| 2026 |
Lu, S., Liu, L., Yu, K., Le, T. D., Liu, J., & Li, J. (2026). Dependency-based anomaly detection: A general framework and comprehensive evaluation. Expert Systems with Applications, 297(129249), 129249. DOI |
| 2026 |
Cheng, D., Xu, Z., Li, J., Liu, L., Yu, K., Le, T. D., & Liu, J. (2026). Linking model intervention to causal interpretation in model explanation. Pattern Recognition, 173, 112814. DOI |
| 2025 |
Pinero, S., Li, X., Liu, L., Li, J., Lee, S. H., Winter, M., . . . Le, T. D. (2025). Integrative multi-omics framework for causal gene discovery in Long COVID. Plos Computational Biology, 21(12), e1013725. DOI |
| 2025 |
Amente, L. D., Mills, N. T., Le, T. D., Hyppönen, E., & Lee, S. H. (2025). A latent outcome variable approach for Mendelian randomization using the stochastic expectation maximization algorithm. Human Genetics, 144(5), 559-574. DOI Scopus1 WoS1 Europe PMC1 |
| 2025 |
Amente, L. D., Mills, N. T., Le, T. D., Hypponen, E., & Lee, S. H. (2025). Disentangling horizontal and vertical Pleiotropy in genetic correlation estimation: introducing the HVP model. Human Genetics, 144(8), 861-876. DOI Europe PMC1 |
| 2025 |
Pinero, S., Li, X., Zhang, J., Winter, M., Lee, S. H., Nguyen, T., . . . Le, T. D. (2025). Omics-based computational approaches for biomarker identification, prediction, and treatment of Long COVID. Critical Reviews in Clinical Laboratory Sciences, 27 pages. DOI |
| 2025 |
Dao, B., Trinh, V. N., Nguyen, H. V., Nguyen, H. L., Le, T. D., & Luu, P. L. (2025). Crosstalk between genomic variants and DNA methylation in FLT3 mutant acute myeloid leukemia. Briefings in Functional Genomics, 24(elae028), 10 pages. DOI Scopus1 WoS1 Europe PMC1 |
| 2025 |
Cheng, D., Li, J., Liu, L., Xu, Z., Zhang, W., Liu, J., & Le, T. D. (2025). Disentangled Representation Learning for Causal Inference With Instruments. IEEE Transactions on Neural Networks and Learning Systems, 36(8), 14078-14091. DOI Scopus4 WoS2 |
| 2025 |
Li, X., Liu, L., Li, J., & Le, T. D. (2025). Stable Breast Cancer Prognosis. IEEE Transactions on Computational Biology and Bioinformatics, 22(2), 721-731. DOI |
| 2024 |
Zhang, J., Liu, L., Wei, X., Zhao, C., Luo, Y., Li, J., & Le, T. D. (2024). Scanning sample-specific miRNA regulation from bulk and single-cell RNA-sequencing data. BMC Biology, 22(1), 19 pages. DOI Scopus3 WoS3 Europe PMC3 |
| 2024 |
Cheng, D., Li, J., Liu, L., Yu, K., Duy Le, T., & Liu, J. (2024). Discovering Ancestral Instrumental Variables for Causal Inference from Observational Data. IEEE Transactions on Neural Networks and Learning Systems, 35(8), 11542-11552. DOI Scopus9 WoS8 Europe PMC2 |
| 2024 |
Amente, L. D., Mills, N. T., Le, T. D., Hyppönen, E., & Lee, S. H. (2024). Unraveling phenotypic variance in metabolic syndrome through multi-omics. Human Genetics, 143(1), 35-47. DOI Scopus4 WoS4 Europe PMC2 |
| 2024 |
Liu, J., Li, J., Liu, L., Le, T., Ye, F., & Li, G. (2024). Fairmod: making predictions fair in multiple protected attributes. Knowledge and Information Systems, 66(3), 1861-1884. DOI Scopus3 WoS2 |
| 2024 |
Cheng, D., Jiuyong, L. I., Liu, L., Liu, J., & Thuc Duy, L. E. (2024). Data-Driven Causal Effect Estimation Based on Graphical Causal Modelling: A Survey. ACM Computing Surveys, 56(5), 37 pages. DOI Scopus32 WoS22 |
| 2023 |
