| 2026 |
Huang, Z., Zhang, S., Cheng, D., Li, J., Liu, L., Lu, G., & Zhang, G. (2026). Learning instrumental variable representation for debiasing in recommender systems. Neural Networks, 193(107977), 1-13. DOI Scopus1 |
| 2026 |
Cheng, D., Xu, Z., Li, J., Liu, L., Yu, K., Le, T. D., & Liu, J. (2026). Linking model intervention to causal interpretation in model explanation. Pattern Recognition, 173, 112814. DOI |
| 2026 |
Zhang, Z., Zhou, J., Yao, J., Liu, L., Li, J., Li, L., & Wu, X. (2026). Learning label-specific features for multi-dimensional classification. Pattern Recognition, 172(112365), 1-14. DOI |
| 2026 |
Chen, Q., Deng, J., Cheng, D., Li, J., & Liu, L. (2026). Multi-view debiasing representation learning for recommender systems. Information Processing and Management, 63(2), 1-18. DOI |
| 2026 |
Lu, S., Liu, L., Yu, K., Le, T. D., Liu, J., & Li, J. (2026). Dependency-based anomaly detection: A general framework and comprehensive evaluation. Expert Systems with Applications, 297(129249), 129249. DOI |
| 2025 |
Deho, O. B., Bewong, M., Kwashie, S., Li, J., Liu, J., Liu, L., & Joksimovic, S. (2025). Is it still fair? A comparative evaluation of fairness algorithms through the lens of covariate drift. Machine Learning, 114(1), 1-19. DOI Scopus1 |
| 2025 |
Yang, F., Liu, J., Li, J., Liu, L., Wang, S., Li, W., & Ni, S. (2025). Causal reinforcement learning for train scheduling on single-track railway networks. Transportation Research Part C Emerging Technologies, 178(105215), 105215. DOI |
| 2025 |
Pinero, S., Li, X., Zhang, J., Winter, M., Lee, S. H., Nguyen, T., . . . Le, T. D. (2025). Omics-based computational approaches for biomarker identification, prediction, and treatment of Long COVID. Critical Reviews in Clinical Laboratory Sciences, 27 pages. DOI |
| 2025 |
Cheng, D., Li, J., Liu, L., Xu, Z., Zhang, W., Liu, J., & Le, T. D. (2025). Disentangled Representation Learning for Causal Inference With Instruments. IEEE Transactions on Neural Networks and Learning Systems, 36(8), 14078-14091. DOI Scopus4 WoS2 |
| 2025 |
Li, X., Liu, L., Li, J., & Le, T. D. (2025). Stable Breast Cancer Prognosis. IEEE Transactions on Computational Biology and Bioinformatics, 22(2), 721-731. DOI |
| 2025 |
Furqon, M. T., Pratama, M., Shiddiqi, A., Liu, L., Habibullah, H., & Dogancay, K. (2025). Time and frequency synergy for source-free time-series domain adaptations. Information Sciences, 695(121734), 20 pages. DOI Scopus3 WoS1 |
| 2025 |
Peng, F., Little, K., & Liu, L. (2025). Human-centred design (HCD) in enhancing dementia care through assistive technologies: a scoping review. Digital, 5(4, article no. 51), 1-22. DOI |
| 2025 |
Huang, Z., Hu, Y., Cheng, D., Li, J., Liu, L., Zhang, G., & Zhang, S. (2025). Multi-cause deconfounding for recommender systems with latent confounders. Knowledge-Based Systems, 329(114345), 1-14. DOI Scopus1 |
| 2025 |
Lu, S., Liu, L., Li, J., Chambers, J., Cook, M. J., & Grayden, D. B. (2025). Leveraging channel coherence in long-term iEEG data for seizure prediction. IEEE Journal of Biomedical and Health Informatics, online(8), 1-8. DOI Scopus1 |
| 2025 |
Zhang, G., Yuan, G., Cheng, D., Liu, L., Li, J., Xu, Z., & Zhang, S. (2025). Deconfounding representation learning for mitigating latent confounding effects in recommendation. Knowledge and Information Systems, 67(7), 5999-6020. DOI Scopus8 |
| 2025 |
Zhang, G., Yuan, G., Cheng, D., Liu, L., Li, J., & Zhang, S. (2025). Mitigating propensity bias of large language models for recommender systems. ACM Transactions on Information Systems, 43(6, article no. 150), 1-26. DOI Scopus15 WoS6 |
| 2025 |
Ma'sum, M. A., Pratama, M., Lughofer, E., Liu, L., Habibullah., & Kowalczyk, R. (2025). Few-shot continual learning via flat-to-wide approaches. IEEE Transactions on Neural Networks and Learning Systems, 36(5), 8966-8978. DOI Scopus1 WoS3 Europe PMC1 |
| 2025 |
Yang, J., Wang, X., Zhang, M., Liu, L., & Li, J. (2025). Meta-knowledge random attention update network for few-shot and anti-noise remaining useful life prediction. Advanced Engineering Informatics, 65(103358), 1-13. DOI Scopus1 WoS1 |
