Dr Savitha Sam Abraham
Postdoctoral Researcher
Australian Institute for Machine Learning - Projects
Faculty of Sciences, Engineering and Technology
I currently work as a postdoctoral researcher at AIML, focusing my research on the convergence of Natural Language Processing (NLP), logical reasoning, and their practical applications, particularly in the field of robotics.
I currently work as a postdoctoral researcher at AIML, focusing my research on the convergence of Natural Language Processing (NLP), logical reasoning, and their practical applications, particularly in the field of robotics.
-
Appointments
Date Position Institution name 2021 - 2023 Postdoctoral Researcher Örebro University -
Language Competencies
Language Competency English Can read, write, speak, understand spoken and peer review Hindi Can read, write, speak and understand spoken Malayalam Can read, write, speak and understand spoken Tamil Can speak and understand spoken -
Education
Date Institution name Country Title 2020 Indian Institute of Technology Madras India PhD in Computer Science and Engineering -
Research Interests
-
Journals
Year Citation 2024 Sundaram, S. S., Gurajada, S., Padmanabhan, D., Abraham, S. S., & Fisichella, M. (2024). Does a language model “understand” high school math? A survey of deep learning based word problem solvers. Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery, 14(4).
Scopus12024 Kadan, A., Deepak, P., Gangan, M. P., Abraham, S. S., & Lajish, V. L. (2024). REDAffectiveLM: leveraging affect enriched embedding and transformer-based neural language model for readers’ emotion detection. Knowledge and Information Systems, 66(12), 7495-7525.
2022 Anoop, K., Deepak, P., Sam Abraham, S., Lajish, V. L., & Gangan, M. P. (2022). Readers’ affect: predicting and understanding readers’ emotions with deep learning. Journal of Big Data, 9(1), 31 pages.
Scopus7 WoS32021 Deepak, P., & Abraham, S. S. (2021). FairLOF: Fairness in Outlier Detection. Data Science and Engineering, 6(4), 485-499.
Scopus11 WoS52020 Deepak, P., & Abraham, S. S. (2020). Correction to: Chapter “Fair Outlier Detection” in: Z. Huang et al. (Eds.): Web Information Systems Engineering – WISE 2020, (LNCS 12343 (10.1007/978-3-030-62008-0_31)). Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 12343 LNCS, C1.
2019 Abraham, S. S., & Sundaram, S. S. (2019). An Ontology-Based Kinematics Problem Solver Using Qualitative and Quantitative Knowledge. New Generation Computing, 37(4), 551-584.
Scopus2 WoS12019 Sundaram, S. S., & Abraham, S. S. (2019). Semantic Representation for Age Word Problems with Schemas. New Generation Computing, 37(4), 429-452.
Scopus3 WoS1 -
Conference Papers
Year Citation 2024 Abraham, S. S., Alirezaie, M., & De Raedt, L. (2024). CLEVR-POC: Reasoning-Intensive Visual Question Answering in Partially Observable Environments. In 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation, LREC-COLING 2024 - Main Conference Proceedings (pp. 3297-3313). Online: European Language Resources Association (ELRA). 2024 Aregbede, V., Abraham, S. S., Persson, A., Langkvist, M., & Loutfi, A. (2024). Affordance-Based Goal Imagination for Embodied AI Agents. In 2024 IEEE International Conference on Development and Learning, ICDL 2024 (pp. 1-6). IEEE.
DOI2023 Abraham, S. S., P, D., & Sundaram, S. S. (2023). Span Detection for Kinematics Word Problems. In Communications in Computer and Information Science Vol. 1793 CCIS (pp. 276-288). Online: Springer Nature Singapore.
DOI2022 Lindström, A. D., & Abraham, S. S. (2022). CLEVR-Math: A Dataset for Compositional Language, Visual and Mathematical Reasoning. In CEUR Workshop Proceedings Vol. 3212 (pp. 1-17). Cumberland Lodge, Windsor, UK: CEUR Workshop Proceedings.
Scopus22022 Lindstrom, A. D., & Abraham, S. S. (2022). CLEVR-Math: A Dataset for Compositional Language, Visual and Mathematical Reasoning. In A. D. Garcez, & E. Jimenez-Ruiz (Eds.), NEURAL-SYMBOLIC LEARNING AND REASONING, NESY 2022 (pp. 155-170). ENGLAND, Windsor: RWTH AACHEN. 2020 Deepak, P., & Abraham, S. S. (2020). Representativity Fairness in Clustering. In WebSci 2020 - Proceedings of the 12th ACM Conference on Web Science (pp. 202-211). Southampton: ACM.
DOI Scopus92020 Abraham, S. S., Deepak, P., & Sundaram, S. S. (2020). Fairness in clustering with multiple sensitive attributes. In Advances in Database Technology - EDBT Vol. 2020-March (pp. 287-298). Copenhagen: OpenProceedings.org.
DOI Scopus252020 Deepak, P., & Sam Abraham, S. (2020). Fair Outlier Detection. In Z. Huang, W. Beek, H. Wang, R. Zhou, & Y. Zhang (Eds.), Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) Vol. 12343 LNCS (pp. 447-462). Amsterdam: SPRINGER INTERNATIONAL PUBLISHING AG.
DOI Scopus10 WoS72020 Sundaram, S. S., Deepak, P., & Abraham, S. S. (2020). Distributed representations for arithmeticword problems. In AAAI 2020 - 34th AAAI Conference on Artificial Intelligence Vol. 34 (pp. 9000-9007). NY, New York: ASSOC ADVANCEMENT ARTIFICIAL INTELLIGENCE.
Scopus12018 Abraham, S. S., & Sundaram, S. S. (2018). Combining qualitative and quantitative reasoning for solving kinematics word problems. In Proceedings of the 31st International Florida Artificial Intelligence Research Society Conference, FLAIRS 2018 (pp. 164-167).
Scopus12018 Sundaram, S. S., & Abraham, S. S. (2018). Solving simple arithmetic word problems precisely with schemas. In M. Mouhoub, S. Sadaoui, O. A. Mohamed, & M. Ali (Eds.), Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) Vol. 10868 LNAI (pp. 542-547). CANADA, Montreal: SPRINGER INTERNATIONAL PUBLISHING AG.
DOI Scopus1 WoS12016 Abraham, S. S., & Khemani, D. (2016). Hybrid of qualitative and quantitative knowledge models for solving physics word problems. In Proceedings of the 29th International Florida Artificial Intelligence Research Society Conference, FLAIRS 2016 (pp. 510-515).
Scopus22012 Abraham, S. S., & Idicula, S. M. (2012). Comparison of statistical and semantic similarity techniques for paraphrase identification. In Proceedings - 2012 International Conference on Data Science and Engineering, ICDSE 2012 (pp. 209-213). IEEE.
DOI Scopus3 -
Preprint
Year Citation 2024 Abraham, S. S., Garg, S., & Dayoub, F. (2024). To Ask or Not to Ask? Detecting Absence of Information in Vision and
Language Navigation.
Connect With Me
External Profiles