Dr Scott Penfold

Scott Penfold
Lecturer
School of Physical Sciences
Faculty of Sciences

I am a Certified Medical Physics Specialist within the field of Radiation Oncology. I completed my undergraduate studies at the University of Wollongong (UoW) and was awarded the University Medal in the Faculty of Engineering in 2006. I subsequently went on to complete my PhD in a joint project with UoW and Loma Linda University Medical Center in California.

In 2010, during the last year of my PhD, I began clinical medical physics training at the Royal Adelaide Hospital (RAH). In 2013 I sat my final certification exam and joined the ACPSEM register of certified medical physics specialists.

In September 2013, I joined the University of Adelaide (UoA) Department of Physics as a half-time academic, while also retaining half-time employment at the RAH. I am currently working as the postgraduate co-ordinator for Medical Physics at UoA. My roles include undergraduate practical demonstration and lecturing, and postgraduate lecturing and research supervision.

My research interests predominantly lie in proton therapy and quantitative imaging for image guided radiotherapy.

Connect with me

Dr Scott Penfold

I am a Certified Medical Physics Specialist within the field of Radiation Oncology. I completed my undergraduate studies at the University of Wollongong (UoW) and was awarded the University Medal in the Faculty of Engineering in 2006. I subsequently went on to complete my PhD in a joint project with UoW and Loma Linda University Medical Center in California.

In 2010, during the last year of my PhD, I began clinical medical physics training at the Royal Adelaide Hospital (RAH). In 2013 I sat my final certification exam and joined the ACPSEM register of certified medical physics specialists.

In September 2013, I joined the University of Adelaide (UoA) Department of Physics as a half-time academic, while also retaining half-time employment at the RAH. I am currently working as the postgraduate co-ordinator for Medical Physics at UoA. My roles include undergraduate practical demonstration and lecturing, and postgraduate lecturing and research supervision.

My research interests predominantly lie in proton therapy and quantitative imaging for image guided radiotherapy.

My PhD studies were focussed on image reconstruction algorithms for proton computed tomography (pCT). Proton CT differs from the common X-ray CT scanners by using energetic protons to traverse the body as opposed to kilovoltage X-rays. A measurement of the energy lost by protons as they traverse the body in pCT can be used to reconstruct a stopping power map of a patient. This information is useful in the emerging cancer treatment field of proton therapy.

Proton therapy is a highly conformal method of delivering therapeutic doses of radiation to treat cancer. Proton therapy has the advantage over the more common X-ray therapy that protons have a finite range in matter. Therefore, a beam of energetic protons can be directed at the cancer site, minimizing the dose to the surrounding healthy tissue. To be able to stop the proton beam at precisely the right location, an accurate map of proton stopping powers is required. This is the primary purpose of pCT.

The image reconstruction challenge in pCT stems from the fact that protons, as charged particles, interact with the electric fields of atomic electrons and nuclei in the patient tissues and undergo multiple scattering. Most image reconstruction algorithms assume the radiation travelled in a straight line between source and detector and when using this assumption in pCT, poor spatial resolution of the reconstructed image results. Special techniques are required to accurately account for the scattering of the protons in the patient.

In general, my research interests are focussed around proton therapy, including pCT and intensity modulated proton therapy optimization algorithms. I am also working to develop a toolkit that will provide clinicians with an estimate of the quality of life a patient can expext from multiple potential treatment options. This is of primary interest in proton therapy where the cose of treatment is significantly larger than X-ray therapy.

Appointments

Date Position Institution name
2013 Lecturer and Medical Physics Program Coordinator University of Adelaide
2010 Medical Physics Specialist Royal Adelaide Hospital

Awards and Achievements

Date Type Title Institution Name Amount
2009 - 2009 Award Cancer Institute NSW Research Scholars Award Cancer Institute NSW 25,000
2006 Award University Medal (Faculty of Engineering) University of Wollongong

Education

Date Institution name Country Title
2003 - 2006 University of Wollongong Australia B Medical Radiation Physics (1st Class Honours)
University of Wollongong Australia PhD

Certifications

Date Title Institution name Country
2013 Certified Medical Physics Specialist (Radiation Oncology) Australasian College of Physical Scientists and Engineers in Medicine