Tran, H. X., Le, T. D., Li, J., Liu, L., Liu, J., Zhao, Y., & Waters, T. (2023). Personalized Interventions to Increase the Employment Success of People With Disability. IEEE Transactions on Big Data, 9(6), 1561-1574. DOI Scopus1 WoS1 |
| 2023 |
Cheng, D., Li, J., Liu, L., Yu, K., Le, T. D., & Liu, J. (2023). Toward unique and unbiased causal effect estimation from data with hidden variables. IEEE Transactions on Neural Networks and Learning Systems, 34(9), 1-13. DOI Scopus23 WoS25 Europe PMC3 |
| 2023 |
Zhang, J., Liu, L., Wei, X., Zhao, C., Li, S., Li, J., & Le, T. D. (2023). Pan-cancer characterization of ncRNA synergistic competition uncovers potential carcinogenic biomarkers. Plos Computational Biology, 19(10 October), 28 pages. DOI Scopus5 WoS4 Europe PMC5 |
| 2023 |
Li, J., Liu, L., Zhang, S., Ma, S., Le, T. D., & Liu, J. (2023). Causal heterogeneity discovery by bottom-up pattern search for personalised decision making. Applied Intelligence, 53(7), 8180-8194. DOI |
| 2023 |
Cheng, D., Li, J., Liu, L., Zhang, J., Liu, J., & Le, T. D. (2023). Local Search for Efficient Causal Effect Estimation. IEEE Transactions on Knowledge and Data Engineering, 35(9), 8823-8837. DOI Scopus16 WoS13 |
| 2022 |
Cheng, D., Li, J., Liu, L., Le, T. D., Liu, J., & Yu, K. (2022). Sufficient dimension reduction for average causal effect estimation. Data Mining and Knowledge Discovery, 36(3), 1174-1196. DOI Scopus11 WoS10 |
| 2022 |
Cifuentes Bernal, A. M., Pham, V. V. H., Li, X., Liu, L., Li, J., & Le, T. D. (2022). Dynamic cancer drivers: a causal approach for cancer driver discovery based on bio-pathological trajectories. Briefings in Functional Genomics, 21(6), 455-465. DOI Scopus3 WoS3 Europe PMC3 |
| 2022 |
Li, X., Liu, L., Whitehead, C., Li, J., Thierry, B., Le, T. D., & Winter, M. (2022). Identifying preeclampsia-associated genes using a control theory method. Briefings in Functional Genomics, 21(4), 296-309. DOI Scopus5 WoS6 Europe PMC9 |
| 2022 |
Zhang, J., Liu, L., Zhang, W., Li, X., Zhao, C., Li, S., . . . Le, T. D. (2022). MiRspongeR 2.0: An enhanced R package for exploring miRNA sponge regulation. Bioinformatics Advances, 2(1), 3 pages. DOI Scopus3 WoS2 Europe PMC5 |
| 2022 |
Deho, O. B., Zhan, C., Li, J., Liu, J., Liu, L., & Le, T. D. (2022). How do the existing fairness metrics and unfairness mitigation algorithms contribute to ethical learning analytics?. British Journal of Educational Technology, 53(4), 822-843. DOI Scopus59 WoS40 |
| 2022 |
Zhang, J., Liu, L., Xu, T., Zhang, W., Li, J., Rao, N., & Le, T. D. (2022). Time to infer miRNA sponge modules. Wiley Interdisciplinary Reviews RNA, 13(2), 21 pages. DOI Scopus18 WoS17 Europe PMC18 |
| 2021 |
Li, X., Truong, B., Xu, T., Liu, L., Li, J., & Le, T. D. (2021). Uncovering the roles of microRNAs/lncRNAs in characterising breast cancer subtypes and prognosis. BMC Bioinformatics, 22(1), 22 pages. DOI Scopus5 WoS5 Europe PMC3 |
| 2021 |
Zhang, J., Liu, L., Xu, T., Zhang, W., Zhao, C., Li, S., . . . Le, T. D. (2021). miRSM: an R package to infer and analyse miRNA sponge modules in heterogeneous data. RNA Biology, 18(12), 2308-2320. DOI Scopus10 WoS7 Europe PMC8 |
| 2021 |
Pham, V. V. H., Li, X., Truong, B., Nguyen, T., Liu, L., Li, J., & Le, T. D. (2021). The winning methods for predicting cellular position in the DREAM single-cell transcriptomics challenge. Briefings in Bioinformatics, 22(3), 4 pages. DOI Scopus1 WoS2 Europe PMC4 |
