Mr Nikhil Kurian
Grant-Funded Researcher (B)
School of Public Health
College of Health
Eligible to supervise Masters and PhD (as Co-Supervisor) - email supervisor to discuss availability.
Dr. Nikhil Kurian is a postdoctoral researcher working on developing safe, fair, and trustworthy AI for medical image analysis. Previously, he was a senior AI researcher at Fujitsu Research of India Pvt Ltd (FRIPL). Dr Kurian completed his PhD from the Indian Institute of Technology, Bombay, in May 2023. His doctoral research focused on pioneering deep learning algorithms that automatically analyze cancerous tissue in biopsy and radiology images.
| Date | Position | Institution name |
|---|---|---|
| 2022 - 2023 | Senior Researcher | Fujitsu Research India |
| Date | Institution name | Country | Title |
|---|---|---|---|
| Indian Institute of Technology Bombay | India | PhD | |
| Indian Institute of Technology Gandhinagar | India | Master of technology |
| Year | Citation |
|---|---|
| 2025 | Kurian, N. C., Gann, P. H., Kumar, N., McGregor, S. M., Verma, R., & Sethi, A. (2025). Deep Learning Predicts Subtype Heterogeneity and Outcomes in Luminal A Breast Cancer Using Routinely Stained Whole Slide Images.. Cancer research communications, 5(1), 157-166. Scopus2 WoS1 |
| 2023 | Patil, A., Diwakar, H., Sawant, J., Kurian, N. C., Yadav, S., Rane, S., . . . Sethi, A. (2023). Efficient quality control of whole slide pathology images with human-in-the-loop training. Journal of Pathology Informatics, 14, 100306. Scopus19 |
| 2023 | Verghese, G., Li, M., Liu, F., Lohan, A., Kurian, N. C., Meena, S., . . . Grigoriadis, A. (2023). Multiscale deep learning framework captures systemic immune features in lymph nodes predictive of triple negative breast cancer outcome in large‐scale studies. The Journal of Pathology, 260(4), 376-389. Scopus19 Europe PMC14 |
| 2022 | Kanse, A. S., Kurian, N. C., Aswani, H. P., Khan, Z., Gann, P. H., Rane, S., & Sethi, A. (2022). Cautious Artificial Intelligence Improves Outcomes and Trust by Flagging Outlier Cases. JCO Clinical Cancer Informatics, 6(6), e2200067. Scopus5 Europe PMC3 |
| 2022 | Verma, R., Kumar, N., Patil, A., Kurian, N. C., Rane, S., & Sethi, A. (2022). Author's Reply to 'MoNuSAC2020: A Multi-Organ Nuclei Segmentation and Classification Challenge'. IEEE Transactions on Medical Imaging, 41(4), 1000-1003. Scopus3 Europe PMC7 |
| 2021 | Verma, R., Kumar, N., Patil, A., Kurian, N. C., Rane, S., Graham, S., . . . Sethi, A. (2021). MoNuSAC2020: A Multi-Organ Nuclei Segmentation and Classification Challenge. IEEE Transactions on Medical Imaging, 40(12), 3413-3423. Scopus179 Europe PMC81 |
| 2021 | Cherian Kurian, N., Sethi, A., Reddy Konduru, A., Mahajan, A., & Rane, S. U. (2021). A 2021 update on cancer image analytics with deep learning. WIREs Data Mining and Knowledge Discovery, 11(4). |
| 2020 | Anand, D., Kurian, N. C., Dhage, S., Kumar, N., Rane, S., Gann, P. H., & Sethi, A. (2020). Deep Learning to Estimate Human Epidermal Growth Factor Receptor 2 Status from Hematoxylin and Eosin-Stained Breast Tissue Images. Journal of Pathology Informatics, 11(1), 19. |
| 2017 | Kurian, N. C., Patel, K., & George, N. V. (2017). Robust active noise control: An information theoretic learning approach. Applied Acoustics, 117, 180-184. Scopus54 |
| Year | Citation |
|---|---|
| 2026 | Jeevan, P., Kurian, N. C., & Sethi, A. (2026). A Comparative Study of Deep Neural Network Architectures in Magnification Invariant Breast Cancer Histopathology Image Analysis. In Communications in Computer and Information Science Vol. 2546 CCIS (pp. 121-133). Springer Nature Switzerland. DOI |
| 2025 | Krishna, A., Kurian, N. C., Patil, A., Parulekar, A., Pranav Jeevan, P., & Sethi, A. (2025). Pathogen-X: A Cross-Modal Genomic Feature Trans-Align Network for Enhanced Survival Prediction from Histopathology Images. In Proceedings International Symposium on Biomedical Imaging (pp. 1-4). Houston, Texas, USA: IEEE. DOI |
| 2024 | Krishna, A., Gupta, R. K., Kurian, N. C., Jeevan, P., & Sethi, A. (2024). Heterogeneous Graphs Model Spatial Relationship Between Biological Entities for Breast Cancer Diagnosis. In Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) Vol. 14373 LNCS (pp. 97-106). ONline: Springer Nature Switzerland. DOI Scopus3 |
| 2024 | Kurian, N. C., & Kumar, N. (2024). Improved Multi-Step, Multi-Variate, and Spatiotemporal 5G Data Usage Forecasting Without Deploying Data Imputation Techniques. In Proceedings - IEEE Global Communications Conference, GLOBECOM (pp. 7417-7422). Online: IEEE. DOI |