Journals

Year Citation
2017 Zhu, J. & Penfold, S. (2017). Europium-155 as a source for dual energy cone beam computed tomography in adaptive proton therapy: A simulation study. Medical Physics, 1-10.
10.1002/mp.12450
2016 Zhu, J. & Penfold, S. (2016). Review of 3D image data calibration for heterogeneity correction in proton therapy treatment planning. Australasian Physical and Engineering Sciences in Medicine, 39, 2, 379-390.
10.1007/s13246-016-0447-9
2016 Poignant, F., Penfold, S., Asp, J. & Takhar, P. (2016). GEANT4 simulation of cyclotron radioisotope production in a solid target. Physica Medica, 32, 5, 728-734.
10.1016/j.ejmp.2016.04.006
2016 Zhu, J. & Penfold, S. (2016). Dosimetric comparison of stopping power calibration with dual-energy CT and single-energy CT in proton therapy treatment planning. Medical Physics, 43, 6, 2845-2854.
10.1118/1.4948683
2015 Penfold, S. & Censor, Y. (2015). Techniques in Iterative Proton CT Image Reconstruction. Sensing and Imaging, 16, 1, -.
10.1007/s11220-015-0122-3
2014 Penfold, S., Brown, M., Staudacher, A. & Bezak, E. (2014). Monte Carlo simulations of dose distributions with necrotic tumor targeted radioimmunotherapy. Applied Radiation and Isotopes, 90, 40-45.
10.1016/j.apradiso.2014.03.006
2013 Douglass, M., Bezak, E. & Penfold, S. (2013). Monte Carlo investigation of the increased radiation deposition due to gold nanoparticles using kilovoltage and megavoltage photons in a 3D randomized cell model. Medical Physics, 40, 7, 1-9.
10.1118/1.4808150
2012 Penfold, S., Marcu, L., Lawson, J. & Asp, J. (2012). Evaluation of physician eye lens doses during permanent seed implant brachytherapy for prostate cancer. Journal of Radiological Protection, 32, 3, 339-347.
10.1088/0952-4746/32/3/339
2012 Schulte, R. & Penfold, S. (2012). Proton CT for improved stopping power determination in proton therapy. Transactions of the American Nuclear Society, 106, 55-58.
2012 Douglass, M., Bezak, E. & Penfold, S. (2012). Development of a randomized 3D cell model for Monte Carlo microdosimetry simulations. Medical Physics, 39, 6, 3509-3519.
10.1118/1.4719963
2011 Penfold, S., Rosenfeld, A., Schulte, R. & Sadrozinski, H. (2011). Geometrical optimazation of a particle tracking system for proton computed tomography. Radiation Measurements, 46, 12, 2069-2072.
10.1016/j.radmeas.2011.04.032
2010 Penfold, S., Schulte, R., Censor, Y. & Rosenfeld, A. (2010). Total variation superiorization schemes in proton computed tomography image reconstruction. Medical Physics, 37, 11, 5887-5895.
10.1118/1.3504603
2009 Penfold, S., Rosenfeld, A., Schulte, R. & Schubert, K. (2009). A more accurate reconstruction system matrix for quantitative proton computed tomography. Medical Physics, 36, 10, 4511-4518.
10.1118/1.3218759
2008 Schulte, R., Penfold, S., Tafas, J. & Schubert, K. (2008). A maximum likelihood proton path formalism for application in proton computed tomography. Medical Physics, 35, 11, 4849-4856.
10.1118/1.2986139

Book Chapters

Year Citation
2010 Penfold, S., Schulte, R., Censor, Y., Bashkirov, V., McAllister, S., Schubert, K. & Rosenfeld, A. (2010). Block-iterative and string-averaging projection algorithms in proton computed tomography image reconstruction. In Y. Censor, M. Jiang & G. Wang (Eds.), Biomedical mathematics: promising directions in imaging, therapy planning, and inverse problems (pp. 347-368). USA: Medical Physics Publishing.

Conference Papers

Year Citation
2009 Bashkirov, V., Schulte, R., Coutrakon, G., Erdelyi, B., Wong, K., Sadrozinski, H. ... Schubert, K. (2009). Development of proton computed tomography for applications in proton therapy. International Conference on the Application of Accelerators in Research and Industry. Fort Worth Texas.
2009 Wong, K., Erdelyi, B., Schulte, R., Bashkirov, V., Coutrakon, G., Sadrozinski, H. ... Rosenfeld, A. (2009). The effect of tissue inhomogeneities on the accuracy of proton path reconstruction for proton computed tomography. International Conference on the Application of Accelerators in Research and Industry. Fort worth Texas.
2009 Penfold, S., Rosenfeld, A., Schulte, R. & Sadrozinski, H. (2009). Fast and accurate proton computed tomography image reconstruction for applications in proton therapy. World Congress on Medical Physics and Biomedical Engineering (WC). Munich, Germany.
10.1007/978-3-642-03474-9_61

Theses

Year Citation
2014 Douglass, M. J.; (2014); Development of an Integrated Stochastic Radiobiological Model for Electromagnetic Particle Interactions in a 4D Cellular Geometry;
Position
Lecturer
Phone
83133544
Fax
8313 4380
Campus
North Terrace
Building
Physics Building
Room Number
G 27
Org Unit
Physics

top