| 2025 |
Yang, J., Wang, X., Zhang, M., Liu, L., & Li, J. (2025). Adaptive dynamic causal meta graph-task network for remaining useful life prediction with extreme long-tailed distribution condition. IEEE Transactions On Industrial Informatics, online(9), 1-11. DOI |
| 2025 |
Pinero, S., Li, X., Liu, L., Li, J., Lee, S. H., Winter, M., . . . Le, T. D. (2025). Integrative multi-omics framework for causal gene discovery in Long COVID. Plos Computational Biology, 21(12), e1013725. DOI |
| 2025 |
Zhang, Y., Xu, T., Cheng, D., Li, J., Liu, L., Xu, Z., & Feng, Z. (2025). Data-driven learning optimal K values for K-nearest neighbour matching in causal inference. Data Mining And Knowledge Discovery, 39(4, article no. 35), 1-24. DOI |
| 2024 |
Zhang, Z., Yao, J., Liu, L., Li, J., Li, L., & Wu, X. (2024). Partial label feature selection: an adaptive approach. IEEE Transactions on Knowledge and Data Engineering, 36(8), 4178-4191. DOI Scopus8 |
| 2024 |
Ye, W., Li, C., Zhang, W., Li, J., Liu, L., Cheng, D., & Feng, Z. (2024). Predicting drug-target interactions by measuring confidence with consistent causal neighborhood interventions. Methods, 231, 15-25. DOI Scopus2 WoS2 Europe PMC2 |
| 2024 |
Guo, X., Yu, K., Liu, L., Cao, F., & Li, J. (2024). Causal feature selection with dual correction. IEEE Transactions on Neural Networks and Learning Systems, 35(1), 938-951. DOI Scopus16 |
| 2024 |
Guo, X., Yu, K., Liu, L., Li, J., Liang, J., Cao, F., & Wu, X. (2024). Progressive skeleton learning for effective local-to-global causal structure learning. IEEE Transactions on Knowledge and Data Engineering, 36(12), 9065-9079. DOI Scopus6 |
| 2024 |
Yu, K., Ling, Z., Liu, L., Li, P., Wang, H., & Li, J. (2024). Feature selection for efficient local-to-global Bayesian network structure learning. ACM Transactions on Knowledge Discovery from Data, 18(2), 1-27. DOI Scopus8 WoS2 |
| 2024 |
Furqon, M., Pratama, M., Liu, L., Habibullah, H., & Dogancay, K. (2024). Mixup domain adaptations for dynamic remaining useful life predictions. Knowledge-based Systems, 295(111783), 1-13. DOI Scopus14 WoS14 |
| 2024 |
Zhang, G., Yuan, G., Cheng, D., Liu, L., Li, J., & Zhang, S. (2024). Disentangled contrastive learning for fair graph representations. Neural Networks, 181(106781), 1-11. DOI Scopus31 WoS23 Europe PMC1 |
| 2024 |
Zhang, J., Liu, L., Wei, X., Zhao, C., Luo, Y., Li, J., & Le, T. D. (2024). Scanning sample-specific miRNA regulation from bulk and single-cell RNA-sequencing data. BMC Biology, 22(1), 19 pages. DOI Scopus3 WoS3 Europe PMC3 |
| 2024 |
Cheng, D., Li, J., Liu, L., Yu, K., Duy Le, T., & Liu, J. (2024). Discovering Ancestral Instrumental Variables for Causal Inference from Observational Data. IEEE Transactions on Neural Networks and Learning Systems, 35(8), 11542-11552. DOI Scopus9 WoS8 Europe PMC2 |
| 2024 |
Cheng, D., Jiuyong, L. I., Liu, L., Liu, J., & Thuc Duy, L. E. (2024). Data-Driven Causal Effect Estimation Based on Graphical Causal Modelling: A Survey. ACM Computing Surveys, 56(5), 37 pages. DOI Scopus32 WoS22 |
| 2024 |
Deho, O. B., Liu, L., Li, J., Liu, J., Zhan, C., & Joksimovic, S. (2024). When the Past != The Future: Assessing the Impact of Dataset Drift on the Fairness of Learning Analytics Models. IEEE Transactions on Learning Technologies, 17, 1007-1020. DOI Scopus5 WoS2 |
| 2024 |
Ma'sum, M. A., Sarkar, M. D. R., Pratama, M., Ramasamy, S., Anavatti, S., Liu, L., . . . Kowalczyk, R. (2024). Dynamic long-term time-series forecasting via meta transformer networks. IEEE Transactions on Artificial Intelligence, 5(8), 4258-4581. DOI Scopus1 |
| 2024 |
Masum, M. A., Pratama, M., Ramasamy, S., Liu, L., & Habibullah, H. (2024). Unsupervised few-shot continual learning for remote sensing image scene classification. IEEE Transactions on Geoscience and Remote Sensing, 62(4707214), 1-14. DOI Scopus3 WoS2 |
| 2024 |
Liu, J., Li, J., Liu, L., Le, T., Ye, F., & Li, G. (2024). Fairmod: making predictions fair in multiple protected attributes. Knowledge and Information Systems, 66(3), 1861-1884. DOI Scopus3 WoS2 |
