Mr Zhen Zhang

Grant-Funded Researcher (C)

School of Computer Science and Information Technology

College of Engineering and Information Technology


Zhen Zhang is currently a Postdoctoral Researcher at the University of Adelaide, working with Prof. Qinfeng (Javen) Shi. Previously, he was a postdoctoral research fellow in the Department of Computer Science at the National University of Singapore under the supervision of Prof. Lee Wee Sun. He received a PhD in Computer Science from Northwestern Polytechnical University (Xi’an, China) under the supervision of Prof. Yanning Zhang. During Nov. 2012 to Dec. 2014, he was a visiting student at Australian Centre for Visual Technologies, University of Adelaide, under the supervision of Prof. Anton van den Hengel and Prof. Qinfeng (Javen) Shi. He completed his bachelor degree in Computer Science in 2010 at School of Computer Science and Engineering, Northwestern Polytechnical University, Xi’an, China, working with Prof. Yanning Zhang and Dr. Zhonghua Fu.

Zhen Zhang is currently a Postdoctoral Researcher at the University of Adelaide, working with Prof. Qinfeng (Javen) Shi, on causality, reinforcement learning and computer vision. Previously, he was a postdoctoral research fellow in the Department of Computer Science at the National University of Singapore under the supervision of Prof. Lee Wee Sun. He received a PhD in Computer Science from Northwestern Polytechnical University (Xi’an, China) under the supervision of Prof. Yanning Zhang. During Nov. 2012 to Dec. 2014, he was a visiting student at Australian Centre for Visual Technologies, University of Adelaide, under the supervision of Prof. Anton van den Hengel and Prof. Qinfeng (Javen) Shi. He completed his bachelor degree in Computer Science in 2010 at School of Computer Science and Engineering, Northwestern Polytechnical University, Xi’an, China, working with Prof. Yanning Zhang and Dr. Zhonghua Fu.

Language Competency
Chinese (Mandarin) Can read, write, speak, understand spoken and peer review
English Can read, write, speak, understand spoken and peer review

Date Institution name Country Title
2010 - 2017 Northwestern Polytechnical University China Ph.D

