Dr Wei Zhang

ARC Externally-Funded Senior Research Fellow

School of Computer Science and Information Technology

College of Engineering and Information Technology

Eligible to supervise Masters and PhD, but is currently at capacity - email supervisor to discuss availability.


Dr Wei Zhang is an Associate Professor at the School of Computer Science and Information Technology, and a researcher at the Australian Institute for Machine Learning (AIML), Adelaide University (former The University of Adelaide).  She received her PhD degree from the University of Adelaide in Computer Science.
She is a devoted researcher on distributed systems, natural language processing, text mining, and machine learning and author of over 140 publications. Her TIST article was selected as the top 5 outstanding article by Editor-in-Chief in 2022. She is among the top 100 authors worldwide, ranked by field-weighted citation impact, in the SciVal topic for Network Security.  She currently holds an ARC Early Career Industry Fellowship (IE230100119) and am the lead investigator of an ARC Discovery Project (DP240103070) and Linkage Project (LP230200821 ). Her works have received academia and industry funding (ARC, Google, DST, etc.) worth > AUD $3M.  She is the recipient of South Australia Young Tall Poppy Award (2024), Women of Colour in STEM Award (2025, Data Science/AI Pioneer category),Women in AI Asia-Pacific Award finalist (2024, AI in Agribusiness and Rural Development category). 
She has been actively engaged in professional services by serving as conference organizers, conference PC members and reviewer of journals such as ACM/IEEE Trans., IJCAI, ACL, WWW, and KDD, and assessors of ARC funding applications. She also continually develops her leadership by serving as Associate Head of People & Culture, Program Coordinator, Course Coordinator, and outreach contact at the school. She has six-year industry working experiences in multiple roles and has strong industry engagements. She is the member of ACM, IEEE, and ACS.

Dr Zhang's interested areas include text mining, natural language processing, information retrieval and Internet of Things applications, but not limited to.

Her current research relates to three specific areas:

  • Multimodal generation and evaluation
  • Federated Learning in NLP
  • Artificial Intelligence of Things

Date Position Institution name
2026 - ongoing Associate Professor University of Adelaide
2024 - 2025 Senior Lecturer University of Adelaide
2019 - 2023 Lecturer University of Adelaide
2017 - 2019 Postdoctoral Research Fellow Macquarie University

Language Competency
Chinese (Mandarin) Can read, write, speak, understand spoken and peer review
English Can read, write, speak, understand spoken and peer review