| 2023 |
Tran, H. X., Le, T. D., Li, J., Liu, L., Liu, J., Zhao, Y., & Waters, T. (2023). Personalized Interventions to Increase the Employment Success of People With Disability. IEEE Transactions on Big Data, 9(6), 1561-1574. DOI Scopus1 WoS1 |
| 2023 |
Cheng, D., Li, J., Liu, L., Zhang, J., Liu, J., & Le, T. D. (2023). Local Search for Efficient Causal Effect Estimation. IEEE Transactions on Knowledge and Data Engineering, 35(9), 8823-8837. DOI Scopus16 WoS13 |
| 2023 |
Li, J., Liu, L., Zhang, S., Ma, S., Le, T. D., & Liu, J. (2023). Causal heterogeneity discovery by bottom-up pattern search for personalised decision making. Applied Intelligence, 53(7), 8180-8194. DOI |
| 2023 |
Bewong, M., Wondoh, J., Kwashie, S., Liu, J., Liu, L., Li, J., . . . Kernot, D. (2023). DATM: A Novel Data Agnostic Topic Modeling Technique With Improved Effectiveness for Both Short and Long Text. IEEE Access, 11, 32826-32841. DOI Scopus4 WoS3 |
| 2023 |
Cheng, D., Li, J., Liu, L., Yu, K., Le, T. D., & Liu, J. (2023). Toward unique and unbiased causal effect estimation from data with hidden variables. IEEE Transactions on Neural Networks and Learning Systems, 34(9), 1-13. DOI Scopus23 WoS25 Europe PMC3 |
| 2023 |
Zhang, J., Liu, L., Wei, X., Zhao, C., Li, S., Li, J., & Le, T. D. (2023). Pan-cancer characterization of ncRNA synergistic competition uncovers potential carcinogenic biomarkers. Plos Computational Biology, 19(10 October), 28 pages. DOI Scopus5 WoS4 Europe PMC5 |
| 2023 |
Deho, O. B., Joksimovic, S., Li, J., Zhan, C., Liu, J., & Liu, L. (2023). Should Learning Analytics Models Include Sensitive Attributes? Explaining the Why. IEEE Transactions on Learning Technologies, 16(4), 560-572. DOI Scopus16 WoS11 |
| 2023 |
Zhang, Z., Liu, L., Li, J., & Wu, X. (2023). Integrating global and local feature selection for multi-label learning. ACM Transactions on Knowledge Discovery from Data, 17(1, article no. 4), 1-37. DOI Scopus17 WoS12 |
| 2023 |
Guo, X., Yu, K., Liu, L., Li, P., & Li, J. (2023). Adaptive Skeleton construction for accurate DAG Learning. IEEE Transactions on Knowledge and Data Engineering, 35(10), 10536-10539. DOI Scopus25 |
| 2023 |
Zhang, Z., Zhang, Z., Yao, J., Liu, L., Li, J., Wu, G., & Wu, X. (2023). Multi-label feature selection via adaptive label correlation estimation. ACM Transactions on Knowledge Discovery from Data, 17(9), 1-28. DOI Scopus24 WoS13 |
| 2023 |
Yu, K., Cai, M., Wu, X., Liu, L., & Li, J. (2023). Multilabel feature selection: a local causal structure learning approach. IEEE Transactions on Neural Networks and Learning Systems, 34(6), 3044-3057. DOI Scopus30 Europe PMC2 |
| 2023 |
Yang, S., Yu, K., Cao, F., Liu, L., Wang, H., & Li, J. (2023). Learning causal representations for robust domain adaptation. IEEE Transactions on Knowledge and Data Engineering, 35(3), 2750-2764. DOI Scopus34 WoS30 |
| 2022 |
Zhang, W., Li, J., & Liu, L. (2022). A unified survey of treatment effect heterogeneity modelling and uplift modelling. ACM Computing Surveys, 54(8, article no. 162), 1-36. DOI Scopus48 |
| 2022 |
Ling, Z., Yu, K., Zhang, Y., Liu, L., & Li, J. (2022). Causal learner: a toolbox for causal structure and Markov blanket learning. Pattern Recognition Letters, 163, 92-95. DOI Scopus28 |
| 2022 |
Ling, Z., Yu, K., Liu, L., Li, J., Zhang, Y., & Wu, X. (2022). PSL: An algorithm for partial Bayesian network structure learning. ACM Transactions on Knowledge Discovery from Data, 16(5, article no. 93), 1-25. DOI Scopus11 |
| 2022 |
Deho, O. B., Zhan, C., Li, J., Liu, J., Liu, L., & Le, T. D. (2022). How do the existing fairness metrics and unfairness mitigation algorithms contribute to ethical learning analytics?. British Journal of Educational Technology, 53(4), 822-843. DOI Scopus58 WoS40 |
| 2022 |
Zhang, J., Liu, L., Zhang, W., Li, X., Zhao, C., Li, S., . . . Le, T. D. (2022). MiRspongeR 2.0: An enhanced R package for exploring miRNA sponge regulation. Bioinformatics Advances, 2(1), 3 pages. DOI Scopus3 WoS2 Europe PMC5 |
| 2022 |