| 2021 |
Chaudhary, M. S., Pham, V. V. H., & Le, T. D. (2021). NIBNA: A network-based node importance approach for identifying breast cancer drivers. Bioinformatics, 37(17), 2521-2528. DOI Scopus10 WoS11 Europe PMC1 |
| 2021 |
Nguyen, T., Le, H., Quinn, T. P., Nguyen, T., Le, T. D., & Venkatesh, S. (2021). GraphDTA: Predicting drug target binding affinity with graph neural networks. Bioinformatics, 37(8), 1140-1147. DOI Scopus791 WoS716 Europe PMC491 |
| 2021 |
Cifuentes-Bernal, A. M., Pham, V. V., Li, X., Liu, L., Li, J., & Le, T. D. (2021). A pseudotemporal causality approach to identifying miRNA-mRNA interactions during biological processes. Bioinformatics, 37(6), 807-814. DOI Scopus6 WoS3 Europe PMC3 |
| 2021 |
Zhang, J., Liu, L., Xu, T., Zhang, W., Zhao, C., Li, S., . . . Le, T. D. (2021). Exploring cell-specific miRNA regulation with single-cell miRNA-mRNA co-sequencing data. BMC Bioinformatics, 22(1), 19 pages. DOI Scopus16 WoS14 Europe PMC16 |
| 2021 |
Nguyen, T., Lee, S. C., Quinn, T. P., Truong, B., Li, X., Tran, T., . . . Le, T. D. (2021). PAN: Personalized Annotation-Based Networks for the Prediction of Breast Cancer Relapse. IEEE ACM Transactions on Computational Biology and Bioinformatics, 18(6), 2841-2847. DOI Scopus6 WoS5 Europe PMC4 |
| 2021 |
Pham, V. V. H., Liu, L., Bracken, C., Goodall, G., Li, J., & Le, T. D. (2021). Computational methods for cancer driver discovery: A survey. Theranostics, 11(11), 5553-5568. DOI Scopus22 WoS21 Europe PMC13 |
| 2021 |
Pham, V. V. H., Liu, L., Bracken, C. P., Nguyen, T., Goodall, G. J., Li, J., & Le, T. D. (2021). pDriver: a novel method for unravelling personalized coding and miRNA cancer drivers. Bioinformatics, 37(19), 3285-3292. DOI Scopus13 WoS13 Europe PMC10 |
| 2021 |
Li, J., Zhang, W., Liu, L., Yu, K., Le, T. D., & Liu, J. (2021). A general framework for causal classification. International Journal of Data Science and Analytics, 11(2), 127-139. DOI Scopus6 WoS6 |
| 2021 |
Tarca, A. L., Pataki, B. Á., Romero, R., Sirota, M., Guan, Y., Kutum, R., . . . Sharma, R. (2021). Crowdsourcing assessment of maternal blood multi-omics for predicting gestational age and preterm birth. Cell Reports Medicine, 2(6), 100323. DOI Scopus74 Europe PMC77 |
| 2020 |
Zhang, J., Pham, V. V. H., Liu, L., Xu, T., Truong, B., Li, J., . . . Le, T. D. (2020). Correction: Identifying mirna synergism using multiple-intervention causal inference (BMC Bioinformatics (2019) 20 (613) DOI: 10.1186/s12859-019-3215-5). BMC Bioinformatics, 21(1), 2 pages. DOI |
| 2020 |
Li, J., Liu, L., Le, T. D., & Liu, J. (2020). Accurate data-driven prediction does not mean high reproducibility. Nature Machine Intelligence, 2(1), 13-15. DOI Scopus38 WoS38 |
| 2020 |
Zhang, J., Xu, T., Liu, L., Zhang, W., Zhao, C., Li, S., . . . Le, T. D. (2020). LMSM: A modular approach for identifying lncRNA related miRNA sponge modules in breast cancer. PLOS COMPUTATIONAL BIOLOGY, 16(4), 22 pages. DOI WoS21 |
| 2020 |
Pan, J., Cui, T., Le, T. D., Li, X., & Zhang, J. (2020). Multi-group transfer learning on multiple latent spaces for text classification. IEEE Access, 8(9051683), 64120-64130. DOI Scopus6 WoS4 |
| 2020 |
Li, X., Liu, L., Goodall, G. J., Schreiber, A., Xu, T., Li, J., & Le, T. D. (2020). A novel single-cell based method for breast cancer prognosis. PLoS Computational Biology, 16(8), e1008133-1-e1008133-20. DOI Scopus23 WoS18 Europe PMC20 |