Date Institution name Country Title
University of Adelaide Australia PhD

Year Citation
2026 Chen, K., Zuo, J., Chang, R., Qian, X., Carbone, A., & Zhang, W. E. (2026). The rational decommissioning of solar photovoltaic (PV) technologies: evidence from Australia. Resources Conservation and Recycling, 225, 14 pages.
DOI
2025 Zhang, Y., Wang, Y., Sheng, Q. Z., Yao, L., Chen, H., Wang, K., . . . Zhao, R. (2025). Deep learning meets bibliometrics: A survey of citation function classification. Journal of Informetrics, 19(1), 101608-1-101608-15.
DOI Scopus6 WoS5
2025 Fang, X., Chang, R., Zuo, J., Zhang, W. E., Zou, Y., & Li, K. (2025). How do environmental and operational factors impact particulate matter dynamics in building construction? - Insights from real-time sensing.. J Environ Manage, 380, 125098.
DOI Scopus2 WoS1
2025 Wang, S., Zhang, H., Wu, T., Zhang, Y., Zhang, W. E., & Sheng, Q. Z. (2025). Electricity Cost Minimization for Multi-Workflow Allocation in Geo-Distributed Data Centers. IEEE Transactions on Services Computing, 18(3), 1-14.
DOI Scopus1
2025 Wang, X., Figueredo, G., Li, R., Zhang, W. E., Chen, W., & Chen, X. (2025). A survey of deep-learning-based radiology report generation using multimodal inputs. Medical Image Analysis, 103, 26 pages.
DOI Scopus7 WoS6 Europe PMC3
2025 Sheng, Q. Z., Dobbie, G., Jiang, J., Zhang, X., Zhang, W. E., Manolopoulos, Y., . . . Ma, C. (2025). Preface. Lecture Notes in Computer Science Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics, 15389 LNAI, v-vi.
2025 Sheng, Q. Z., Dobbie, G., Jiang, J., Zhang, X., Zhang, W. E., Manolopoulos, Y., . . . Ma, C. (2025). Preface. Lecture Notes in Computer Science Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics, 15392 LNAI, v-vi.
2025 Zhang, Y., Chang, R., Mao, W., Zuo, J., Zhanga, W. E., & Liu, L. (2025). Low-Cost iOS-Based Automated Detection of Under-Construction Interior Drywalls: An Exploratory Study. Journal of Construction Engineering and Management, 151(10), 18 pages.
DOI
2025 Alhazmi, A., Aljubairy, A., Zhang, W., Sheng, Q. Z., & Alhazmi, E. (2025). Can Interpretability of Deep Learning Models Detect Textual Adversarial Distribution?. ACM Transactions on Intelligent Systems and Technology, 16(4), 24 pages.
DOI Scopus2 WoS1
2025 Yang, N., Simon, J., Fang, W., Ayed, C., Zhang, W. E., Axell, M., . . . Fisk, I. (2025). Development of analytical “aroma wheels” for Oolong tea infusions (Shuixian and Rougui) and prediction of dynamic aroma release and colour changes during “Chinese tea ceremony” with machine learning. Food Chemistry, 464(Pt 1), 141537.
DOI Scopus5 WoS4 Europe PMC1
2024 Yang, Z., Liu, Y., Gao, Z., Wen, G., Zhang, W. E., & Xiao, Y. (2024). Deep Convolutional Feature Enhancement for Remote Sensing Object Detection. IEEE Geoscience and Remote Sensing Letters, 21, 5 pages.
DOI Scopus2 WoS1
2024 Ludwig, H., Reiff-Marganiec, S., & Zhang, W. E. (2024). 2024 IEEE ICWS Symposium on Services for Data & Model Ecosystems Message from the Chairs. Proceedings of the IEEE International Conference on Web Services Icws, XLIII-XLIV.
DOI
2024 Cai, T., Lei, Q., Sheng, Q. Z., Cui, N., Yang, S., Yang, J., . . . Mahmood, A. (2024). Reconnecting the Estranged Relationships: Optimizing the Influence Propagation in Evolving Networks. IEEE Transactions on Knowledge and Data Engineering, 36(5), 1-14.
DOI Scopus2 WoS1
2024 Li, Z., Xie, Y., Zhang, W. E., Wang, P., Zou, L., Li, F., . . . Li, C. (2024). Disentangle interest trend and diversity for sequential recommendation. Information Processing and Management, 61(3), 103619.
DOI Scopus26 WoS22
2024 Yang, Z., Xia, X., Liu, Y., Wen, G., Zhang, W. E., & Guo, L. (2024). LPST-Det: Local-Perception-Enhanced Swin Transformer for SAR Ship Detection. Remote Sensing, 16(3), 483.
DOI Scopus11 WoS10
2024 Yang, Z., Liu, Y., Wen, G., Xia, X., Zhang, W. E., & Chen, T. (2024). Object Detection in Remote Sensing Images with Parallel Feature Fusion and Cascade Global Attention Head. IEEE Geoscience and Remote Sensing Letters, 21, 1-5.
DOI Scopus4 WoS2
2024 Yang, Z., Shen, Y., Hou, L., Zhang, W. E., & Chen, T. (2024). S<sup>3</sup>Seg: A Three-Stage Unsupervised Foreground and Background Segmentation Network. IEEE Signal Processing Letters, 31, 1484-1488.
DOI
2024 Zhuang, H., Zhang, W., Chen, W., Yang, J., & Sheng, Q. Z. (2024). Improving Faithfulness and Factuality with Contrastive Learning in Explainable Recommendation. ACM Transactions on Intelligent Systems and Technology, 16(1), 9-1-9-23.
DOI Scopus2 WoS1
2024 Wang, S., Zhang, H., Sheng, Q. Z., Li, X., Sun, Z., Cai, T., . . . Gao, Q. (2024). A Survey on Truth Discovery: Concepts, Methods, Applications, and Opportunities. IEEE Transactions on Big Data, 11(2), 314-332.
DOI
2024 Zhang, C., Chen, W., Zhang, W., & Xu, M. (2024). Mitigating the Impact of Inaccurate Feedback in Dynamic Learning-to-Rank: A Study of Overlooked Interesting Items. ACM Transactions on Intelligent Systems and Technology, 16(1), 5-1-5-26.
DOI
2023 Chen, W., Zhang, W. E., & Yue, L. (2023). Death comes but why: A multi-task memory-fused prediction for accurate and explainable illness severity in ICUs. World Wide Web, 26(6), 4025-4045.
DOI Scopus5 WoS5
2023 Sagar, S., Mahmood, A., Wang, K., Sheng, Q. Z., Pabani, J. K., & Zhang, W. E. (2023). Trust–SIoT: Towards Trustworthy Object Classification in the Social Internet of Things. IEEE Transactions on Network and Service Management, 20(2), 1-14.
DOI Scopus32 WoS20
2023 Mahmood, A., Sheng, Q. Z., Zhang, W. E., Wang, Y., & Sagar, S. (2023). Toward a Distributed Trust Management System for Misbehavior Detection in the Internet of Vehicles. ACM Transactions on Cyber-Physical Systems, 7(3), 1-25.
DOI Scopus17 WoS11
2023 Chang, R., He, T., Han, Y., Xue, R., & Zhang, W. E. (2023). Geographical Imbalance and Influential Characteristics of the Green Building Market. Journal of Construction Engineering and Management, 149(10), 1-14.
DOI Scopus8 WoS8
2023 Yang, Z., Jia, X., Shen, Y., Yang, Y., Li, H., & Zhang, W. E. (2023). AMGAN: An Attribute-Matched Generative Adversarial Network for UAV Virtual Sample Generation. Neural Processing Letters, 55(6), 8131-8149.
DOI Scopus1 WoS1
2023 Ngo, L., Pham, L. Q. A., Tukova, A., Hassanzadeh-Barforoushi, A., Zhang, W., & Wang, Y. (2023). Emerging integrated SERS-microfluidic devices for analysis of cancer-derived small extracellular vesicles. Lab on a Chip, 23(13), 2899-2921.
DOI WoS29 Europe PMC23
2023 Ma, C., Zhang, W. E., Guo, M., Wang, H., & Sheng, Q. Z. (2023). Multi-document Summarization via Deep Learning Techniques: A Survey. ACM COMPUTING SURVEYS, 55(5), 37 pages.
DOI Scopus98 WoS63
2023 Tran, D. H., Sheng, Q. Z., Zhang, W. E., Tran, N. H., & Khoa, N. L. D. (2023). CupMar: A deep learning model for personalized news recommendation based on contextual user-profile and multi-aspect article representation. World Wide Web, 26(2), 713-732.
DOI Scopus13 WoS11
2023 Shu, Y., Zhang, J., Zhang, W. E., Zuo, D., & Sheng, Q. Z. (2023). IQSrec: An Efficient and Diversified Skyline Services Recommendation on Incomplete QoS. IEEE Transactions on Services Computing, 16(3), 1934-1948.
DOI Scopus15 WoS11
2022 Zhang, Y., Zhao, R., Wang, Y., Chen, H., Mahmood, A., Zaib, M., . . . Sheng, Q. Z. (2022). Correction to: Towards employing native information in citation function classification (Scientometrics, (2022), 10.1007/s11192-021-04242-0). Scientometrics, 127(11), 1 page.
DOI
2022 Cai, T., Yang, S., Li, J., Sheng, Q. Z., Yang, J., Wang, X., . . . Gao, L. (2022). Incremental Graph Computation: Anchored Vertex Tracking in Dynamic Social Networks. IEEE Transactions on Knowledge and Data Engineering, 35(7), 7030-7044.
DOI Scopus12 WoS10
2022 Zaib, M., Zhang, W. E., Sheng, Q. Z., Mahmood, A., & Zhang, Y. (2022). Conversational question answering: a survey. Knowledge and Information Systems, 64(12), 3151-3195.
DOI Scopus94 WoS58
2022 Hussain, Z., Sheng, Q. Z., Zhang, W. E., Ortiz, J., & Pouriyeh, S. (2022). Non-invasive Techniques for Monitoring Different Aspects of Sleep: A comprehensive review. ACM Transactions on Computing for Healthcare, 3(2), 1-26.
DOI Scopus41 WoS31
2022 Mahmood, A., Siddiqui, S. A., Sheng, Q. Z., Zhang, W. E., Suzuki, H., & Ni, W. (2022). Trust on wheels: Towards secure and resource efficient IoV networks. Computing, 104(6), 1337-1358.
DOI Scopus34 WoS29
2022 Zhang, W. E., Chang, R., Zhu, M., & Zuo, J. (2022). Time Series Visualization and Forecasting from Australian Building and Construction Statistics. Applied Sciences, 12(5), 1-18.
DOI Scopus1 WoS1
2022 Zhang, Y., Zhao, R., Wang, Y., Chen, H., Mahmood, A., Zaib, M., . . . Sheng, Q. Z. (2022). Towards employing native information in citation function classification. Scientometrics, 127(11), 6557-6577.
DOI Scopus24 WoS22
2022 Tran, D. H., Sheng, Q. Z., Zhang, W. E., Hamad, S. A., Khoa, N. L. D., & Tran, N. H. (2022). Deep Conversational Recommender Systems: Challenges and Opportunities. Computer, 55(4), 30-39.
DOI Scopus3 WoS1
2022 Qu, Y., Zhang, W. E., Yang, J., Wu, L., & Wu, J. (2022). Knowledge-aware document summarization: A survey of knowledge, embedding methods and architectures. Knowledge-Based Systems, 257, 9 pages.
DOI Scopus7 WoS5
2022 Yang, Z., Kong, J., Zheng, B., Li, M., Zhang, W. E., & Chen, T. (2022). Object Detection in Remote Sensing Images With Balanced Rotational and Horizontal Bounding Boxes. IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 19, 5 pages.
DOI Scopus6 WoS5
2022 Ma, C., Zhang, W. E., Pitawela, P. D. D., Qu, Y., Zhuang, H., & Wang, H. (2022). Document-aware Positional Encoding and Linguistic-guided Encoding for
Abstractive Multi-document Summarization.
2021 Nguyen, V. K., Zhang, W. E., & Mahmood, A. (2021). Semi-supervised Intrusive Appliance Load Monitoring in Smart Energy Monitoring System. ACM Transactions on Multimedia Computing, Communications and Applications, 17(3), 1-20.
DOI Scopus12 WoS9
2021 Zhang, W. E., Shemshadi, A., Sheng, Q. Z., Qin, Y., Xu, X., & Yang, J. (2021). A user-oriented taxi ridesharing system with large-scale urban GPS sensor data. IEEE Transactions on Big Data, 7(2), 327-340.
DOI WoS6
2021 Hussain, Z., Waterworth, D., Mahmood, A., Sheng, Q. Z., & Zhang, W. E. (2021). Dataset for toothbrushing activity using brush-attached and wearable sensors. Data in Brief, 37, 1-7.
DOI Scopus6 WoS5 Europe PMC2
2021 Phan, M. H., Nguyen, Q., Phung, S. L., Zhang, W. E., Vo, T. D., & Sheng, Q. Z. (2021). CompactNet: A Light-Weight Deep Learning Framework for Smart Intrusive Load Monitoring. IEEE Sensors Journal, 21(22), 25181-25189.
DOI Scopus6 WoS5
2021 Tran, D. H., Sheng, Q. Z., Zhang, W. E., Aljubairy, A., Zaib, M., Hamad, S. A., . . . Khoa, N. L. D. (2021). HeteGraph: graph learning in recommender systems via graph convolutional networks. Neural Computing and Applications, 35(18), 13047-13063.
DOI Scopus11 WoS18
2020 Fang, X. S., Sheng, Q. Z., Wang, X., Zhang, W. E., Ngu, A. H. H., & Yang, J. (2020). From appearance to essence: comparing truth discovery methods without using ground truth. ACM Transactions on Intelligent Systems and Technology, 11(6), 1-24.
DOI Scopus5 WoS4
2020 Aljubairy, A., Zhang, W. E., Shemshadi, A., Mahmood, A., & Sheng, Q. Z. (2020). A system for effectively predicting flight delays based on IoT data. Computing, 102(9), 2025-2048.
DOI Scopus8 WoS5
2020 Hamad, S. A., Sheng, Q. Z., Zhang, W. E., & Nepal, S. (2020). Realizing an Internet of Secure Things: a survey on issues and enabling technologies. IEEE Communications Surveys and Tutorials, 22(2), 1372-1391.
DOI Scopus89 WoS65
2020 Hussain, Z., Sheng, Q. Z., & Zhang, W. E. (2020). A review and categorization of techniques on device-free human activity recognition. Journal of Network and Computer Applications, 167, 1-22.
DOI Scopus148 WoS104
2020 Zhang, W. E., Sheng, Q. Z., Alhazmi, A., & Li, C. (2020). Adversarial Attacks on Deep-learning Models in Natural Language Processing. ACM Transactions on Intelligent Systems and Technology, 11(3), 41 pages.
DOI Scopus527 WoS383
2019 Mahmood, A., Zhang, W. E., & Sheng, Q. Z. (2019). Software-defined heterogeneous vehicular networking: The architectural design and open challenges. Future Internet, 11(3), 1-17.
DOI Scopus80 WoS58
2019 Liu, Z. Z., Sheng, Q. Z., Xu, X., Chu, D. H., & Zhang, W. E. (2019). Context-aware and Adaptive QoS Prediction for Mobile Edge Computing Services. IEEE Transactions on Services Computing, 15(1), 1-14.
DOI Scopus48 WoS35
2019 Tran, N. K., Sheng, Q. Z., Ali Babar, M., Yao, L., Zhang, W. E., & Dustdar, S. (2019). Internet of things search engine. Communications of the ACM, 62(7), 66-73.
DOI Scopus18 WoS13
2018 Zhang, W. E., Sheng, Q. Z., Lau, J. H., Abebe, E., & Ruan, W. (2018). Duplicate detection in programming question answering communities. ACM Transactions on Internet Technology, 18(3), 37-1-37-21.
DOI Scopus20 WoS16
2018 Zhang, W. E., Sheng, Q. Z., Yao, L., Taylor, K., Shemshadi, A., & Qin, Y. (2018). A learning-based framework for improving querying on web interfaces of curated knowledge bases. ACM Transactions on Internet Technology, 18(3), 35-1-35-20.
DOI Scopus6 WoS3
2018 Yao, L., Sheng, Q. Z., Wang, X., Zhang, W. E., & Qin, Y. (2018). Collaborative location recommendation by integrating multi-dimensional contextual information. ACM Transactions on Internet Technology, 18(3), 1-24.
DOI Scopus44 WoS28
2018 Zhang, W. E., Sheng, Q. Z., & Dustdar, S. (2018). A Cache-based Optimizer for Querying Enhanced Knowledge Bases.
2018 Sheng, Q. Z., Yu, J., Xu, H., Zhang, W. E., Ngu, A. H. H., Han, J., & Liu, R. (2018). ContextServ: Towards Model-Driven Development of Context-AwareWeb
Services.
2018 Zhang, W., Sheng, Q., Qin, Y., Taylor, K., & Yao, L. (2018). Learning-based SPARQL query performance modeling and prediction. World Wide Web, 21(4), 1015-1035.
DOI Scopus24 WoS14
2017 Sheng, Q. Z., Zhang, W. E., & Shakshuki, E. (2017). Practices and applications in ambient and intelligent information systems. Personal and Ubiquitous Computing, 21(6), 1039-1040.
DOI
2017 Shemshadi, A., Sheng, Q., Qin, Y., Sun, A., Zhang, W., & Yao, L. (2017). Searching for the internet of things: where it is and what it looks like. Personal and Ubiquitous Computing, 21(6), 1097-1112.
DOI Scopus18 WoS14
1998 Zhang, W., Furusaki, S., & Middelberg, A. (1998). A phase-segregated model for plant cell culture: the effect of cell volume fraction. Journal of Chemical Engineering of Japan, 31(3), 469-474.
DOI Scopus1 WoS2
1998 Zhang, W., Seki, M., Furusaki, S., & Middelberg, A. (1998). Anthocyanin synthesis, growth and nutrient uptake in suspension cultures of strawberry cells. Journal of Fermentation and Bioengineering, 86(1), 72-78.
DOI Scopus19 WoS18