Cifuentes Bernal, A. M., Pham, V. V. H., Li, X., Liu, L., Li, J., & Le, T. D. (2022). Dynamic cancer drivers: a causal approach for cancer driver discovery based on bio-pathological trajectories. Briefings in Functional Genomics, 21(6), 455-465. DOI Scopus3 WoS3 Europe PMC3 |
| 2022 |
Li, X., Liu, L., Whitehead, C., Li, J., Thierry, B., Le, T. D., & Winter, M. (2022). Identifying preeclampsia-associated genes using a control theory method. Briefings in Functional Genomics, 21(4), 296-309. DOI Scopus5 WoS6 Europe PMC9 |
| 2022 |
Zhang, J., Liu, L., Xu, T., Zhang, W., Li, J., Rao, N., & Le, T. D. (2022). Time to infer miRNA sponge modules. Wiley Interdisciplinary Reviews RNA, 13(2), 21 pages. DOI Scopus18 WoS17 Europe PMC18 |
| 2022 |
Zamecnik, A., Kovanović, V., Joksimović, S., & Liu, L. (2022). Exploring non-traditional learner motivations and characteristics in online learning: A learner profile study. Computers and Education Artificial Intelligence, 3(100051), 100051. DOI Scopus46 |
| 2022 |
Liu, J., Li, J., & Liu, L. (2022). FastOPM—A practical method for partial match of time series. Pattern Recognition, 130(article no. 108808), 12 pages. DOI |
| 2022 |
Cheng, D., Li, J., Liu, L., Le, T. D., Liu, J., & Yu, K. (2022). Sufficient dimension reduction for average causal effect estimation. Data Mining and Knowledge Discovery, 36(3), 1174-1196. DOI Scopus11 WoS10 |
| 2021 |
Li, J., Zhang, W., Liu, L., Yu, K., Le, T. D., & Liu, J. (2021). A general framework for causal classification. International Journal of Data Science and Analytics, 11(2), 127-139. DOI Scopus6 WoS6 |
| 2021 |
Li, X., Truong, B., Xu, T., Liu, L., Li, J., & Le, T. D. (2021). Uncovering the roles of microRNAs/lncRNAs in characterising breast cancer subtypes and prognosis. BMC Bioinformatics, 22(1), 22 pages. DOI Scopus5 WoS5 Europe PMC3 |
| 2021 |
Zhang, J., Liu, L., Xu, T., Zhang, W., Zhao, C., Li, S., . . . Le, T. D. (2021). miRSM: an R package to infer and analyse miRNA sponge modules in heterogeneous data. RNA Biology, 18(12), 2308-2320. DOI Scopus10 WoS7 Europe PMC8 |
| 2021 |
Pham, V. V. H., Li, X., Truong, B., Nguyen, T., Liu, L., Li, J., & Le, T. D. (2021). The winning methods for predicting cellular position in the DREAM single-cell transcriptomics challenge. Briefings in Bioinformatics, 22(3), 4 pages. DOI Scopus1 WoS2 Europe PMC4 |
| 2021 |
Zhang, J., Liu, L., Xu, T., Zhang, W., Zhao, C., Li, S., . . . Le, T. D. (2021). Exploring cell-specific miRNA regulation with single-cell miRNA-mRNA co-sequencing data. BMC Bioinformatics, 22(1), 19 pages. DOI Scopus16 WoS14 Europe PMC16 |
| 2021 |
Cifuentes-Bernal, A. M., Pham, V. V., Li, X., Liu, L., Li, J., & Le, T. D. (2021). A pseudotemporal causality approach to identifying miRNA-mRNA interactions during biological processes. Bioinformatics, 37(6), 807-814. DOI Scopus6 WoS3 Europe PMC3 |
| 2021 |
Pham, V. V. H., Liu, L., Bracken, C., Goodall, G., Li, J., & Le, T. D. (2021). Computational methods for cancer driver discovery: A survey. Theranostics, 11(11), 5553-5568. DOI Scopus22 WoS21 Europe PMC13 |
| 2021 |
Pham, V. V. H., Liu, L., Bracken, C. P., Nguyen, T., Goodall, G. J., Li, J., & Le, T. D. (2021). pDriver: a novel method for unravelling personalized coding and miRNA cancer drivers. Bioinformatics, 37(19), 3285-3292. DOI Scopus13 WoS13 Europe PMC10 |
| 2021 |
Yu, K., Liu, L., & Li, J. (2021). A unified view of causal and non-causal feature selection. ACM Transactions on Knowledge Discovery from Data, 15(4, article no. 3436891), 1-46. DOI Scopus82 WoS72 |
| 2020 |
Yu, K., Guo, X., Liu, L., Li, J., Wang, H., Ling, Z., & Wu, X. (2020). Causality-based feature selection: methods and evaluations. ACM Computing Surveys, 53(5, article no. 111), 1-36. DOI Scopus170 WoS151 |
| 2020 |
Yu, K., Liu, L., & Li, J. (2020). Learning Markov blankets from multiple interventional data sets. IEEE Transactions on Neural Networks and Learning Systems, 31(6), 2005-2019. DOI Scopus24 WoS21 Europe PMC3 |
| 2020 |
Li, X., Liu, L., Goodall, G. J., Schreiber, A., Xu, T., Li, J., & Le, T. D. (2020). A novel single-cell based method for breast cancer prognosis. PLoS Computational Biology, 16(8), e1008133-1-e1008133-20. DOI Scopus23 WoS18 Europe PMC20 |