| 2020 |
Pham, V. V. H., Liu, L., Bracken, C. P., Goodall, G. J., Li, J., & Le, T. D. (2020). DriverGroup: a novel method for identifying driver gene groups. Bioinformatics, 36(Supplement_2), i583-i591. DOI Scopus6 WoS7 Europe PMC4 |
| 2020 |
Tanevski, J., Nguyen, T., Truong, B., Karaiskos, N., Ahsen, M. E., Zhang, X., . . . Meyer, P. (2020). Gene selection for optimal prediction of cell position in tissues from single-cell transcriptomics data. Life Science Alliance, 3(11), 13 pages. DOI Scopus16 WoS13 Europe PMC13 |
| 2020 |
Truong, B., Zhou, X., Shin, J., Li, J., van der Werf, J. H. J., Le, T. D., & Lee, S. H. (2020). Efficient polygenic risk scores for biobank scale data by exploiting phenotypes from inferred relatives. Nature Communications, 11(1), 11 pages. DOI Scopus23 WoS19 Europe PMC21 |
| 2020 |
Zhang, J., Xu, T., Liu, L., Zhang, W., Zhao, C., Li, S., . . . Le, T. D. (2020). LMSM: A modular approach for identifying lncRNA related miRNA sponge modules in breast cancer. Plos Computational Biology, 16(4), e1007851. DOI Scopus22 Europe PMC22 |
| 2020 |
Yu, K., Liu, L., Li, J., Ding, W., & Le, T. D. (2020). Multi-Source Causal Feature Selection. IEEE Transactions on Pattern Analysis and Machine Intelligence, 42(9), 2240-2256. DOI Scopus112 WoS92 Europe PMC8 |
| 2019 |
Zhang, J., Pham, V. V. H., Liu, L., Xu, T., Truong, B., Li, J., . . . Le, T. D. (2019). Identifying miRNA synergism using multiple-intervention causal inference. BMC Bioinformatics, 20(1), 11 pages. DOI Scopus14 WoS14 Europe PMC15 |
| 2019 |
Choobdar, S., Ahsen, M. E., Crawford, J., Tomasoni, M., Fang, T., Lamparter, D., . . . Müller, F. (2019). Assessment of network module identification across complex diseases. Nature Methods, 16(9), 843-852. DOI Scopus206 WoS199 Europe PMC212 |
| 2019 |
Brown, P., Tan, A. -C., El-Esawi, M. A., Liehr, T., Blanck, O., Gladue, D. P., . . . Zhou, Y. (2019). Large expert-curated database for benchmarking document similarity detection in biomedical literature search. Database: the journal of biological databases and curation, 2019(baz085), baz085-1-baz085-66. DOI Scopus28 WoS36 Europe PMC13 |
| 2019 |
Pham, V. V. H., Liu, L., Bracken, C. P., Goodall, G. J., Long, Q., Li, J., & Le, T. D. (2019). CBNA: a control theory based method for identifying coding and non-coding cancer drivers. PLoS computational biology, 15(12), e1007538. DOI Scopus29 WoS30 Europe PMC17 |
| 2019 |
Pham, V. V., Zhang, J., Liu, L., Truong, B., Xu, T., Nguyen, T. T., . . . Le, T. D. (2019). Identifying miRNA-mRNA regulatory relationships in breast cancer with invariant causal prediction. BMC Bioinformatics, 20(1, article no. 143), 1-12. DOI Scopus20 WoS23 Europe PMC18 |
| 2019 |
Pillman, K. A., Scheer, K. G., Hackett-Jones, E., Saunders, K., Bert, A. G., Toubia, J., . . . Bracken, C. P. (2019). Extensive transcriptional responses are co-ordinated by microRNAs as revealed by Exon-Intron Split Analysis (EISA). Nucleic Acids Research, 47(16), 14 pages. DOI Scopus8 WoS7 Europe PMC9 |
| 2019 |
Ma, S., Li, J., Liu, L., & Le, T. D. (2019). Discovering context specific causal relationships. Intelligent Data Analysis, 23(4), 917-931. DOI |
| 2019 |
Ma, S., Liu, L., Li, J., & Le, T. D. (2019). Data-driven discovery of causal interactions. International Journal of Data Science and Analytics, 8(3), 285-297. DOI Scopus2 WoS3 |