Year Citation
2025 Sheng, Q. Z., Dobbie, G., Jiang, J., Zhang, X., Zhang, W. E., Manolopoulos, Y., . . . Ma, C. (Eds.) (2025). Advanced Data Mining and Applications. Springer Nature Singapore.
DOI
2025 Sheng, Q. Z., Dobbie, G., Jiang, J., Zhang, X., Zhang, W. E., Manolopoulos, Y., . . . Ma, C. (Eds.) (2025). Advanced Data Mining and Applications. Springer Nature Singapore.
DOI
2025 Sheng, Q. Z., Dobbie, G., Jiang, J., Zhang, X., Zhang, W. E., Manolopoulos, Y., . . . Ma, C. (Eds.) (2025). Advanced Data Mining and Applications. Springer Nature Singapore.
DOI
2025 Sheng, Q. Z., Dobbie, G., Jiang, J., Zhang, X., Zhang, W. E., Manolopoulos, Y., . . . Ma, C. (Eds.) (2025). Advanced Data Mining and Applications. Springer Nature Singapore.
DOI
2025 Sheng, Q. Z., Dobbie, G., Jiang, J., Zhang, X., Zhang, W. E., Manolopoulos, Y., . . . Ma, C. (Eds.) (2025). Advanced Data Mining and Applications. Springer Nature Singapore.
DOI
2025 Zaib, M., Sheng, Q. Z., Zhang, W. E., & Mahmood, A. (2025). When NLP Meets LLM: Neural Approaches to Context-based Conversational Question Answering.
DOI
2024 Hamad, S. A., Sheng, Q. Z., & Zhang, W. E. (2024). Security Framework for The Internet of Things Applications. CRC Press: CRC Press.
DOI Scopus2
2023 Mahmood, A., Sheng, M., Zhang, W. E., & Yongchareon, S. (2023). Trust Management in the Internet of Vehicles. New York, NY, USA: Chapman and Hall/CRC.
DOI Scopus1
2018 Zhang, W., & Sheng, Q. Z. (2018). Managing data from knowledge bases: Querying and extraction. Switzerland: Springer Nature.
DOI Scopus5
2013 Ghose, A., Zhu, H., Yu, Q., Delis, A., Sheng, Q., Perrin, O., . . . Wang, Y. (Eds.) (2013). Service-Oriented Computing - ICSOC 2012 Workshops. Germany: Springer.
DOI

Year Citation
2026 Zhao, Q., Zhang, W. E., Ranjitkar, S., Viltoriano, R., Xie, Z., & Anderson, P. J. (2026). Efficient Craniofacial Microsomia Detection via Edge-Focused 3D Point Cloud Network. In Lecture Notes in Computer Science (Vol. 16371 LNAI, pp. 309-321). Springer Nature Singapore.
DOI
2021 Sheng, Q. Z., Yu, J., Zhang, W. E., Wang, S., Li, X., & Benatallah, B. (2021). Designing and Building Context-Aware Services: The ContextServ Project. In M. Aiello, A. Bouguettaya, D. A. Tamburri, & W. -J. van den Heuvel (Eds.), Next-Gen Digital Services: A Retrospective and Roadmap for Service Computing of the Future (Vol. 12521 LNCS, pp. 138-152). Cham, Switzerland: Springer International Publishing.
DOI Scopus4
2017 Zhang, W. E., & Sheng, Q. Z. (2017). Searching the big data: Practices and experiences in efficiently querying knowledge bases. In A. Y. Zomaya, & S. Sakr (Eds.), Handbook of Big Data Technologies (pp. 429-453). Cham, Switzerland: Springer.
DOI Scopus1