Year Citation
2025 Ghiasi, A., Zhang, Z., Zeng, Z., Ng, C. T., Sheikh, A. H., & Shi, J. Q. (2025). Generalization of anomaly detection in bridge structures using a vibration-based Siamese convolutional neural network. COMPUTER-AIDED CIVIL AND INFRASTRUCTURE ENGINEERING, 40(18), 18 pages.
DOI Scopus4 WoS4
2025 Jin, S., Li, X., Yang, G., Zhang, Z., Shi, J. Q., Liu, Y., & Zhao, C. -X. (2025). Active Learning-Based Prediction of Drug Combination Efficacy. ACS Nano, 19(18), 17929-17940.
DOI Scopus1 WoS1
2025 Zhang, X., Wei, W., Zhang, Z., & Zhang, L. (2025). Leapfrog Polymorphic Neural Ordinary Differential Equation. IEEE Signal Processing Letters, 32, 1-5.
DOI Scopus1 WoS1
2025 Liu, Y., Zhang, Z., Gong, D., Gong, M., Huang, B., van den Hengel, A., . . . Shi, J. Q. (2025). Latent Covariate Shift: Unlocking Partial Identifiability for Multi-Source Domain Adaptation. Transactions on Machine Learning Research, 2025-April.
Scopus1
2024 Liu, M., Zhang, Z., Ma, N., Gu, M., Wang, H., Zhou, S., & Bu, J. (2024). Structure enhanced prototypical alignment for unsupervised cross-domain node classification. Neural Networks, 177, 106396.
DOI Scopus7
2024 Cao, H., Zou, J., Liu, Y., Zhang, Z., Abbasnejad, E., Hengel, A. V. D., & Shi, J. Q. (2024). InvariantStock: Learning Invariant Features for Mastering the Shifting Market. Transactions on Machine Learning Research, 2024.
2024 Yin, Z., Zhang, Z., Gong, D., Albrecht, S. V., & Shi, J. Q. (2024). Highway Graph to Accelerate Reinforcement Learning. Transactions on Machine Learning Research, 2024.
2024 Luo, B., Zhang, Z., Wang, Q., Ke, A., Lu, S., & He, B. (2024). AI-powered Fraud Detection in Decentralized Finance: A Project Life Cycle Perspective. ACM Computing Surveys, 57(4), 1-38.
DOI Scopus10
2024 Tan, Z., Li, X., Zhao, Y., Zhang, Z., Shi, J. Q., & Li, H. (2024). Machine Learning‐Driven Selection of Two‐Dimensional Carbon‐Based Supports for Dual‐Atom Catalysts in CO2 Electroreduction. ChemCatChem, 16(22), e202400470-1-e202400470-8.
DOI Scopus9 WoS9
2024 Chen, L., Zhang, Y., Song, Y., Zhang, Z., & Liu, L. (2024). A Causal Inspired Early-Branching Structure for Domain Generalization. International Journal of Computer Vision, 132(9), 4052-4072.
DOI Scopus6 WoS5
2024 Zhang, X., Zhang, Z., Chinnici, A., Sun, Z., Shi, J. Q., Nathan, G. J., & Chin, R. C. (2024). Physics-informed data-driven unsteady Reynolds-averaged Navier-Stokes turbulence modeling for particle-laden jet flows. Physics of Fluids, 36(5), 23 pages.
DOI Scopus1 WoS1
2024 Li, H., Li, X., Wang, P., Zhang, Z., Davey, K., Shi, J. Q., & Qiao, S. -Z. (2024). Machine Learning Big Data Set Analysis Reveals C-C Electro-Coupling Mechanism. Journal of the American Chemical Society, 146(32), 22850-22858.
DOI Scopus40 WoS43 Europe PMC10
2023 Zhao, Y., Li, H., Shan, J., Zhang, Z., Li, X., Shi, J. Q., . . . Li, H. (2023). Machine Learning Confirms the Formation Mechanism of a Single-Atom Catalyst via Infrared Spectroscopic Analysis. Journal of Physical Chemistry Letters, 14(49), 11058-11062.
DOI Scopus7 WoS7 Europe PMC1
2023 Zhang, Z., Dupty, M. H., Wu, F., Shi, J. Q., & Lee, W. S. (2023). Factor Graph Neural Networks. Journal of Machine Learning Research, 24.
Scopus5
2023 Zhang, Z., Liu, M., Li, Z., & Bu, J. (2023). Self-supervised end-to-end graph level anomaly detection. Scientia Sinica Informationis, 53(11), 2202-2213.
DOI Scopus2