| 2020 |
Pham, V. V. H., Liu, L., Bracken, C. P., Goodall, G. J., Li, J., & Le, T. D. (2020). DriverGroup: a novel method for identifying driver gene groups. Bioinformatics, 36(Supplement_2), i583-i591. DOI Scopus6 WoS7 Europe PMC4 |
| 2020 |
Zhan, C., Roughead, E., Liu, L., Pratt, N., & Li, J. (2020). Detecting high-quality signals of adverse drug-drug interactions from spontaneous reporting data. Journal of Biomedical Informatics, 112(article no. 103603), 13 pages. DOI Scopus14 WoS12 Europe PMC9 |
| 2020 |
Zhan, C., Roughead, E., Liu, L., Pratt, N., & Li, J. (2020). Detecting potential signals of adverse drug events from prescription data. Artificial Intelligence in Medicine, 104(101839), 14 pages. DOI Scopus11 WoS9 Europe PMC9 |
| 2020 |
Zhang, J., Xu, T., Liu, L., Zhang, W., Zhao, C., Li, S., . . . Le, T. D. (2020). LMSM: A modular approach for identifying lncRNA related miRNA sponge modules in breast cancer. Plos Computational Biology, 16(4), e1007851. DOI Scopus22 Europe PMC22 |
| 2020 |
Yu, K., Liu, L., Li, J., Ding, W., & Le, T. D. (2020). Multi-Source Causal Feature Selection. IEEE Transactions on Pattern Analysis and Machine Intelligence, 42(9), 2240-2256. DOI Scopus112 WoS92 Europe PMC8 |
| 2020 |
Li, J., Liu, L., Le, T. D., & Liu, J. (2020). Accurate data-driven prediction does not mean high reproducibility. Nature Machine Intelligence, 2(1), 13-15. DOI Scopus38 WoS38 |
| 2020 |
Ansah, J., Liu, L., Kang, W., Liu, J., & Li, J. (2020). Leveraging burst in twitter network communities for event detection. World Wide Web, 23(5), 2851-2876. DOI Scopus20 WoS15 |
| 2020 |
Zhang, J., Pham, V. V. H., Liu, L., Xu, T., Truong, B., Li, J., . . . Le, T. D. (2020). Correction: Identifying mirna synergism using multiple-intervention causal inference (BMC Bioinformatics (2019) 20 (613) DOI: 10.1186/s12859-019-3215-5). BMC Bioinformatics, 21(1), 2 pages. DOI |
| 2019 |
Le, T. D., Zhao, Y., Wong, S., Jin, W. H., Ong, K. L., Liu, L., & Williams, G. (2019). Preface. Communications in Computer and Information Science, 1127 CCIS, v-vi. |
| 2019 |
Bewong, M., Liu, J., Liu, L., & Li, J. (2019). Privacy preserving serial publication of transactional data. Information Systems, 82, 53-70. DOI Scopus12 |
| 2019 |
Ma, S., Li, J., Liu, L., & Le, T. D. (2019). Discovering context specific causal relationships. Intelligent Data Analysis, 23(4), 917-931. DOI |
| 2019 |
Ma, S., Liu, L., Li, J., & Le, T. D. (2019). Data-driven discovery of causal interactions. International Journal of Data Science and Analytics, 8(3), 285-297. DOI Scopus2 WoS3 |
| 2019 |
Zhang, J., Pham, V. V. H., Liu, L., Xu, T., Truong, B., Li, J., . . . Le, T. D. (2019). Identifying miRNA synergism using multiple-intervention causal inference. BMC Bioinformatics, 20(1), 11 pages. DOI Scopus14 WoS14 Europe PMC15 |
| 2019 |
Choobdar, S., Ahsen, M. E., Crawford, J., Tomasoni, M., Fang, T., Lamparter, D., . . . Müller, F. (2019). Assessment of network module identification across complex diseases. Nature Methods, 16(9), 843-852. DOI Scopus206 WoS199 Europe PMC212 |
| 2019 |
Zhang, J., Liu, L., Xu, T., Xie, Y., Zhao, C., Li, J., & Le, T. D. (2019). MiRspongeR: An R/Bioconductor package for the identification and analysis of miRNA sponge interaction networks and modules. BMC Bioinformatics, 20(1), 12 pages. DOI Scopus34 WoS27 Europe PMC29 |
| 2019 |
Bewong, M., Liu, J., Liu, L., Li, J., & Choo, K. K. R. (2019). A relative privacy model for effective privacy preservation in transactional data. Concurrency and computation: practice and experience, 31(23, article no. e4923), 1-13. DOI Scopus8 |
| 2019 |
Pham, V. V. H., Liu, L., Bracken, C. P., Goodall, G. J., Long, Q., Li, J., & Le, T. D. (2019). CBNA: a control theory based method for identifying coding and non-coding cancer drivers. PLoS computational biology, 15(12), e1007538. DOI Scopus29 WoS30 Europe PMC17 |
| 2019 |