Year Citation
2026 Zhao, Y., Zheng, L. N., Zhang, W. E., & Chen, W. (2026). Price Equilibrium Routing: A Lightweight Framework for Expert Selection in Mixture-of-Experts. In Lecture Notes in Computer Science Vol. 16371 LNAI (pp. 3-16). Springer Nature Singapore.
DOI
2026 Tang, Y., & Zhang, W. E. (2026). CDL+: An Extended Capability Description Language Design For Medical Data-Driven Process. In S. Kallel, C. Raibulet, I. B. Rodriguez, N. Faci, A. Bennaceur, S. Cheikhrouhou, . . . R. B. Halima (Eds.), Lecture Notes in Computer Science Vol. 15833 LNCS (pp. 109-120). TUNISIA, Tunis: SPRINGER-VERLAG SINGAPORE PTE LTD.
DOI
2026 Liang, W., Zhang, W. E., Yue, L., Rathjen, J., Oloughlin, P., & Chen, W. (2026). TraffiX-MoE: A Traffic-Aware Neural VRP Solver. In Lecture Notes in Computer Science Vol. 16200 LNCS (pp. 273-280). Springer Nature Singapore.
DOI
2025 Zheng, L. N., Zhang, W. E., Yue, L., Xu, M., Maennel, O., & Chen, W. (2025). Adaptive Spline Networks in the Kolmogorov-Arnold Framework: Knot Analysis and Stability Enhancement. In Cikm 2025 Proceedings of the 34th ACM International Conference on Information and Knowledge Management (pp. 4434-4443). ACM.
DOI
2025 Liang, W., Zhang, W. E., Yue, L., Xu, M., Maennel, O., & Chen, W. (2025). Calibrating on Medical Segmentation Model through Signed Distance. In Cikm 2025 Proceedings of the 34th ACM International Conference on Information and Knowledge Management (pp. 1778-1787). ACM.
DOI
2025 Liang, W., Zhang, W. E., Yue, L., Xu, M., Maennel, O., & Chen, W. (2025). Calibrating on Kolmogorov-Arnold Network. In Cikm 2025 Proceedings of the 34th ACM International Conference on Information and Knowledge Management (pp. 1768-1777). ACM.
DOI
2025 Yang, L., Zhang, W. E., Sheng, Q. Z., Yao, L., Chen, W., & Shakeri, A. (2025). MMiC: Mitigating Modality Incompleteness in Clustered Federated Learning. In Cikm 2025 Proceedings of the 34th ACM International Conference on Information and Knowledge Management (pp. 3783-3793). ACM.
DOI
2025 Zaib, M., Sheng, Q. Z., Zhang, W. E., Alhazmi, E., & Mahmood, A. (2025). Learning Contrastive Representations for Dense Passage Retrieval in Open-Domain Conversational Question Answering. In Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) Vol. 15436 LNCS (pp. 3-13). Doha: Springer Nature Singapore.
DOI
2025 Shakeri, A., Zhang, W. E., Beheshti, A., Chen, W., Yang, J., & Yang, L. (2025). FedDPG: An Adaptive Yet Efficient Prompt-Tuning Approach in Federated Learning Settings. In Lecture Notes in Computer Science Vol. 15874 LNCS (pp. 40-51). Sydney, NSW, Australia: Springer Nature Singapore.
DOI
2025 Dong, C., Sun, Z., Bai, G., Piao, S., Chen, W., & Zhang, W. E. (2025). TrojanTime: Backdoor Attacks on Time Series Classification. In Proceedings, Part IV of the 29th Pacific-Asia Conference on Knowledge Discovery and Data Mining (PAKDD 2025), as published in Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence) Vol. 15873 (pp. 154-166). Singapore: Springer Nature.
DOI
2025 Zheng, L. N., Dong, C., Zhang, W. E., Yue, L., Xu, M., Maennel, O., & Chen, W. (2025). Understanding Why Large Language Models Can Be Ineffective in Time Series Analysis: The Impact of Modality Alignment. In Proceedings of the 31st ACM SIGKDD Conference on Knowledge Discovery and Data Mining, V.2 (KDD 2025) Vol. 2 (pp. 4026-4037). New York, NY, USA: Association for Computing Machinery (ACM).
DOI Scopus1
2024 Zhuang, H., Zhang, W. E., Xie, L., Chen, W., Yang, J., & Sheng, Q. Z. (2024). Automatic, Meta and Human Evaluation for Multimodal Summarization with Multimodal Output. In K. Duh, H. Gomez, & S. Bethard (Eds.), PROCEEDINGS OF THE 2024 CONFERENCE OF THE NORTH AMERICAN CHAPTER OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS: HUMAN LANGUAGE TECHNOLOGIES, VOL 1: LONG PAPERS (pp. 7768-7790). MEXICO: ASSOC COMPUTATIONAL LINGUISTICS-ACL.
WoS1
2024 Yang, Z., Liu, Y., Gao, Z., He, J., Chen, T., & Zhang, W. E. (2024). ATTENTION ENHANCEMENT WITH PARALLEL GROUPS FOR REMOTE SENSING OBJECT DETECTION. In Proceedings - International Conference on Image Processing, ICIP (pp. 1032-1036). Abu Dhabi, United Arab Emirates: IEEE.
DOI
2024 Alhazmi, E., Sheng, Q. Z., Zhang, W. E., Zaib, M., & Alhazmi, A. (2024). Distractor Generation in Multiple-Choice Tasks: A Survey of Methods, Datasets, and Evaluation. In EMNLP 2024 - 2024 Conference on Empirical Methods in Natural Language Processing, Proceedings of the Conference (pp. 14437-14458). Hybrid, Miami: Association for Computational Linguistics (ACL).
DOI Scopus7
2024 Dong, C. G., Zheng, L. N., Chen, W., Zhang, W. E., & Yue, L. (2024). SWAP: Exploiting Second-Ranked Logits for Adversarial Attacks on Time Series. In Proceedings of the IEEE International Conference on Knowledge Graph (ICKG 2023) (pp. 117-125). Online: IEEE.
DOI Scopus9 WoS8
2024 Zhuang, H., Zhang, W. E., Dong, C. G., Yang, J., & Sheng, Q. Z. (2024). Trainable Hard Negative Examples in Contrastive Learning for Unsupervised Abstractive Summarization. In Proceedings of the 18th Conference of the European Chapter of the Association for Computational Linguistics (EACL 2024) (pp. 1589-1600). Online: Association for Computational Linguistics.
Scopus2 WoS1
2024 Zhuang, H., Zhang, W. E., Xie, L., Chen, W., Yang, J., & Sheng, Q. Z. (2024). Automatic, Meta and Human Evaluation for Multimodal Summarization with Multimodal Output. In Proceedings of the 2024 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, NAACL 2024 Vol. 1 (pp. 7761-7783). Online: Association for Computational Linguistics (ACL).
DOI Scopus4
2024 Cai, T., Yang, S., Li, J., Sheng, Q. Z., Yang, J., Wang, X., . . . Gao, L. (2024). Incremental Graph Computation: Anchored Vertex Tracking in Dynamic Social Networks (Extended Abstract). In Proceedings - International Conference on Data Engineering (pp. 5723-5724). IEEE.
DOI
2024 Ma, C., Zhang, W. E., Wang, H., Zhuang, H., & Guo, M. (2024). Disentangling Specificity for Abstractive Multi-document Summarization. In Proceedings of the International Joint Conference on Neural Networks (IJCNN 2024) (pp. 1-8). Yokohama, Japan: IEEE.
DOI Scopus3
2024 Wen, Z., Zhang, W. E., Guo, L., & Chen, W. (2024). Demo Abstract: Navigating Indoors: A Cost-effective Drone-based Solution. In Proceedings of the 21st ACM Conference on Embedded Networked Sensors Systems (SenSys 2023) (pp. 496-497). New York, NY, USA: Association for Computing Machinery.
DOI
2024 Zheng, L. N., Li, Z., Dong, C. G., Zhang, W. E., Yue, L., Xu, M., . . . Chen, W. (2024). Irregularity-Informed Time Series Analysis: Adaptive Modelling of Spatial and Temporal Dynamics. In Proceedings of the 33rd ACM International Conference on Information and Knowledge Management (CIKM 2024) (pp. 3405-3414). Boise, Idaho, USA: Association for Computing Machinery (ACM).
DOI Scopus5 WoS3
2024 Zheng, L. N., Dong, C. G., Zhang, W. E., Chen, X., Yue, L., & Chen, W. (2024). Devil in the Tail: A Multi-Modal Framework for Drug-Drug Interaction Prediction in Long Tail Distinction. In Proceedings of the 33rd ACM International Conference on Information and Knowledge Management (CIKM 2024) (pp. 3395-3404). New York, NY, USA: Association for Computing Machinery (ACM).
DOI Scopus3
2024 Zhuang, H., Emma Zhang, W., Yang, J., Chen, W., & Sheng, Q. Z. (2024). Not All Negatives are Equally Negative: Soft Contrastive Learning for Unsupervised Sentence Representations. In Proceedings of the 33rd ACM International Conference on Information and Knowledge Management (CIKM 2024) (pp. 3591-3601). Boise, Idaho, USA: Association for Computing Machinery (ACM).
DOI Scopus3 WoS1
2024 George Dong, C., David Li, Z., Nathan Zheng, L., Chen, W., & Emma Zhang, W. (2024). Boosting Certificate Robustness for Time Series Classification with Efficient Self-Ensemble. In Proceedings of the International Conference on Information and Knowledge Management (pp. 477-486). ID, Boise: Association of Computing Machinery.
DOI Scopus1
2024 Qu, Y., Yang, J., Zhang, W. E., Chen, W., & Yu, H. Q. (2024). Data-Product Catalogues: Envisioning with Knowledge-aware Natural Language Processing. In Proceedings of the IEEE International Conference on Web Services, ICWS Vol. 33 (pp. 45-54). Shenzhen, China: IEEE.
DOI
2024 Shakeri, A., Chen, P., Shu, Y., Yang, L., Zhang, W. E., & Chen, W. (2024). Transforming Data Product Generation through Federated Learning: An Exploration of FL Applications in Data Ecosystems. In Proceedings of the IEEE International Conference on Web Services, ICWS Vol. 27 (pp. 84-91). Shenzhen, China: IEEE.
DOI Scopus1
2023 Guo, L., Zhang, W. E., Chen, W., Yang, N., Nguyen, Q., & Vo, T. D. (2023). Oyster Mushroom Growth Stage Identification: An Exploration of Computer Vision Technologies. In Proceedings of the 36th Australasian Joint Conference on Artificial Intelligence Vol. 14471 (pp. 67-78). Brisbane, QLD: Springer Nature Singapore.
DOI Scopus2 WoS3
2023 Zhang, W. E., Chen, P., Yang, J., Su, J., & Sheng, Q. Z. (2023). Data Product-Oriented Services for Data Ecosystem. In Proceedings - 2023 IEEE International Conference on Web Services, ICWS 2023 (pp. 755-762). Online: IEEE.
DOI Scopus4
2023 Zaib, M., Zhang, W. E., Sheng, Q. Z., Sagar, S., Mahmood, A., & Zhang, Y. (2023). Learning to Select the Relevant History Turns in Conversational Question Answering. In Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) Vol. 14306 LNCS (pp. 334-348). Online: Springer Nature Singapore.
DOI Scopus4 WoS4
2023 Zhang, W., Chen, P., Yang, J., Tang, Y., & Su, J. (2023). A Capability Description Language Design for Data Products. In DEC '23: Proceedings of the Second ACM Data Economy Workshop (pp. 21-26). Seattle WA USA: ACM.
DOI WoS1
2023 Zhang, Y., Wang, Y., Sheng, Q. Z., Mahmood, A., Zhang, W. E., & Zhao, R. (2023). Hybrid Data Augmentation for Citation Function Classification. In Proceedings of the International Joint Conference on Neural Networks (IJCNN, 2023) Vol. 2023-June (pp. 1-8). Online: IEEE.
DOI Scopus9 WoS5
2023 Chen, C., Zhang, W. E., Shakeri, A. S., & Fiza, M. (2023). The Exploration of Knowledge-Preserving Prompts for Document Summarisation. In Proceedings of the International Joint Conference on Neural Networks Vol. 2023-June (pp. 8 pages). Online: IEEE.
DOI Scopus1
2023 Zaib, M., Sheng, Q. Z., Zhang, W. E., & Mahmood, A. (2023). Keeping the Questions Conversational: Using Structured Representations to Resolve Dependency in Conversational Question Answering. In Proceedings of the International Joint Conference on Neural Networks (IJCNN 2023) Vol. 2023-June (pp. 1-7). Online: IEEE.
DOI Scopus3 WoS2
2023 Zhang, W. E., Mahmood, A., Deng, L., & Zhu, M. (2023). SimSumIoT: A Platform for Simulating the Summarisation from Internet of Things. In WSDM 2023 - Proceedings of the 16th ACM International Conference on Web Search and Data Mining (pp. 1188-1191). Online: ACM.