2023 Yan, Q., Gong, D., Wang, P., Zhang, Z., Zhang, Y., & Shi, J. Q. (2023). SharpFormer: Learning Local Feature Preserving Global Representations for Image Deblurring. IEEE Transactions on Image Processing, 32, 2857-2866.
DOI Scopus30 WoS23 Europe PMC3
2023 Meng, J., Wang, Z., Ying, K., Zhang, J., Guo, D., Zhang, Z., . . . Chen, S. (2023). Human Interaction Understanding with Consistency-Aware Learning. IEEE Transactions on Pattern Analysis and Machine Intelligence, 45(10), 11898-11914.
DOI Scopus6 WoS4 Europe PMC2
2023 Li, X., Li, H., Zhang, Z., Shi, J. Q., Jiao, Y., & Qiao, S. -Z. (2023). Active-learning accelerated computational screening of A₂B@NG catalysts for CO₂ electrochemical reduction. Nano Energy, 115, 108695-1-108695-9.
DOI Scopus10 WoS9
2023 Zhang, X., Wei, W., Zhang, Z., Zhang, L., & Li, W. (2023). Milstein-driven neural stochastic differential equation model with uncertainty estimates. Pattern Recognition Letters, 174, 71-77.
DOI Scopus5 WoS4
2022 Zhou, S., Wang, X., ster, M., Li, B., Ye, C., Zhang, Z., . . . Bu, J. (2022). Direction-Aware User Recommendation Based on Asymmetric Network Embedding. ACM Transactions on Information Systems, 40(2), 1-23.
DOI Scopus8
2022 Li, Z., Liu, Y., Zhang, Z., Pan, S., Gao, J., & Bu, J. (2022). Cyclic label propagation for graph semi-supervised learning. World Wide Web, 25(2), 703-721.
DOI Scopus6
2021 Hu, Y., Zhang, Z., Yao, Y., Huyan, X., Zhou, X., & Lee, W. S. (2021). A bidirectional graph neural network for traveling salesman problems on arbitrary symmetric graphs. Engineering Applications of Artificial Intelligence, 97, 104061-1-104061-9.
DOI Scopus39 WoS32
2020 Li, Z., Wang, H., Ding, D., Hu, S., Zhang, Z., Liu, W., . . . Zhang, J. (2020). Deep Interest-Shifting Network with Meta-Embeddings for Fresh Item Recommendation. Complexity, 2020, 1-13.
DOI Scopus3
2020 Gong, D., Zhang, Z., Shi, Q., van den Hengel, A., Shen, C., & Zhang, Y. (2020). Learning deep gradient descent optimization for image deconvolution. IEEE Transactions on Neural Networks and Learning Systems, 31(12), 5468-5482.
DOI Scopus97 WoS80 Europe PMC13
2019 Suwanwimolkul, S., Zhang, L., Gong, D., Zhang, Z., Chen, C., Ranasinghe, D. C., & Qinfeng Shi, J. (2019). An adaptive markov random field for structured compressive sensing. IEEE Transactions on Image Processing, 28(3), 1556-1570.
DOI Scopus9 WoS8
2018 Wang, Z., Jin, J., Liu, T., Liu, S., Zhang, J., Chen, S., . . . Shao, Z. (2018). Understanding human activities in videos: A joint action and interaction learning approach. Neurocomputing, 321, 216-226.
DOI Scopus13
2017 Yao, R., Xia, S., Zhang, Z., & Zhang, Y. (2017). Real-Time Correlation Filter Tracking by Efficient Dense Belief Propagation with Structure Preserving. IEEE Transactions on Multimedia, 19(4), 772-784.
DOI Scopus41 WoS36
2014 Zhang, Z., & Zhang, Y. (2014). Variable kernel density estimation based robust regression and its applications. Neurocomputing, 134, 30-37.
DOI Scopus9 WoS8
2013 Zhang, Z., Shi, Q., Zhang, Y., Shen, C., & Hengel, A. V. D. (2013). Constraint Reduction using Marginal Polytope Diagrams for MAP LP
Relaxations.
2011 Sun, J. Q., Zhou, J., Zhang, Z., & Zhang, Y. P. (2011). Centroid location for space targets based on energy accumulation. Guangxue Jingmi Gongcheng Optics and Precision Engineering, 19(12), 3043-3048.
DOI Scopus21
2011 Sun, J. Q., Zhou, J., Zhu, Y., & Zhang, Z. (2011). Smear removal of CCD camera in astronomic observation. Guangxue Jingmi Gongcheng Optics and Precision Engineering, 19(10), 2526-2532.
DOI Scopus13