Pham, V. V., Zhang, J., Liu, L., Truong, B., Xu, T., Nguyen, T. T., . . . Le, T. D. (2019). Identifying miRNA-mRNA regulatory relationships in breast cancer with invariant causal prediction. BMC Bioinformatics, 20(1, article no. 143), 1-12. DOI Scopus20 WoS23 Europe PMC18 |
| 2019 |
Ling, Z., Yu, K., Wang, H., Liu, L., Ding, W., & Wu, X. (2019). BAMB: A balanced markov blanket discovery approach to feature selection. ACM transactions on intelligent systems and technology, 10(5, article no. 52), 1-25. DOI Scopus60 WoS52 |
| 2018 |
Yu, K., Liu, L., Li, J., & Chen, H. (2018). Mining Markov blankets without causal sufficiency. IEEE Transactions on neural networks and learning systems, 29(12), 6333-6347. DOI Scopus41 Europe PMC6 |
| 2018 |
Zhang, Z., Liu, L., Wang, H., Li, J., Hu, D., Yan, J., . . . Meierer, M. (2018). Collective behavior learning by differentiating personal preference from peer influence. Knowledge-based systems, 159, 233-243. DOI Scopus6 WoS5 |
| 2018 |
Boo, Y. L., Stirling, D., Chi, L., Liu, L., Ong, K. L., & Williams, G. (2018). Preface. Communications in Computer and Information Science, 845, v-vi. |
| 2018 |
Liu, L., Li, J., Zhang, K., Kıcıman, E., & Kiyavash, N. (2018). Guest editorial: special issue on causal discovery 2017. International Journal of Data Science and Analytics, 6(1), 1-2. DOI Scopus1 WoS16 |
| 2018 |
Zhan, C., Roughead, E., Liu, L., Pratt, N., & Li, J. (2018). A data-driven method to detect adverse drug events from prescription data. Journal of Biomedical Informatics, 85, 10-20. DOI Scopus9 WoS8 Europe PMC6 |
| 2018 |
Helal, S., Li, J., Liu, L., Ebrahimie, E., Dawson, S., Murray, D., & Long, Q. (2018). Predicting academic performance by considering student heterogeneity. Knowledge-Based Systems, 161, 134-146. DOI Scopus164 WoS111 |
| 2018 |
Helal, S., Li, J., Liu, L., Ebrahimie, E., Dawson, S., & Murray, D. J. (2018). Identifying key factors of student academic performance by subgroup discovery. International Journal of Data Science and Analytics, 7(3), 227-245. DOI Scopus39 WoS29 |
| 2018 |
Thuyen, T., Suriyanarayanan, T., Zeng, G., Le, T. D., Liu, L., Li, J., . . . Seneviratne, C. J. (2018). Use of haploid model of Candida albicans to uncover mechanism of action of a novel antifungal agent. Frontiers In cellular and infection microbiology, 8(164), 1-14. DOI Scopus15 WoS14 Europe PMC12 |
| 2018 |
Xu, T., Su, N., Liu, L., Zhang, J., Wang, H., Zhang, W., . . . Le, T. D. (2018). miRBaseConverter: an R/Bioconductor package for converting and retrieving miRNA name, accession, sequence and family information in different versions of miRBase. BMC Bioinformatics, 19(514), 1-10. DOI Scopus60 WoS53 Europe PMC64 |
| 2018 |
Zhang, J., Liu, L., Li, J., & Le, T. D. (2018). LncmiRSRN: identification and analysis of long non-coding RNA related miRNA sponge regulatory network in human cancer. Bioinformatics (Oxford, England), 34(24), 4232-4240. DOI Scopus60 WoS55 Europe PMC53 |
| 2018 |
Le, T., Hoang, T., Li, J., Liu, L., Liu, H., & Hu, S. (2018). A fast PC algorithm for high dimensional causal discovery with multi-core PCs. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 16(5), 1483-1495. DOI Scopus106 WoS91 Europe PMC17 |
| 2018 |
Zhang, Z., Wang, H., Liu, L., & Li, J. (2018). Multi-label relational classification via node and label correlation. Neurocomputing, 292, 72-81. DOI Scopus10 WoS9 |
| 2018 |
Zhang, W., Le, T. D., Liu, L., & Li, J. (2018). Estimating heterogeneous treatment effect by balancing heterogeneity and fitness. BMC Bioinformatics, 19(Suppl 19), 12 pages. DOI Scopus5 WoS4 Europe PMC1 |
| 2018 |
Zhang, J., Le, T. D., Liu, L., & Li, J. (2018). Inferring and analyzing module-specific lncRNA-mRNA causal regulatory networks in human cancer. Briefings in Bioinformatics, 20(4), 1403-1419. DOI Scopus45 WoS41 Europe PMC38 |
| 2018 |
Kwashie, S., Liu, J., Li, J., Liu, L., Stumptner, M., & Yang, L. (2018). Certus: An effective entity resolution approach with graph differential dependencies (GDDs). Proceedings of the VLDB Endowment, 12(6), 653-666. DOI Scopus36 WoS29 |
| 2017 |