DOI
2022 Ma, C., Zhang, W. E., Wang, H., Gupta, S., & Guo, M. (2022). Incorporating Linguistic Knowledge for Abstractive Multi-document Summarization. In S. Dita, A. O. Trillanes, & R. I. Lucas (Eds.), Proceedings of the 36th Pacific Asia Conference on Language, Information and Computation, PACLIC 2022 (pp. 147-156). Online: De La Salle University.
2022 Zhuang, H., Zhang, W. E., Yang, J., Ma, C., Qu, Y., & Sheng, Q. Z. (2022). Learning From the Source Document: Unsupervised Abstractive Summarization. In Findings of the Association for Computational Linguistics: EMNLP 2022 (pp. 4223-4234). Online: Association for Computational Linguistics (ACL).
DOI Scopus4
2022 Liu, N., Dras, M., & Zhang, W. E. (2022). Detecting Textual Adversarial Examples Based on Distributional Characteristics of Data Representations. In PROCEEDINGS OF THE 7TH WORKSHOP ON REPRESENTATION LEARNING FOR NLP (pp. 78-90). Online: ASSOC COMPUTATIONAL LINGUISTICS-ACL.
DOI Scopus6 WoS5
2022 Mahmood, A., Sheng, Q. Z., Siddiqui, S. A., Sagar, S., Zhang, W. E., Suzuki, H., & Ni, W. (2022). When Trust Meets the Internet of Vehicles: Opportunities, Challenges, and Future Prospects. In Proceedings of the 7th IEEE International Conference on Collaboration and Internet Computing (CIC 2021) (pp. 60-67). Online: IEEE.
DOI Scopus22 WoS6
2022 Aljubairy, A., Alhazmi, A., Zhang, W. E., Sheng, Q. Z., & Tran, D. H. (2022). Towards a Deep Learning-Driven Service Discovery Framework for the Social Internet of Things: A Context-Aware Approach. In Web Information Systems Engineering – WISE 2021 Vol. 13081 LNCS (pp. 480-488). Melbourne, VIC, Australia: Springer International Publishing.
DOI Scopus4 WoS3
2022 Aljubairy, A., Alhazmi, A., Zhang, W. E., Sheng, Q. Z., & Tran, D. H. (2022). A Fast and Accurate Approach for Inferencing Social Relationships Among IoT Objects. In B. Li, L. Yue, J. Jiang, W. Chen, X. Li, G. Long, . . . H. Yu (Eds.), Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) Vol. 13088 LNAI (pp. 83-94). Online: SPRINGER INTERNATIONAL PUBLISHING AG.
DOI
2022 Zhang, W. E., & Nguyen, Q. (2022). Constructing COVID-19 Knowledge Graph from A Large Corpus of Scientific Articles. In Proceedings - 12th IEEE International Conference on Big Knowledge, ICBK 2021 (pp. 237-244). online: IEEE.
DOI Scopus6
2022 Hamad, S. A., Tran, D. H., Sheng, Q. Z., & Zhang, W. E. (2022). BERTDeep-Ware: A Cross-architecture Malware Detection Solution for IoT Systems. In 2021 IEEE 20th International Conference on Trust, Security and Privacy in Computing and Communications (TrustCom) (pp. 927-934). online: IEEE.
DOI Scopus10 WoS6
2021 Chen, D., Zhang, W., Shao, K., & Zhao, W. (2021). Interpretable Analysis of NARX Neural Network Prediction MPA-AUC. In Proceedings - 2021 International Conference on Artificial Intelligence, BigData and Algorithms, CAIBDA 2021 (pp. 233-237). Piscataway, New Jersey: IEEE.
DOI
2021 Zhang, Y., Wang, Y., Sheng, Q. Z., Mahmood, A., Emma Zhang, W., & Zhao, R. (2021). TDM-CFC: Towards Document-Level Multi-label Citation Function Classification. In W. Zhang, L. Zou, Z. Maamar, & L. Chen (Eds.), Proceedings of the 22nd International Conference on Web Information Systems Engineering (WISE, 2022) as published in Lecture Notes in Computer Science Vol. 13081 (pp. 363-376). Melbourne, Australia: Springer.
DOI Scopus13 WoS11
2021 Luo, Q., Liu, L., Lin, Y., & Zhang, W. (2021). Don't Miss the Labels: Label-semantic Augmented Meta-Learner for Few-Shot Text Classification. In C. Zong, F. Xia, W. Li, & R. Navigli (Eds.), Findings of the Association for Computational Linguistics: ACL-IJCNLP 2021 (pp. 2773-2782). Stroudsburg, PA, USA: Association for Computational Linguistics.
DOI Scopus59 WoS41
2021 Zhang, W. E., Liu, M., Pallath, A., & Tamilventhan, G. (2021). A Web-based Knowledge Hub for Exploration of Multiple Research Article Collections. In SIGIR 2021 - Proceedings of the 44th International ACM SIGIR Conference on Research and Development in Information Retrieval (pp. 2556-2559). ELECTR NETWORK: ASSOC COMPUTING MACHINERY.
DOI
2021 Alhazmi, A., Aljubairy, A., Zhang, W. E., Sheng, Q. Z., & Alhazmi, E. (2021). A Unified Framework for Improving Misclassifications in Modern Deep Neural Networks for Sentiment Analysis. In Proceedings of the International Joint Conference on Neural Networks Vol. 2021-July (pp. 1-7). Shenzhen, China: IEEE.
DOI
2021 Hussain, Z., Waterworth, D., Aldeer, M., Zhang, W. E., Sheng, Q. Z., & Ortiz, J. (2021). Do You Brush Your Teeth Properly? An Off-body Sensor-based Approach for Toothbrushing Monitoring. In Proceedings of the IEEE International Conference on Digital Health, (ICDH 2021) (pp. 59-69). Piscataway, NJ: IEEE.
DOI Scopus11 WoS6
2021 Zhang, Y., Chang, R., Zuo, J., & Zhang, W. E. (2021). Transition towards Solar-Powered built environment: spatial distributions and impacting factors of Australian solar installations. In IOP Conference Series: Materials Science and Engineering Vol. 1196 (pp. 012024-1-012024-6). United Kingdom: IOP Publishing.
DOI
2021 Tran, D. H., Hamad, S., Zaib, M., Aljubairy, A., Sheng, Q. Z., Zhang, W. E., . . . Khoa, N. L. D. (2021). Deep News Recommendation with Contextual User Profiling and Multifaceted Article Representation. In Web Information Systems Engineering – WISE 2021 Vol. 13081 LNCS (pp. 237-251). Switzerland: Springer International Publishing.
DOI Scopus6 WoS2
2021 Das, A., & Zhang, W. E. (2021). ABSA-Bench: Towards the Unified Evaluation of Aspect-based Sentiment Analysis Research. In Proceedings of the Australasian Language Technology Workshop Vol. 18. Virtual Online: Australasian Language Technology Association.
Scopus3
2021 Zaib, M., Tran, D. H., Sagar, S., Mahmood, A., Zhang, W. E., & Sheng, Q. Z. (2021). BERT-CoQAC: BERT-based conversational question answering in context. In Proceedings of the 11th International Symposium on Parallel Architectures, Algorithms and Programming (PAAP 2020), as published in Communications in Computer and Information Science Vol. 1362 (pp. 47-57). Singapore: Springer.
DOI Scopus14
2021 Hamad, S. A., Sheng, Q. Z., Tran, D. H., Zhang, W. E., & Nepal, S. (2021). A Behavioural Network Traffic Novelty Detection for the Internet of Things Infrastructures. In Communications in Computer and Information Science Vol. 1362 (pp. 174-186). Singapore: Springer.
DOI Scopus2
2020 Nguyen, V. K., Sheng, Q. Z., Mahmood, A., Zhang, W. E., & Duc Vo, T. (2020). Helibot-A Smart Distributed Energy Resources Platform for Futuristic Smart Grids. In Proceedings - 20th IEEE/ACM International Symposium on Cluster, Cloud and Internet Computing, CCGRID 2020 (pp. 898-901). online: IEEE.
DOI Scopus2 WoS1
2020 Sagar, S., Mahmood, A., Sheng, Q. Z., & Zhang, W. E. (2020). Trust Computational Heuristic for Social Internet of Things: A Machine Learning-based Approach. In IEEE International Conference on Communications Vol. 2020-June (pp. 1-6). online: IEEE.
DOI Scopus48 WoS21
2020 Cao, Y., Chen, X., Yao, L., Wang, X., & Zhang, W. E. (2020). Adversarial attacks and detection on reinforcement learning-based interactive recommender systems. In Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR 2020) (pp. 1669-1672). online: Association for Computing Machinery.
DOI Scopus38 WoS29
2020 Nguyen, V. K., Phan, M. H., Zhang, W. E., Sheng, Q. Z., & Vo, T. D. (2020). A hybrid approach for intrusive appliance load monitoring in smart home. In Proceedings of the IEEE International Conference on Smart Internet of Things (SmartIoT 2020) (pp. 154-160). online: IEEE.
DOI Scopus3
2020 Tran, D. H., Aljubairy, A., Zaib, M., Sheng, Q. Z., Zhang, W. E., Tran, N. H., & Nguyen, K. L. D. (2020). HeteGraph: A Convolutional Framework for Graph Learning in Recommender Systems. In Proceedings of the International Joint Conference on Neural Networks (pp. 1-8). online: IEEE.
DOI Scopus7 WoS3
2020 Alhazmi, A., Zhang, W. E., Sheng, Q. Z., & Aljubairy, A. (2020). Are modern deep learning models for sentiment analysis brittle? An examination on part-of-speech. In Proceedings of the International Joint Conference on Neural Networks (IJCNN 2020) (pp. 1-7). online: IEEE.
DOI Scopus2
2020 Alhazmi, A., Zhang, W. E., Sheng, Q. Z., & Aljubairy, A. (2020). Analyzing the sensitivity of deep neural networks for sentiment analysis: A scoring approach. In Proceedings of the International Joint Conference on Neural Networks (IJCNN 2020) (pp. 1-7). online: IEEE.
DOI Scopus3
2020 Zhang, W. E., Sheng, Q. Z., Mahmood, A., Tran, D. H., Zaib, M., Hamad, S. A., . . . Ma, C. (2020). The 10 Research Topics in the Internet of Things. In Proceedings of the 6th IEEE International Conference on Collaboration and Internet Computing (CIC 2020) (pp. 34-43). Piscataway, NJ, USA: IEEE.
DOI Scopus42 WoS31
2020 Tang, R., Ma, C., Zhang, W. E., Wu, Q., & Yang, X. (2020). Semantic Equivalent Adversarial Data Augmentation for Visual Question Answering. In Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) Vol. 12364 LNCS (pp. 437-453). Switzerland: Springer International Publishing.
DOI Scopus39 WoS34
2020 Hussain, Z., Waterworth, D., Aldeer, M., Zhang, W. E., & Sheng, Q. Z. (2020). Toothbrushing data and analysis of its potential use in human activity recognition applications: Dataset. In DATA 2020 - Proceedings of the 3rd Workshop on Data Acquisition To Analysis, Part of SenSys 2020, BuildSys 2020 (pp. 31-34). online: ACM.
DOI Scopus10
2020 Zaib, M., Sheng, Q. Z., & Zhang, W. (2020). A short survey of pre-trained language models for conversational AI-A new age in NLP. In Proceedings of the Australasian Computer Science Week (ACSW'20) (pp. 1-4). online: Association for Computing Machinery.
DOI Scopus47 WoS39
2020 Aljubairy, A., Zhang, W. E., Sheng, Q. Z., & Alhazmi, A. (2020). SIoTPredict: A Framework for Predicting Relationships in the Social Internet of Things. In Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) Vol. 12127 LNCS (pp. 101-116). Switzerland: Springer.
DOI Scopus25 WoS18
2020 Nguyen, V. K., Sheng, Q. Z., Mahmood, A., Zhang, W. E., Phan, M. H., & Vo, T. D. (2020). Demo abstract: an internet of plants system for micro gardens. In Proceedings of the 19th ACM/IEEE International Conference on Information Processing in Sensor Networks (IPSN 2020) (pp. 355-356). online: IEEE.
DOI Scopus6 WoS3
2020 Sagar, S., Mahmood, A., Sheng, M., Zaib, M., & Zhang, W. (2020). Towards a machine learning-driven trust evaluation model for social internet of things: A time-aware approach. In PervasiveHealth: Pervasive Computing Technologies for Healthcare (pp. 283-290). Darmstadt, Germany.: ACM.
DOI Scopus26 WoS17
2020 Mai, D., & Zhang, W. E. (2020). Aspect Extraction Using Coreference Resolution and Unsupervised Filtering. In International Joint Conference on Natural Language Processing (IJCNLP) (pp. 117-122). Online: ASSOC COMPUTATIONAL LINGUISTICS-ACL.