Year Citation
2025 Wang, Z., Zhou, S., Chen, J., Zhang, Z., Hu, B., Feng, Y., . . . Wang, C. (2025). Dynamic Graph Transformer with Correlated Spatial-Temporal Positional Encoding. In WSDM 2025 - Proceedings of the 18th ACM International Conference on Web Search and Data Mining (pp. 60-69). Hannover, Germany: ACM.
DOI Scopus4
2024 Liu, M., Zhang, Z., Tang, J., Bu, J., He, B., & Zhou, S. (2024). Revisiting, Benchmarking and Understanding Unsupervised Graph Domain Adaptation. In Advances in Neural Information Processing Systems Vol. 37 (pp. 29 pages). Vancouver, Canada: Neural information processing systems foundation.
Scopus5
2024 Luo, B., Zhang, Z., Wang, Q., & He, B. (2024). Multi-Chain Graphs of Graphs: A New Approach to Analyzing Blockchain Datasets. In Advances in Neural Information Processing Systems Vol. 37. Vancouver, Canada: Neural information processing systems foundation.
Scopus4
2024 Liu, Y., Zhang, Z., Gong, D., Gong, M., Huang, B., van den Hengel, A., . . . Shi, J. Q. (2024). IDENTIFIABLE LATENT POLYNOMIAL CAUSAL MODELS THROUGH THE LENS OF CHANGE. In 12th International Conference on Learning Representations, ICLR 2024. Online: ICLR.
Scopus9
2024 Cai, Y., Liu, Y., Zhang, Z., & Shi, J. Q. (2024). CLAP: Isolating Content from Style Through Contrastive Learning with Augmented Prompts. In Lecture Notes in computer science Vol. 15079 (pp. 130-147). Milan, Italy: Springer Nature Switzerland.
DOI Scopus3
2024 Zhang, Z., & He, B. (2024). Aggregate to Adapt: Node-Centric Aggregation for Multi-Source-Free Graph Domain Adaptation. In WWW 2025 - Proceedings of the ACM Web Conference (pp. 4420-4431). Sydney, Australia: ACM.
DOI Scopus2
2024 Jiang, J., Zhang, Z., Luo, B., He, B., Chen, M., Wang, W., & Chen, J. (2024). Spade: A Real-Time Fraud Detection Framework. In Proceedings of the VLDB Endowment Vol. 17 (pp. 4253-4256). Guangzhou: Association for Computing Machinery (ACM).
DOI
2024 Wang, Q., Zhang, Z., Liu, Z., Lu, S., Luo, B., & He, B. (2024). EX-GRAPH: A PIONEERING DATASET BRIDGING ETHEREUM AND X. In 12th International Conference on Learning Representations Iclr 2024.
Scopus6
2024 Zhang, Z., Liu, M., Wang, A., Chen, H., Li, Z., Bu, J., & He, B. (2024). Collaborate to Adapt: Source-Free Graph Domain Adaptation via Bi-directional Adaptation. In WWW 2024 - Proceedings of the ACM Web Conference (pp. 664-675). Singapore: ACM.
DOI Scopus13
2024 Liu, M., Fang, Z., Zhang, Z., Gu, M., Zhou, S., Wang, X., & Bu, J. (2024). Rethinking Propagation for Unsupervised Graph Domain Adaptation. In Proceedings of the AAAI Conference on Artificial Intelligence Vol. 38 (pp. 13963-13971). Vancouver, Canada: Association for the Advancement of Artificial Intelligence (AAAI).
DOI Scopus28
2023 Zhang, Z., Luo, B., Lu, S., & He, B. (2023). Live Graph Lab: Towards Open, Dynamic and Real Transaction Graphs with NFT. In Advances in Neural Information Processing Systems Vol. 36 (pp. 25 pages). New Orleans: Neural information processing systems foundation.
Scopus9
2022 Yan, Q., Zhang, S., Chen, W., Liu, Y., Zhang, Z., Zhang, Y., . . . Gong, D. (2022). A Lightweight Network for High Dynamic Range Imaging. In IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops Vol. 2022-June (pp. 823-831). Online: IEEE.
DOI Scopus12 WoS9
2022 Perez-Pellitero, E., Catley-Chandar, S., Shaw, R., Leonardis, A., Timofte, R., Zhang, Z., . . . Park, C. Y. (2022). NTIRE 2022 Challenge on High Dynamic Range Imaging: Methods and Results. In IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops Vol. 2022-June (pp. 1008-1022). Online: IEEE.
DOI Scopus32 WoS15
2022 Zhang, Z., Ng, I., Gong, D., Liu, Y., Abbasnejad, E. M., Gong, M., . . . Shi, J. Q. (2022). Truncated Matrix Power Iteration for Differentiable DAG Learning. In Advances in Neural Information Processing Systems Vol. 35 (pp. 13 pages). Online: Neural information processing systems foundation.
Scopus18
2021 Gu, C., Bu, J., Zhang, Z., Yu, Z., Ma, D., & Wang, W. (2021). Image Search with Text Feedback by Deep Hierarchical Attention Mutual Information Maximization. In MM 2021 - Proceedings of the 29th ACM International Conference on Multimedia (pp. 4600-4609). New York, USA: ACM.
DOI Scopus31
2021 Gong, D., Zhang, Z., Shi, J. Q., & van den Hengel, A. (2021). Memory-augmented Dynamic Neural Relational Inference. In Proceedings 2021 IEEE/CVF International Conference on Computer Vision ICCV 2021 (pp. 11823-11832). Los Alamitos, CA, USA: IEEE.
DOI Scopus12 WoS9
2020 Zhang, Z., Wu, F., & Lee, W. S. (2020). Factor graph neural network. In Thirty-fourth Conference on Neural Information Processing Systems, NeurIPS 2020 Vol. 2020-December (pp. 1-11). online: NIPS.