| 2024 | Kurian, N. C., Varsha, S., Patil, A., Khade, S., & Sethi, A. (2024). Robust Semi-Supervised Learning for Histopathology Images through Self-Supervision Guided Out-of-Distribution Scoring. In Proceedings - 2023 IEEE 23rd International Conference on Bioinformatics and Bioengineering, BIBE 2023 (pp. 121-128). Online: IEEE. DOI Scopus1 |
| 2023 | Almahfouz Nasser, S., Kurian, N. C., Meena, M., Shamsi, S., & Sethi, A. (2023). WSSAMNet: Weakly Supervised Semantic Attentive Medical Image Registration Network. In Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) Vol. 14092 LNCS (pp. 15-24). Online: Springer Nature Switzerland. DOI |
| 2023 | Chandra, T., Nasser, S., Kurian, N., & Sethi, A. (2023). Improving Mitosis Detection via UNet-Based Adversarial Domain Homogenizer. In Proceedings of the 16th International Joint Conference on Biomedical Engineering Systems and Technologies (pp. 52-56). Online: SCITEPRESS - Science and Technology Publications. DOI |
| 2023 | Gupta, R., Nandgaonkar, S., Kurian, N., Bameta, T., Yadav, S., Kaushal, R., . . . Sethi, A. (2023). EGFR Mutation Prediction of Lung Biopsy Images Using Deep Learning. In Proceedings of the 16th International Joint Conference on Biomedical Engineering Systems and Technologies (pp. 102-109). Online: SCITEPRESS - Science and Technology Publications. DOI |
| 2022 | Kurian, N. C., Lehan, A., Verghese, G., Dharamshi, N., Meena, S., Li, M., . . . Sethi, A. (2022). Deep Multi-Scale U-Net Architecture and Label-Noise Robust Training Strategies for Histopathological Image Segmentation. In 2022 IEEE 22nd International Conference on Bioinformatics and Bioengineering (BIBE) (pp. 91-96). Taichung, Taiwan: IEEE. DOI Scopus4 |
| 2022 | Kurian, N. C., Varsha, S., Bajpai, A., Patel, S., & Sethi, A. (2022). Improved Histology Image Classification under Label Noise Via Feature Aggregating Memory Banks. In 2022 IEEE 19th International Symposium on Biomedical Imaging (ISBI) Vol. 2022-March (pp. 1-5). Kolkata, India: IEEE. DOI Scopus3 |
| 2022 | Varsha, S., Nasser, S. A., Bala, G., Kurian, N. C., & Sethi, A. (2022). Multi-Modal Information Fusion for Classification of Kidney Abnormalities. In ISBIC 2022 - International Symposium on Biomedical Imaging Challenges, Proceedings Vol. 103 (pp. e210000). Kolkata, India: IEEE. DOI Scopus4 Europe PMC2 |
| 2022 | Almahfouz Nasser, S., Kurian, N. C., & Sethi, A. (2022). Domain Generalisation for Mitosis Detection Exploting Preprocessing Homogenizers. In Biomedical Image Registration, Domain Generalisation and Out-of-Distribution Analysis Vol. 13166 LNCS (pp. 77-80). Strasbourg, France: Springer International Publishing. DOI |
| 2021 | Kurian, N. C., Meshram, P. S., Patil, A., Patel, S., & Sethi, A. (2021). Sample Specific Generalized Cross Entropy for Robust Histology Image Classification. In 2021 IEEE 18th International Symposium on Biomedical Imaging (ISBI) Vol. 2021-April (pp. 1934-1938). Nice, France: IEEE. DOI Scopus17 |
| 2021 | Kurian, N. C., Singh, G., Hebbar, P., Kodate, S., Rane, S., & Sethi, A. (2021). Robust Classification of Histology Images Exploiting Adversarial Auto Encoders. In Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC) Vol. 2021-January (pp. 2871-2874). Mexico: IEEE. DOI Scopus1 |
| 2021 | Wilson, B., Kurian, N. C., Singh, A., & Sethi, A. (2021). Satellite-Derived Bathymetry Using Deep Convolutional Neural Network. In IGARSS 2020 - 2020 IEEE International Geoscience and Remote Sensing Symposium (pp. 2280-2283). Waikoloa, HI, USA: IEEE. DOI Scopus18 |
| 2021 | Patil, A., Talha, M., Bhatia, A., Kurian, N. C., Mangale, S., Patel, S., & Sethi, A. (2021). Fast, Self Supervised, Fully Convolutional Color Normalization Of H&E Stained Images. In 2021 IEEE 18th International Symposium on Biomedical Imaging (ISBI) Vol. 2021-April (pp. 1563-1567). Nice, France: IEEE. DOI Scopus18 |
| 2019 | Patrawala, V., Kurian, N. C., & Sethi, A. (2019). Improving Histopathology Classification using Learnable Preprocessing. In IEEE Region 10 Annual International Conference Proceedings TENCON Vol. 2019-October (pp. 2460-2465). IEEE. DOI |
| 2017 | Patel, K., Kurian, N. C., & George, N. V. (2017). Time frequency analysis: A sparse S transform approach. In 2016 International Symposium on Intelligent Signal Processing and Communication Systems, ISPACS 2016 (pp. 1-4). IEEE. DOI Scopus6 |
| Date | Office Name | Institution | Country |
|---|---|---|---|
| 2022 - 2023 | Senior Applied Researcher | Fujitsu Research | India |