2019 Siddiqui, S. A., Mahmood, A., Zhang, W. E., & Sheng, Q. Z. (2019). Poster: A Machine Learning based Hybrid Trust Management Heuristic for Vehicular Ad hoc Networks. In Proceedings of the Annual International Conference on Mobile Computing and Networking, MOBICOM (pp. 3 pages). Los Cabos, Mexico: ACM.
DOI Scopus1
2019 Liu, Z., Sheng, Q. Z., Zhang, W. E., Chu, D., & Xu, X. (2019). Context-aware multi-QoS prediction for services in mobile edge computing. In Proceedings: 2019 IEEE International Conference on Services Computing - IEEE SCC 2019 - Part of the 2019 IEEE World Congress on Services (pp. 72-79). online: IEEE.
DOI Scopus8 WoS7
2019 Hussain, Z., Sagar, S., Zhang, W. E., & Sheng, Q. Z. (2019). A cost-effective and non-invasive system for sleep and vital signs monitoring using passive RFID tags. In ACM International Conference Proceeding Series (pp. 153-161). online: ACM.
DOI Scopus20 WoS18
2019 Mahmood, A., Siddiqui, S. A., Zhang, W. E., & Sheng, Q. Z. (2019). A hybrid trust management model for secure and resource efficient vehicular ad hoc networks. In Proceedings - 2019 20th International Conference on Parallel and Distributed Computing, Applications and Technologies, PDCAT 2019 (pp. 157-162). online: IEEE.
DOI Scopus9
2019 Mahmood, A., Butler, B., Zhang, W. E., Sheng, Q. Z., & Siddiqui, S. A. (2019). A Hybrid Trust Management Heuristic for VANETs. In 2019 IEEE International Conference on Pervasive Computing and Communications Workshops, PerCom Workshops 2019 (pp. 748-752). online: IEEE.
DOI Scopus47 WoS39
2019 Shu, Y., Zhang, W. E., Liu, Y., Wang, C., Dong, J., Zhang, Z., . . . Zuo, D. (2019). Bottom-Up Teaching Reformation for the Undergraduate Course of Computer Organization and Architecture. In Communications in Computer and Information Science Vol. 1059 (pp. 303-312). Singapore: Springer Nature.
DOI Scopus1
2019 Nguyen, V. K., Zhang, W. E., Le, K., Mahmood, A., & Sheng, Q. Z. (2019). Demo Abstract: An End-to-End Real-Time Efficient System for Smart Energy Monitoring. In INFOCOM 2019 IEEE Conference on Computer Communications Workshops INFOCOM Wkshps 2019 (pp. 957-958). Paris, FRANCE: IEEE.
DOI Scopus5 WoS4
2019 Hamad, S. A., Zhang, W. E., Sheng, Q. Z., & Nepal, S. (2019). IoT device identification via network-flow based fingerprinting and learning. In Proceedings - 2019 18th IEEE International Conference on Trust, Security and Privacy in Computing and Communications/13th IEEE International Conference on Big Data Science and Engineering, TrustCom/BigDataSE 2019 (pp. 103-111). online: IEEE.
DOI Scopus110 WoS73
2019 Siddiqui, S. A., Mahmood, A., Zhang, W. E., & Sheng, Q. Z. (2019). Machine learning based trust model for misbehaviour detection in internet-of-vehicles. In Communications in Computer and Information Science Vol. 1142 CCIS (pp. 512-520). Switzerland: Springer Nature.
DOI Scopus29 WoS22
2019 Mahmood, A., Zhang, W. E., & Sheng, Q. Z. (2019). Overcoming the bottlenecks in next-generation heterogeneous vehicular networks - Is SDN the optimal solution?. In ACM International Conference Proceeding Series (pp. 1-4). online: ACM.
DOI
2018 Nguyen, V. K., Zhang, W. E., & Sheng, Q. Z. (2018). Identifying price index classes for electricity consumers via dynamic gradient boosting. In Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) Vol. 11234 LNCS (pp. 472-486). Switzerland: Springer.
DOI Scopus3 WoS2
2018 Zhang, W. E., Sheng, Q. Z., Tang, Z., & Ruan, W. (2018). Related or duplicate: Distinguishing similar CQA questions via convolutional neural networks. In 41st International ACM SIGIR Conference on Research and Development in Information Retrieval, SIGIR 2018 (pp. 1153-1156). online: ASSOC COMPUTING MACHINERY.
DOI Scopus10 WoS9
2018 Tran, D. H., Hussain, Z., Zhang, W. E., Khoa, N. L. D., Tran, N. H., & Sheng, Q. Z. (2018). Deep autoencoder for recommender systems: Parameter influence analysis. In Proceedings of the 29th Australasian Conference on Information Systems (ACIS2018) (pp. 1-12). Sydney: University of Technology Sydney ePress.
DOI Scopus6
2017 Ruan, W., Xu, P., Sheng, Q., Falkner, N., Li, X., & Zhang, W. (2017). Recovering missing values from corrupted spatio-temporal sensory data via robust low-rank tensor completion. In S. Candan, L. Chen, T. Pedersen, L. Chang, & W. Hua (Eds.), Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) Vol. 10177 LNCS (pp. 607-622). Suzhou, PEOPLES R CHINA: SPRINGER INTERNATIONAL PUBLISHING AG.
DOI Scopus15 WoS15
2017 Zhang, W. E., Sheng, Q. Z., Lau, J. H., & Abebe, E. (2017). Detecting duplicate posts in programming qa communities via latent semantics and association rules. In 26th International World Wide Web Conference, WWW 2017 (pp. 1221-1229). Perth, Australia: ASSOC COMPUTING MACHINERY.
DOI Scopus58 WoS43
2017 Shu, Y., Zuo, D., Liu, H., Sheng, Q. Z., Zhang, W. E., & Yang, J. (2017). A tree-based reliability analysis for fault-tolerant web services composition. In Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) Vol. 10601 LNCS (pp. 481-489). Online: Springer Verlag.
DOI Scopus2 WoS2
2017 Zhang, W. E., Sheng, Q. Z., Shu, Y., & Nguyen, V. K. (2017). Feature analysis for duplicate detection in programming QA communities. In G. Cong, W. C. Peng, W. E. Zhang, C. Li, & A. Sun (Eds.), Proceedings of the 13th International Conference on Advanced Data Mining and Applications, as published in Advanced Data Mining and Applications ( Lecture Notes in Computer Science) Vol. 10604 (pp. 623-638). Switzerland: SPRINGER INTERNATIONAL PUBLISHING AG.
DOI Scopus8 WoS8
2017 Nguyen, V. K., Zhang, W. E., Sheng, Q. Z., & Merefield, J. (2017). Mining load profile patterns for australian electricity consumers. In G. Cong, W. C. Peng, W. E. Zhang, C. Li, & A. Sun (Eds.), Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) Vol. 10604 LNAI (pp. 781-793). Online: SPRINGER INTERNATIONAL PUBLISHING AG.
DOI
2017 Zhang, Y., Szabo, C., Sheng, Q., Zhang, W., & Qin, Y. (2017). Identifying domains and concepts in short texts via partial taxonomy and unlabeled data. In E. Dubois, & K. Pohl (Eds.), Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) Vol. 10253 LNCS (pp. 127-143). Essen, GERMANY: SPRINGER INTERNATIONAL PUBLISHING AG.
DOI Scopus3 WoS4
2016 Qin, Y., Wang, H., Zhang, J., Tao, X., Zhang, W., Taylor, K., & Sheng, Q. (2016). Efficient algorithms for scheduling XML data in a mobile wireless broadcast environment. In Proceedings of the International Conference on Parallel and Distributed Systems - ICPADS Vol. 2016-January (pp. 725-732). Melbourne, AUSTRALIA: IEEE.
DOI WoS2
2016 Zhang, W., Sheng, Q., Qin, Y., Yao, L., Shemshadi, A., & Taylor, K. (2016). SECF: Improving SPARQL Querying performance with proactive fetching and Caching. In Proceedings of the ACM Symposium on Applied Computing Vol. 04-08-April-2016 (pp. 362-367). online: ACM.
DOI Scopus9
2016 Zhang, W., Abebe, E., Sheng, Q., & Taylor, K. (2016). Towards building open knowledge base from programming question-answering communities. In CEUR Workshop Proceedings Vol. 1690 (pp. 4 pages). online: CEUR.
2016 Ruan, W., Sheng, Q., Xu, P., Tran, N., Falkner, N., Li, X., & Zhang, W. (2016). Forecasting seasonal time series using weighted gradient RBF network based autoregressive model. In Proceedings of the 25th International Conference on Information and Knowledge Management Vol. 24-28-October-2016 (pp. 2021-2024). Indianapolis, IN: ACM.
DOI Scopus4 WoS2
2016 Ruan, W., Xu, P., Sheng, Q., Tran, N., Falkner, N., Li, X., & Zhang, W. (2016). When sensor meets tensor: filling missing sensor values through a tensor approach. In Proceedings of the 25th ACM International on Conference on Information and Knowledge Management Vol. 24-28-October-2016 (pp. 2025-2028). Indianapolis, IN: ACM.
DOI Scopus5 WoS5
2016 Zhang, W., Sheng, Q., Taylor, K., Qin, Y., & Yao, L. (2016). Learning-based SPARQL query performance prediction. In W. Cellary, M. Mokbel, J. Wang, H. Wang, R. Zhou, & Y. Zhang (Eds.), Web Information Systems Engineering Vol. 10041 LNCS (pp. 313-327). Shanghai, Peoples R China: Springer.
DOI Scopus4 WoS3
2016 Zhang, W., Tan, M., Sheng, Q., Yao, L., & Shi, Q. (2016). Efficient orthogonal non-negative matrix factorization over stiefel manifold. In Proceedings of the 25th ACM International Conference on Information and Knowledge Management (CIKM '16) Vol. 24-28-October-2016 (pp. 1743-1752). Indianapolis, IN, USA: Association for Computing Machinery (ACM).
DOI Scopus12 WoS9
2016 Zhang, W., Sheng, Q., Abebe, E., Ali Babar, M., & Zhou, A. (2016). Mining source code topics through topic model and words embedding. In Advanced Data Mining and Applications Vol. 10086 LNAI (pp. 664-676). Gold Coast, Qld: Springer.
DOI Scopus2
2016 Alfazi, A., Sheng, Q., Zhang, W., Yao, L., & Noor, T. (2016). Identification as a service: Large-scale cloud service discovery over the world wide web. In C. Pu, G. Fox, & E. Damiani (Eds.), Proceedings - 2016 IEEE International Congress on Big Data, BigData Congress 2016 (pp. 485-492). San Francisco, CA: IEEE.
DOI Scopus4 WoS4
2015 Zhang, W., Sheng, Q., Taylor, K., & Qin, Y. (2015). Identifying and caching hot triples for efficient rdf query processing. In M. Renz, C. Shahabi, X. Zhou, & M. Cheema (Eds.), Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) Vol. 9050 (pp. 259-274). Hanoi, VIETNAM: SPRINGER-VERLAG BERLIN.
DOI Scopus13 WoS6
2015 Yao, L., Wang, X., Sheng, Q., Ruan, W., & Zhang, W. (2015). Service recommendation for mashup composition with implicit correlation regularization. In J. Miller (Ed.), Proceedings 2015 IEEE International Conference on Web Services (pp. 217-224). New York, NY: IEEE.
DOI Scopus50 WoS43
2015 Qin, Y., Sheng, Q., & Zhang, W. (2015). SIEF: Efficiently Answering Distance Queries for Failure Prone Graphs. In G. Alonso, F. Geerts, L. Popa, P. Barceló, J. Teubner, M. Ugarte, . . . J. Paredaens (Eds.), Proceedings of the 18th International Conference on Extending Database Technology (pp. 145-156). online: OpenProceedings.
DOI Scopus10
2014 Shemshadi, A., Sheng, Q., & Zhang, W. (2014). A decremental search approach for large scale dynamic ridesharing. In B. Benatallah, A. Bestavros, Y. Manolopoulos, A. Vakali, & Y. Zhang (Eds.), Web Information Systems Engineering – WISE 2014: Proceedings Part 1 Vol. 8786 (pp. 202-217). Thessaloniki, Greece: Springer.
DOI Scopus6 WoS6
2014 Qin, Y., Sheng, Q., Falkner, N., Zhang, W., & Wang, H. (2014). Indexing linked data in a wireless broadcast system with 3D Hilbert space-filling curves. In X. Wang (Ed.), Proceedings of the 23rd ACM International Conference on Conference on Information and Knowledge Management (pp. 1775-1778). Shanghai, China: ACM.
DOI