Scopus33 WoS1
2020 Dupty, M. H., Zhang, Z., & Lee, W. S. (2020). Visual relationship detection with low rank non-negative tensor decomposition. In AAAI 2020 - 34th AAAI Conference on Artificial Intelligence Vol. 34 (pp. 10737-10744). online: AAAI.
Scopus7 WoS5
2020 Su, X., Lee, W. S., & Zhang, Z. (2020). Multiplicative Gaussian Particle Filter. In S. Chiappa, & R. Calandra (Eds.), 23rd International Conference on Artificial Intelligence and Statistics (AISTAT) VOL 108 Vol. 108 (pp. 1-9). online: ADDISON-WESLEY PUBL CO.
Scopus1
2019 Zhang, Z., & Lee, W. S. (2019). Deep graphical feature learning for the feature matching problem. In Proceedings: 2019 International Conference on Computer Vision Vol. 2019-October (pp. 5086-5095). Los Alamitos, California: IEEE.
DOI Scopus62 WoS60
2018 Li, C., Zhang, Z., Lee, W. S., & Lee, G. H. (2018). Convolutional Sequence to Sequence Model for Human Dynamics. In Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition (pp. 5226-5234). online: IEEE.
DOI Scopus329 WoS273
2017 Zhang, Z., Shi, Q., McAuley, J., Wei, W., Zhang, Y., Yao, R., & Van Den Hengel, A. (2017). Solving constrained combinatorial optimization problems via MAP inference without high-order penalties. In Proceedings of the 31st AAAI Conference on Artificial Intelligence, AAAI 2017 (pp. 3804-3810). San Francisco: AAAI.
Scopus1 WoS1
2017 Zhang, Z., McAuley, J., Li, Y., Wei, W., Zhang, Y., & Shi, Q. (2017). Dynamic programming bipartite belief propagation for hyper graph matching. In Proceedings of the 26th International Joint Conference on Artificial Intelligence (IJCAI 2017) Vol. 0 (pp. 4662-4668). online: AAAI Press.
DOI Scopus7 WoS5
2016 Zhang, Z., Shi, Q., McAuley, J., Wei, W., Zhang, Y., & Van Den Hengel, A. (2016). Pairwise matching through max-weight bipartite belief propagation. In Proceedings of the 29th IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPR 2016) Vol. 2016 (pp. 1202-1210). Las Vegas, NV: IEEE.
DOI Scopus49 WoS30
2016 Rezatofighi, S., Milan, A., Zhang, Z., Shi, Q., Dick, A., & Reid, I. (2016). Joint probabilistic matching using m-best solutions. In Proceedings of the 29th IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPR 2016) Vol. 2016-December (pp. 136-145). Las Vegas, NV: IEEE.
DOI Scopus25 WoS20
2016 Zhang, Z., Zhang, Y., Sun, J., & Sun, L. (2016). Image matching via higher order structures. In Proceedings of 2015 International Conference on Orange Technologies, ICOT 2015 (pp. 105-108). online: IEEE.
DOI
2015 Tan, M., Shi, Q., Van Den Hengel, A., Shen, C., Gao, J., Hu, F., & Zhang, Z. (2015). Learning graph structure for multi-label image classification via clique generation. In Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition Vol. 07-12-June-2015 (pp. 4100-4109). Boston, MA: IEEE.
DOI Scopus44 WoS35
2015 Rezatofighi, S., Milan, A., Zhang, Z., Shi, Q., Dick, A., & Reid, I. (2015). Joint Probabilistic Data Association Revisited. In Proceedings of the 2015 IEEE International Conference on Computer Vision Vol. 2015 International Conference on Computer Vision, ICCV 2015 (pp. 3047-3055). Santiago, CHILE: IEEE.
DOI Scopus307 WoS232
2015 Wang, Z., Zhang, Z., & Geng, N. (2015). A message passing algorithm for MRF inference with unknown graphs and its applications. In Lecture Notes in Computer Science Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics Vol. 9006 (pp. 288-302). Springer International Publishing.
DOI Scopus1
2012 Zhang, Z., Zhang, Y., Yao, R., Li, H., & Zhu, Y. (2012). Generalized kernel density estimation based robust estimator and its application. In Lecture Notes in Computer Science Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics Vol. 7202 LNCS (pp. 112-121). Springer Berlin Heidelberg.
DOI
2012 Yao, R., Duan, F., Zhang, Z., & Zhang, Y. (2012). Faint moving object detection in optical astronomical image using a 2D-1D IUWT. In Lecture Notes in Computer Science Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics Vol. 7202 LNCS (pp. 442-449). Springer Berlin Heidelberg.
DOI
2011 Gao, J., Zhang, Z., Yao, R., Sun, J., & Zhang, Y. (2011). Smear radiometric correction algorithm in star images based on kernel density estimation. In Proceedings of SPIE the International Society for Optical Engineering Vol. 8194 (pp. 819421). SPIE.
DOI Scopus1
2011 Gao, J., Zhang, Z., Yao, R., Sun, J., & Zhang, Y. (2011). A robust smear removal method for inter-frame Charge-Coupled Device star images. In Proceedings 2011 7th International Conference on Natural Computation Icnc 2011 Vol. 3 (pp. 1805-1808). IEEE.
DOI Scopus7