| 2019 |
Zhang, J., Liu, L., Xu, T., Xie, Y., Zhao, C., Li, J., & Le, T. D. (2019). MiRspongeR: An R/Bioconductor package for the identification and analysis of miRNA sponge interaction networks and modules. BMC Bioinformatics, 20(1), 12 pages. DOI Scopus34 WoS27 Europe PMC29 |
| 2019 |
Le, T. D., Zhao, Y., Wong, S., Jin, W. H., Ong, K. L., Liu, L., & Williams, G. (2019). Preface. Communications in Computer and Information Science, 1127 CCIS, v-vi. |
| 2018 |
Thuyen, T., Suriyanarayanan, T., Zeng, G., Le, T. D., Liu, L., Li, J., . . . Seneviratne, C. J. (2018). Use of haploid model of Candida albicans to uncover mechanism of action of a novel antifungal agent. Frontiers In cellular and infection microbiology, 8(164), 1-14. DOI Scopus15 WoS14 Europe PMC12 |
| 2018 |
Xu, T., Su, N., Liu, L., Zhang, J., Wang, H., Zhang, W., . . . Le, T. D. (2018). miRBaseConverter: an R/Bioconductor package for converting and retrieving miRNA name, accession, sequence and family information in different versions of miRBase. BMC Bioinformatics, 19(514), 1-10. DOI Scopus60 WoS53 Europe PMC64 |
| 2018 |
Zhang, J., Liu, L., Li, J., & Le, T. D. (2018). LncmiRSRN: identification and analysis of long non-coding RNA related miRNA sponge regulatory network in human cancer. Bioinformatics (Oxford, England), 34(24), 4232-4240. DOI Scopus60 WoS55 Europe PMC53 |
| 2018 |
Le, T., Hoang, T., Li, J., Liu, L., Liu, H., & Hu, S. (2018). A fast PC algorithm for high dimensional causal discovery with multi-core PCs. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 16(5), 1483-1495. DOI Scopus106 WoS91 Europe PMC17 |
| 2018 |
Zhang, J., Le, T. D., Liu, L., & Li, J. (2018). Inferring and analyzing module-specific lncRNA-mRNA causal regulatory networks in human cancer. Briefings in Bioinformatics, 20(4), 1403-1419. DOI Scopus45 WoS41 Europe PMC38 |
| 2018 |
Zhang, W., Le, T. D., Liu, L., & Li, J. (2018). Estimating heterogeneous treatment effect by balancing heterogeneity and fitness. BMC Bioinformatics, 19(Suppl 19), 12 pages. DOI Scopus5 WoS4 Europe PMC1 |
| 2017 |
Le, T. D., Zhang, J., Liu, L., & Li, J. (2017). Computational methods for identifying miRNA sponge interactions. Briefings in Bioinformatics, 18(4), 577-590. DOI Scopus76 WoS67 Europe PMC70 |
| 2017 |
Liu, H., Liu, L., Le, T. D., Lee, I., Sun, S., & Li, J. (2017). Nonparametric Sparse Matrix Decomposition for Cross-View Dimensionality Reduction. IEEE Transactions on Multimedia, 19(8), 1848-1859. DOI Scopus18 WoS18 |
| 2017 |
Xu, T., Le, T. D., Liu, L., Su, N., Wang, R., Sun, B., . . . Li, J. (2017). CancerSubtypes: An R/Bioconductor package for molecular cancer subtype identification, validation and visualization. Bioinformatics, 33(19), 3131-3133. DOI Scopus191 WoS189 Europe PMC178 |
| 2017 |
Zhang, W., Le, T. D., Liu, L., Zhou, Z. H., & Li, J. (2017). Mining heterogeneous causal effects for personalized cancer treatment. Bioinformatics, 33(15), 2372-2378. DOI Scopus35 WoS33 Europe PMC9 |
| 2017 |
Zhang, J., Le, T. D., Liu, L., & Li, J. (2017). Inferring miRNA sponge co-regulation of protein-protein interactions in human breast cancer. BMC Bioinformatics, 18(1), 12 pages. DOI Scopus23 WoS20 Europe PMC15 |
| 2017 |
Zhang, J., Le, T. D., Liu, L., & Li, J. (2017). Identifying miRNA sponge modules using biclustering and regulatory scores. BMC Bioinformatics, 18(Suppl 3), 12 pages. DOI Scopus18 WoS16 Europe PMC12 |