Year Citation
2014 Zhang, W. (2014). Graph-based Large Scale RDF Data Compression. Poster session presented at the meeting of SIGIR 2014 Proceedings of the 37th International ACM SIGIR Conference on Research and Development in Information Retrieval. Gold Coast, AUSTRALIA: ASSOC COMPUTING MACHINERY.
DOI Scopus1 WoS1

Year Citation
2025 Dong, C., Sun, Z., Bai, G., Piao, S., Chen, W., & Zhang, W. E. (2025). TrojanTime: Backdoor Attacks on Time Series Classification.
2025 Zheng, L. N., Zhang, W. E., Guo, M., Xu, M., Maennel, O., & Chen, W. (2025). Rethinking Gating Mechanism in Sparse MoE: Handling Arbitrary Modality
Inputs with Confidence-Guided Gate.
2025 Zheng, L. N., Zhang, W. E., Yue, L., Xu, M., Maennel, O., & Chen, W. (2025). Free-Knots Kolmogorov-Arnold Network: On the Analysis of Spline Knots
and Advancing Stability.
2025 Yang, L., Zhang, W., Sheng, Q. Z., Chen, W., Yao, L., Chen, W., & Shakeri, A. (2025). MMiC: Mitigating Modality Incompleteness in Clustered Federated Learning.
2024 Zheng, L. N., Dong, C. G., Zhang, W. E., Yue, L., Xu, M., Maennel, O., & Chen, W. (2024). Understanding Why Large Language Models Can Be Ineffective in Time
Series Analysis: The Impact of Modality Alignment.
2024 Zheng, L. N., Li, Z., Dong, C. G., Zhang, W. E., Yue, L., Xu, M., . . . Chen, W. (2024). Irregularity-Informed Time Series Analysis: Adaptive Modelling of
Spatial and Temporal Dynamics.
2024 Zheng, L. N., Dong, C. G., Zhang, W. E., Chen, X., Yue, L., & Chen, W. (2024). Devil in the Tail: A Multi-Modal Framework for Drug-Drug Interaction
Prediction in Long Tail Distinction.
2024 Dong, C., Zheng, L., & Chen, W. (2024). Kolmogorov-Arnold Networks (KAN) for Time Series Classification and
Robust Analysis.
2024 Dong, C., Li, Z., Zheng, L., Chen, W., & Zhang, W. E. (2024). Boosting Certified Robustness for Time Series Classification with
Efficient Self-Ensemble.
2023 Dong, C. G., Zheng, L. N., Chen, W., Zhang, W. E., & Yue, L. (2023). SWAP: Exploiting Second-Ranked Logits for Adversarial Attacks on Time
Series.