Year Citation
2022 Liu, Y., Zhang, Z., Gong, D., Gong, M., Huang, B., Hengel, A. V. D., . . . Shi, J. Q. (2022). Identifying Weight-Variant Latent Causal Models.

Date Role Research Topic Program Degree Type Student Load Student Name
2025 Co-Supervisor Improving Machine Learning Models on the Out-Of-Distribution Generalization Doctor of Philosophy Doctorate Full Time Miss Seyedeh Mahdieh Mirmahdi
2025 Co-Supervisor Causal Reinforcement Learning for Interpretable Chain-of-Thought Reasoning in Large Language Models Doctor of Philosophy Doctorate Full Time Mr Jiayu Huang
2025 Co-Supervisor Personalized Cancer Detection and Treatment via Casual Reinforcement Learning with Hyperspectral Imaging Doctor of Philosophy Doctorate Full Time Mr Meisam Mahmoodi
2025 Principal Supervisor Large Language Model Application in Biology and Health Doctor of Philosophy Doctorate Full Time Mr Yijia Song
2024 Co-Supervisor Causal discovery and Out-of-Distribution generalization: sampling from posterior over causal graphs Doctor of Philosophy Doctorate Full Time Mr Nadhir Hassen
2023 Co-Supervisor Causal Discovery on Videos for Scene Graph Generation Doctor of Philosophy Doctorate Full Time Mr Hamed Damirchi
2023 Co-Supervisor Leveraging Causality for Robust Multi-Source Domain Adaptation Doctor of Philosophy Doctorate Full Time Miss Tianjiao Jiang
2023 Co-Supervisor Domain Adaptation via Causal Representation Learning Doctor of Philosophy Doctorate Full Time Mr Yichao Cai

Date Role Research Topic Program Degree Type Student Load Student Name
2024 - 2025 Co-Supervisor Efficient Deep Neural Network Pruning: From Convolutional Networks to Large Language Models Doctor of Philosophy Doctorate Full Time Ms Hongrong Cheng

Connect With Me

External Profiles

Other Links