Liu, H., Liu, L., Le, T. D., Lee, I., Sun, S., & Li, J. (2017). Nonparametric Sparse Matrix Decomposition for Cross-View Dimensionality Reduction. IEEE Transactions on Multimedia, 19(8), 1848-1859. DOI Scopus18 WoS18 |
| 2017 |
Xu, T., Le, T. D., Liu, L., Su, N., Wang, R., Sun, B., . . . Li, J. (2017). CancerSubtypes: An R/Bioconductor package for molecular cancer subtype identification, validation and visualization. Bioinformatics, 33(19), 3131-3133. DOI Scopus191 WoS189 Europe PMC178 |
| 2017 |
Zhang, W., Le, T. D., Liu, L., Zhou, Z. H., & Li, J. (2017). Mining heterogeneous causal effects for personalized cancer treatment. Bioinformatics, 33(15), 2372-2378. DOI Scopus35 WoS33 Europe PMC9 |
| 2017 |
Zhang, J., Le, T. D., Liu, L., & Li, J. (2017). Inferring miRNA sponge co-regulation of protein-protein interactions in human breast cancer. BMC Bioinformatics, 18(1), 12 pages. DOI Scopus23 WoS20 Europe PMC15 |
| 2017 |
Zhang, J., Le, T. D., Liu, L., & Li, J. (2017). Identifying miRNA sponge modules using biclustering and regulatory scores. BMC Bioinformatics, 18(Suppl 3), 12 pages. DOI Scopus18 WoS16 Europe PMC12 |
| 2017 |
Li, J., Ma, S., Le, T., Liu, L., & Liu, J. (2017). Causal Decision Trees. IEEE transactions on knowledge and data engineering, 29(2), 257-271. DOI Scopus57 WoS41 |
| 2017 |
Le, T. D., Zhang, J., Liu, L., & Li, J. (2017). Computational methods for identifying miRNA sponge interactions. Briefings in Bioinformatics, 18(4), 577-590. DOI Scopus76 WoS67 Europe PMC70 |
| 2017 |
Li, J., Liu, L., Liu, J., & Green, R. (2017). Building Diversified Multiple Trees for classification in high dimensional noisy biomedical data. Health information science and systems, 5(5), 1-10. DOI Scopus5 WoS4 Europe PMC2 |
| 2017 |
Li, J., & Zhang, K. (2017). Guest Editorial: Special Issue on Causal Discovery 2017. International journal of data science and analytics, 3(2), 79-80. DOI |
| 2017 |
Azfar, A., Choo, K. K. R., & Liu, L. (2017). Forensic taxonomy of Android social apps. Journal of forensic sciences, 62(2), 435-456. DOI Scopus22 WoS18 Europe PMC2 |
| 2017 |
Azfar, A., Choo, K. K. R., & Liu, L. (2017). Forensic taxonomy of android productivity apps. Multimedia tools and applications, 76(3), 3313-3341. DOI WoS19 |
| 2016 |
Azfar, A., Choo, K. K. R., & Liu, L. L. (2016). An android communication app forensic taxonomy. Journal of forensic sciences, 61(5), 1337-1350. DOI WoS32 Europe PMC6 |
| 2016 |
Azfar, A., Choo, R., & Liu, L. (2016). Android mobile VoIP apps: a survey and examination of their security and privacy. Electronic commerce research, 16(1), 73-111. DOI |
| 2016 |
Zhang, W., Le, T. D., Liu, L., Zhou, Z. H., & Li, J. (2016). Predicting miRNA targets by integrating gene Regulatory knowledge with Expression profiles. Plos One, 11(4), 19 pages. DOI Scopus16 WoS22 Europe PMC11 |
| 2016 |
Xu, T., Le, T. D., Liu, L., Wang, R., Sun, B., & Li, J. (2016). Identifying cancer subtypes from miRNA-TFmRNA regulatory networks and expression data. Plos One, 11(4), 20 pages. DOI Scopus64 WoS52 Europe PMC39 |
| 2016 |
Masud Karim, S. M., Liu, L., Le, T. D., & Li, J. (2016). Identification of miRNA-mRNA regulatory modules by exploring collective group relationships. BMC Genomics, 17(1), 14 pages. DOI Scopus27 WoS22 Europe PMC17 |
| 2016 |
Li, J., Le, T. D., Liu, L., Liu, J., Jin, Z., Sun, B., & Ma, S. (2016). From observational studies to causal rule mining. ACM transactions on intelligent systems and technology, 7(2, article no. 14), 1-27. DOI Scopus39 WoS16 |
| 2016 |
Ma, S., Li, J., Liu, L., & Le, T. D. (2016). Mining combined causes in large data sets. Knowledge Based Systems, 92, 104-111. DOI Scopus18 WoS13 |
| 2016 |
Zhang, J., Duy Le, T., Liu, L., He, J., & Li, J. (2016). Identifying miRNA synergistic regulatory networks in heterogeneous human data via network motifs. Molecular Biosystems, 12(2), 454-463. DOI Scopus11 WoS10 Europe PMC11 |
| 2016 |
Zhang, J., Le, T. D., Liu, L., He, J., & Li, J. (2016). A novel framework for inferring condition-specific TF and miRNA co-regulation of protein-protein interactions. Gene, 577(1), 55-64. DOI Scopus9 WoS10 Europe PMC8 |
| 2015 |