Grants Cat 1 
●   2025-2028. ARC Linkage Project (LP230200821), AUD $338,649. Title: “Advanced Data Analytics for Cost-effective Mushroom Cultivation”, Wei Zhang, Michael Sheng, Weitong Chen, Ni Yang, Queen Nguyen, Yantao Zhang.  Lead Investigator. 
●   2024-2027, Discovery Project, DP240103070 (Australian Research Council), AUD $292,330. “Towards knowledge discovery from imperfect and evolving data”, Wei Zhang, Miao Xu, Weitong Cheng and Olaf Maennel. Lead Investigator 
●    2023-2026, Early-Career Industry Fellowships, IE230100119 (Australian Research Council).  “Towards Internet of Things Enabled Automated Mushroom Cultivation”, Wei Zhang. Sole Investigator
●    2020-2023, Discovery Project, DP200102298 (Australian Research Council).  “What Can You Trust in the Large and Noisy Web?”, Michael Sheng, Jan Yang, Wei Zhang and Schahram Dustdar. Chief Investigator.

 Grants Cat 2 
●    2023-2026, CSIRO Next Generation Graduates Program.   “Transformation of data-to-data products for a trusted data-driven economy: technology innovation and application”, Jian Yang, Amin Beheshti, Jia Wu, Wei Zhang, Yuval Yarom, Stephanie Huang, and 7 industry companies. Chief Investigator.
●    2021-2022, Defence Innovation Partnership: AI for Decision Making Initiative 2021 (Round One, Phase Two) by Office of National Intelligence.  “Contextually Situated Anomaly Detection”, Markus Wagner, Chetan Arora, Menasha Thilakaratne, Christoph Treude, Wei Zhang. Chief Investigator.
●    2021 Defence Innovation Partnership: AI for Decision Making Initiative 2021 (Round One, Phase One) by Office of National Intelligence.  “Automated Glossary Generation from Effective and Efficient Information Extraction from Text Data”, Wei Zhang. Sole Investigator.            

Grants Cat 3 
●    2022-2023 Industry Collaboration Fund. “Construction environment monitoring”, Wei Zhang, Jian Zuo, Ruidong Chang and Lingqiao Liu. Lead Investigator. 
●    2020-2021, Google Academic Research Grants. “A Benchmark Platform for Aspect-based Sentiment Analysis”, Wei Zhang. Sole Investigator.
                                                                                                                           
UoA & Faculty Funding
●    2022, ABLE’s Internal Research Funding Schemes, The University of Adelaide. “Analyzing the Profile of Mood States to Study Financial Markets Bubbles”, Ivan Indriawan, Marta Khomyn and Wei Zhang. Partner Investigator.
●    2022, Barbara Kidman Women's Fellowship, The University of Adelaide. “Exploring the Technique Combination of Internet of Things and Natural Language Processing for Multi-Document Summarization”, Wei Zhang.
●    2021-2022, COVID Recognition Fund, The University of Adelaide. “Information Retrieval for Multi-Document Summarization”, Wei Zhang. Sole Investigator.
●    2021 Early Career Researcher Seed Funding, The University of Adelaide. “Constructing Knowledge Graph for Green Building Information Modelling”, Wei Zhang, Ruidong Chang, Jian Zuo and Lingqiao Liu. Lead Investigator.
●    2021 Early Career Researcher Seed Funding, The University of Adelaide. “Matching Building Information Modelling with real-world construction: Developing a real-time construction monitoring system through on-site sensing and computer vision”, Ruidong Chang, Wei Zhang, Jian Zuo and Lingqiao Liu. Chief Investigator.
 

2023 Course coordinator, Artificial Intelligence (COMP SCI 3007/7059)
2022 Course design, coordinator, Concepts in Artificial Intelligence and Machine Learning (COMP SCI 7327)
       Course design, Data Science Research Project Part A/B (DATA 7303AOL/7303BOL)
       Course coordinator, Artificial Intelligence Technology (TECH 1004)
       Course coordinator, Big Data Analysis and Project (COMP SCI 7209)
       Course coordinator, Big Data Analysis and Industry Project (COMP SCI 7319OL)
       Lecturer, Artificial Intelligence (COMP SCI 3007/7059)
       Lecturer, Applied Natural Language Processing (COMP SCI 4417/4817/7417)
2021 Course design: Big Data Analysis and Industry Project (COMP SCI 7319OL)
       Course coordinator, Distributed Database and Data Mining (COMP SCI 4094/4194/7094)
       Course coordinator, Big Data Analysis and Project (COMP SCI 7209)
       Course coordinator, Artificial Intelligence Technology (TECH 1004)
       Lecturer, Artificial Intelligence (COMP SCI 3007/7059)
2020 Course coordinator, Distributed Database and Data Mining (COMP SCI 4094/4194/7094)
       Course design, coordinator, Artificial Intelligence Technology (TECH 1004)
       Course coordinator, Object Oriented Programming SGDE (COMP SCI 1102SGDE)
       Lecturer, Artificial Intelligence (COMP SCI 3007/7059)
2019 Course coordinator, Software Engineering & Project (COMP SCI 3006/3310/3311/3312/3313/7015)
       Course coordinator, Big Data Analysis and Project (COMP SCI 7209)

Date Role Research Topic Program Degree Type Student Load Student Name
2025 Principal Supervisor Enhancing Document Summarization with Domain-Specific Knowledge and Human Feedback Doctor of Philosophy Doctorate Full Time Miss Xiaoyang Li
2025 Principal Supervisor Understanding Visual Comprehension Effectiveness in Large Vision-Language Models Master of Philosophy Master Full Time Mr Nam Kha Nguyen
2025 Principal Supervisor Intent-Aware Assistive Robotics Using Model Predictive Control for Human-on-the-Loop Doctor of Philosophy Doctorate Full Time Miss Jingyu Duan
2025 Principal Supervisor Intent-Aware Assistive Robotics Using Model Predictive Control for Human-on-the-Loo Doctor of Philosophy Doctorate Full Time Miss Jingyu Duan
2025 Principal Supervisor Understanding Visual Comprehension Effectiveness in Large Vision-Language Models Master of Philosophy Master Full Time Mr Nam Kha Nguyen
2025 Principal Supervisor Enhancing Document Summarization with Domain-Specific Knowledge and Human Feedback Doctor of Philosophy Doctorate Full Time Miss Xiaoyang Li
2024 Principal Supervisor Faithfulness and Factuality in Document Summarisation Doctor of Philosophy Doctorate Full Time Mr Mong Yuan Sim
2024 Principal Supervisor Faithfulness and Factuality in Document Summarisation Doctor of Philosophy Doctorate Full Time Mr Mong Yuan Sim
2023 Co-Supervisor Warm-Starting Reinforcement Learning in Complex Environments Doctor of Philosophy Doctorate Part Time Miss Lauren Yvette Taylor
2023 Principal Supervisor Leveraging Knowledge-aware Methodologies for Multi-document Summarization Doctor of Philosophy Doctorate Full Time Miss Yutong Qu
2023 Principal Supervisor Can Active Learning and Federated Learning Help Sensitive Information Protection Master of Philosophy Master Full Time Mr Lishan Yang
2023 Principal Supervisor Leveraging Knowledge-aware Methodologies for Multi-document Summarization Doctor of Philosophy Doctorate Full Time Miss Yutong Qu
2023 Principal Supervisor Can Active Learning and Federated Learning Help Sensitive Information Protection Master of Philosophy Master Full Time Mr Lishan Yang
2023 Co-Supervisor Warm-Starting Reinforcement Learning in Complex Environments Doctor of Philosophy Doctorate Full Time Miss Lauren Yvette Taylor
2021 Co-Supervisor Reducing the impacts of airborne particulate matters from construction sites: Integrating field monitoring and BIM-based CFD Doctor of Philosophy Doctorate Full Time Miss Xingyue Fang
2021 Co-Supervisor Reducing the impacts of airborne particulate matters from construction sites: Integrating field monitoring and BIM-based CFD Doctor of Philosophy Doctorate Full Time Miss Xingyue Fang

Date Role Research Topic Program Degree Type Student Load Student Name
2025 - 2025 Principal Supervisor Adversarial Attack and Defense in Time Series Classification Master of Philosophy Master Full Time Mr Chang Dong
2024 - 2025 Co-Supervisor Machine learning assisted multi-metallic electrocatalysts design Doctor of Philosophy Doctorate Full Time Mr Yiran Jiao
2021 - 2025 Principal Supervisor Improving the Performance and Robustness of NLP models with Contrastive Data and Learning Doctor of Philosophy Doctorate Full Time Mr Haojie Zhuang
2020 - 2024 Principal Supervisor Deep Learning Based Multi-document Summarization Doctor of Philosophy Doctorate Full Time Ms Congbo Ma
2020 - 2022 Co-Supervisor Machine Learning Approaches to Automated Mechanism Design for Public Project Problem Doctor of Philosophy Doctorate Full Time Dr Guanhua Wang

Date Role Research Topic Location Program Supervision Type Student Load Student Name
2019 - ongoing Co-Supervisor Neural Dialogue Systems in Smart Space Macquarie University - Doctorate - Munazza Zaib
2019 - ongoing Co-Supervisor Trust Management in Internet of Vehicles Macquarie University - Doctorate Full Time Sarah Ali Siddiqui
2019 - ongoing Co-Supervisor Trust Management in Block Chain Macquarie University - Doctorate Full Time Subhash Sagar
2018 - ongoing Co-Supervisor Adversarial Attacks on Textual Deep Neural Models Macquarie University - Doctorate Full Time Ahoud Abdultahmn F Alhazmi
2018 - ongoing Co-Supervisor Dynamic Graph Analysis Macquarie University - Doctorate Full Time Abdulwahab Mohammed M Aljubairy
2018 - ongoing Co-Supervisor Recommendation Systems Macquarie Unversity - Doctorate Full Time Dai Hoang Tran
2017 - ongoing Co-Supervisor Internet of Secure Things Macquarie Unversity - Doctorate Full Time Salma Abdalla
2017 - ongoing Co-Supervisor Activity Recognition Macquarie University - Doctorate Full Time Zawar Hussain
2017 - ongoing Co-Supervisor Software-Defined Networks Macquarie University - Doctorate Full Time Adnan Qureshi
2017 - ongoing Co-Supervisor Data Analysis on Energy Usage Macquarie University - Doctorate Full Time Khuyen Nguyen

Connect With Me

External Profiles

Other Links