| 2017 |
Li, J., Ma, S., Le, T., Liu, L., & Liu, J. (2017). Causal Decision Trees. IEEE transactions on knowledge and data engineering, 29(2), 257-271. DOI Scopus57 WoS41 |
| 2016 |
Li, J., Le, T. D., Liu, L., Liu, J., Jin, Z., Sun, B., & Ma, S. (2016). From observational studies to causal rule mining. ACM transactions on intelligent systems and technology, 7(2, article no. 14), 1-27. DOI Scopus39 WoS16 |
| 2016 |
Ma, S., Li, J., Liu, L., & Le, T. D. (2016). Mining combined causes in large data sets. Knowledge Based Systems, 92, 104-111. DOI Scopus18 WoS13 |
| 2016 |
Zhang, W., Le, T. D., Liu, L., Zhou, Z. H., & Li, J. (2016). Predicting miRNA targets by integrating gene Regulatory knowledge with Expression profiles. Plos One, 11(4), 19 pages. DOI Scopus16 WoS22 Europe PMC11 |
| 2016 |
Xu, T., Le, T. D., Liu, L., Wang, R., Sun, B., & Li, J. (2016). Identifying cancer subtypes from miRNA-TFmRNA regulatory networks and expression data. Plos One, 11(4), 20 pages. DOI Scopus64 WoS52 Europe PMC39 |
| 2016 |
Masud Karim, S. M., Liu, L., Le, T. D., & Li, J. (2016). Identification of miRNA-mRNA regulatory modules by exploring collective group relationships. BMC Genomics, 17(1), 14 pages. DOI Scopus27 WoS22 Europe PMC17 |
| 2016 |
Zhang, J., Duy Le, T., Liu, L., He, J., & Li, J. (2016). Identifying miRNA synergistic regulatory networks in heterogeneous human data via network motifs. Molecular Biosystems, 12(2), 454-463. DOI Scopus11 WoS10 Europe PMC11 |
| 2016 |
Zhang, J., Le, T. D., Liu, L., He, J., & Li, J. (2016). A novel framework for inferring condition-specific TF and miRNA co-regulation of protein-protein interactions. Gene, 577(1), 55-64. DOI Scopus9 WoS10 Europe PMC8 |
| 2015 |
Le, T. D., Zhang, J., Liu, L., & Li, J. (2015). Ensemble methods for miRNA target prediction from expression data. Plos One, 10(6), 19 pages. DOI Scopus27 WoS21 Europe PMC23 |
| 2015 |
Le, T. D., Zhang, J., Liu, L., Liu, H., & Li, J. (2015). miRLAB: An R Based Dry Lab for Exploring miRNA-mRNA Regulatory Relationships. PLOS One, 10(12), 1-15. DOI Scopus28 WoS23 Europe PMC22 |
| 2014 |
Le, T. D., Liu, L., Zhang, J., Liu, B., & Li, J. (2014). From miRNA regulation to miRNA-TF co-regulation: Computational approaches and challenges. Briefings in Bioinformatics, 16(3), 475-496. DOI Scopus39 WoS34 Europe PMC26 |
| 2014 |
Zhang, J., Thuc, D., Liu, L., Liu, B., He, J., Goodall, G., & Li, J. (2014). Inferring condition-specific miRNA activity from matched miRNA and mRNA expression data. Bioinformatics, 30(21), 3070-3077. DOI Scopus22 WoS19 Europe PMC18 |
| 2014 |
Zhang, J., Thuc, D., Liu, L., Liu, B., He, J., Goodall, G., & Li, J. (2014). Identifying direct miRNA-mRNA causal regulatory relationships in heterogeneous data. Journal of Biomedical Informatics, 52, 438-447. DOI Scopus27 WoS25 Europe PMC24 |
| 2013 |
Le, T., Liu, L., Liu, B., Tsykin, A., Goodall, G., Satou, K., & Li, J. (2013). Inferring microRNA and transcription factor regulatory networks in heterogeneous data. BMC Bioinformatics, 14(article no. 92), 1-13. DOI Scopus39 WoS40 Europe PMC32 |
| 2013 |
Le, T., Liu, L., Tsykin, A., Goodall, G., Liu, B., Sun, B., & Li, J. (2013). Inferring microRNA-mRNA causal regulatory relationships from expression data. Bioinformatics, 29(6), 765-771. DOI Scopus72 WoS70 Europe PMC50 |
Available For Media Comment.