Le, T. D., Zhang, J., Liu, L., & Li, J. (2015). Ensemble methods for miRNA target prediction from expression data. Plos One, 10(6), 19 pages. DOI Scopus27 WoS21 Europe PMC23 |
| 2015 |
Le, T. D., Zhang, J., Liu, L., Liu, H., & Li, J. (2015). miRLAB: An R Based Dry Lab for Exploring miRNA-mRNA Regulatory Relationships. PLOS One, 10(12), 1-15. DOI Scopus28 WoS23 Europe PMC22 |
| 2014 |
Zhang, J., Thuc, D., Liu, L., Liu, B., He, J., Goodall, G., & Li, J. (2014). Identifying direct miRNA-mRNA causal regulatory relationships in heterogeneous data. Journal of Biomedical Informatics, 52, 438-447. DOI Scopus27 WoS25 Europe PMC24 |
| 2014 |
Zhang, J., Thuc, D., Liu, L., Liu, B., He, J., Goodall, G., & Li, J. (2014). Inferring condition-specific miRNA activity from matched miRNA and mRNA expression data. Bioinformatics, 30(21), 3070-3077. DOI Scopus22 WoS19 Europe PMC18 |
| 2014 |
Le, T. D., Liu, L., Zhang, J., Liu, B., & Li, J. (2014). From miRNA regulation to miRNA-TF co-regulation: Computational approaches and challenges. Briefings in Bioinformatics, 16(3), 475-496. DOI Scopus39 WoS34 Europe PMC26 |
| 2014 |
Irwin, A. S. M., Slay, J., Choo, K. K. R., & Lui, L. (2014). Money laundering and terrorism financing in virtual environments: a feasibility study. Journal of money laundering control, 17(1), 50-75. DOI |
| 2013 |
Irwin, A. S. M., Slay, J., Choo, K. K. R., & Liu, L. (2013). Are the financial transactions conducted inside virtual environments truly anonymous?: An experimental research from an Australian perspective. Journal of money laundering control, 16(1), 6-40. DOI Scopus12 WoS5 |
| 2013 |
Liu, H., Li, J., Liu, L., Liu, J., Lee, I., & Zhao, J. (2013). Exploring groups from heterogeneous data via sparse learning. Lecture notes in computer science, 7818 LNAI(PART 1), 556-567. DOI Scopus1 |
| 2013 |
Liu, B., Liu, L., Tsykin, A., Goodall, G., Cairns, M., & Li, J. (2013). Discovering functional microRNAmRNA regulatory modules in heterogeneous data. Advances in Experimental Medicine and Biology, 774, 267-290. DOI Scopus3 |
| 2013 |
Le, T., Liu, L., Liu, B., Tsykin, A., Goodall, G., Satou, K., & Li, J. (2013). Inferring microRNA and transcription factor regulatory networks in heterogeneous data. BMC Bioinformatics, 14(article no. 92), 1-13. DOI Scopus39 WoS40 Europe PMC32 |
| 2013 |
Le, T., Liu, L., Tsykin, A., Goodall, G., Liu, B., Sun, B., & Li, J. (2013). Inferring microRNA-mRNA causal regulatory relationships from expression data. Bioinformatics, 29(6), 765-771. DOI Scopus72 WoS70 Europe PMC50 |
| 2012 |
Irwin, A. S. M., Choo, K. K. R., & Liu, L. (2012). Modelling of money laundering and terrorism financing typologies. Journal of money laundering control, 15(3), 316-335. DOI Scopus24 WoS15 |
| 2012 |
Irwin, A. S. M., Choo, K. K., & Liu, L. (2012). An analysis of money laundering and terrorism financing typologies. Journal of money laundering control, 15(1), 85-111. DOI WoS33 |
| 2011 |
Zhang, Z., Liu, L., Li, J., & Zhang, Z. (2011). Spectral representation of protein sequences. Journal of computational and theoretical nanoscience, 8(7), 1335-1339. DOI Scopus7 WoS6 |
| 2010 |
Liu, B., Liu, L., Tsykin, A., Goodall, G., Green, J., Zhu, M., . . . Li, J. (2010). Identifying functional miRNA-mRNA regulatory module with correspondence latent dirichlet allocation. Bioinformatics, 26(24), 3105-3111. DOI Scopus88 WoS84 Europe PMC50 |
| 2009 |
Liu, B., Li, J., Tsykin, A., Liu, L., Gaur, A., & Goodall, G. (2009). Exploring complex miRNA-mRNA interactions with Bayesian networks by splitting-averaging strategy. BMC Bioinformatics, 10(408), 1-19. DOI Scopus74 WoS60 Europe PMC61 |
| 2008 |
Liu, L., Cozzolino, D., Cynkar, W., Dambergs, R., Janik, L., O'Neill, B., . . . Gishen, M. (2008). Preliminary study on the application of visible-near infrared spectroscopy and chemometrics to classify Riesling wines from different countries. Food Chemistry, 106(2), 781-786. DOI Scopus124 WoS113 |
| 2007 |
Liu, L., & Billington, J. (2007). Verification of the Capability Exchange Signalling protocol. International journal on software tools for technology transfer, 9(3-4), 305-326. DOI |