Water, 14(21), 1-23.
DOI Scopus13 WoS12
2022 Ibrahim, B., Ahenkorah, I., Ewusi, A., & Majeed, F. (2022). A novel XRF-based lithological classification in the Tarkwaian paleo placer formation using SMOTE-XGBoost. Journal of Geochemical Exploration, 245(article no. 107147), 1-14.
DOI Scopus19 WoS16
2022 Ibrahim, B., Ahenkorah, I., & Ewusi, A. (2022). Explainable Risk Assessment of Rockbolts’ Failure in Underground Coal Mines Based on Categorical Gradient Boosting and SHapley Additive exPlanations (SHAP). Sustainability Switzerland, 14(19), 11843.
DOI Scopus13

Connect With Me

External Profiles

Other Links