
Mehdi Neshat
School of Computer and Mathematical Sciences
Faculty of Sciences, Engineering and Technology
I received my bachelor and master degrees from Yazd Univesity (Software Engineering,2005) and IAUM (Mashhad,2008) in Artificial Intelligence. I have been awarded a PhD scholarship (ASI) in the University of Adelaide (Australia) from 2017 to 2020. My main research interests are in investigating and optimizing the real engineering problems such as Wave Energy Converters placement optimization and Water Distribution Systems by bio-inspired optimization techniques like Evolutionary Algorithms and Swarm optimization methods.
1. Optimizing the Wave Energy Converters Positions, Control and Shape parameters
2. Optimizing the Water Distribution Systems design
3. Forecasting the wind speed in wind farms
4. Forecasting and modelling the power output of the wind turbines
-
Language Competencies
Language Competency English Can read, write, speak, understand spoken and peer review Persian Can read, write, speak, understand spoken and peer review -
Education
Date Institution name Country Title 2005 - 2008 Islamic Azad University, Mashhad(IAUM) Iran Master 2001 - 2005 Yazd University Iran Bachelor
-
Journals
Year Citation 2024 Majidi Nezhad, M., Neshat, M., Sylaios, G., & Astiaso Garcia, D. (2024). Marine energy digitalization digital twin's approaches. Renewable and Sustainable Energy Reviews, 191, 18 pages.
Scopus262024 Ghasemi, Z., Neshat, M., Aldrich, C., Karageorgos, J., Zanin, M., Neumann, F., & Chen, L. (2024). An integrated intelligent framework for maximising SAG mill throughput: Incorporating expert knowledge, machine learning and evolutionary algorithms for parameter optimisation. Minerals Engineering, 212, 108733-1-108733-16.
Scopus42023 Hajam, M. A., Arif, T., Khanday, A. M. U. D., & Neshat, M. (2023). An Effective Ensemble Convolutional Learning Model with Fine-Tuning for Medicinal Plant Leaf Identification. Information (Switzerland), 14(11), 20 pages.
Scopus132023 Neshat, M., Lee, S., Momin, M. M., Truong, B., van der Werf, J. H. J., & Lee, S. H. (2023). An effective hyper-parameter can increase the prediction accuracy in a single-step genetic evaluation. Frontiers in Genetics, 14, 1-12.
Scopus4 Europe PMC12023 Majidi Nezhad, M., Neshat, M., Azaza, M., Avelin, A., Piras, G., & Astiaso Garcia, D. (2023). Offshore wind farm layouts designer software's. e-Prime - Advances in Electrical Engineering, Electronics and Energy, 4, 100169.
Scopus62023 Dehkordi, A. A., Etaati, B., Neshat, M., & Mirjalili, S. (2023). Adaptive Chaotic Marine Predators Hill Climbing Algorithm for Large-Scale Design Optimizations. IEEE Access, 11, 39269-39294.
Scopus82023 Neshat, M., Nezhad, M. M., Mirjalili, S., Garcia, D. A., Dahlquist, E., & Gandomi, A. H. (2023). Short-term solar radiation forecasting using hybrid deep residual learning and gated LSTM recurrent network with differential covariance matrix adaptation evolution strategy. Energy, 278, 1-21.
Scopus37 WoS22023 Amini, E., Nasiri, M., Pargoo, N. S., Mozhgani, Z., Golbaz, D., Baniesmaeil, M., . . . Sylaios, G. (2023). Design optimization of ocean renewable energy converter using a combined Bi-level metaheuristic approach. Energy Conversion and Management: X, 19, 1-13.
Scopus15 WoS32022 Radfar, S., Kianoush, B., Majidi Nezhad, M., & Neshat, M. (2022). Developing an Extended Virtual Blade Model for Efficient Numerical Modeling of Wind and Tidal Farms. Sustainability (Switzerland), 14(21), 17 pages.
Scopus42022 Dadgar, S., & Neshat, M. (2022). A Novel Hybrid Multi-Modal Deep Learning for Detecting Hashtag Incongruity on Social Media. Sensors, 22(24), 31 pages.
Scopus8 WoS1 Europe PMC12022 Eslami, M., Neshat, M., & Khalid, S. A. (2022). A Novel Hybrid Sine Cosine Algorithm and Pattern Search for Optimal Coordination of Power System Damping Controllers. Sustainability (Switzerland), 14(1), 1-27.
Scopus48 WoS332022 Neshat, M., Nezhad, M. M., Sergiienko, N. Y., Mirjalili, S., Piras, G., & Garcia, D. A. (2022). Wave power forecasting using an effective decomposition-based convolutional Bi-directional model with equilibrium Nelder-Mead optimiser. Energy, 256, 1-16.
Scopus32 WoS22022 Golbaz, D., Asadi, R., Amini, E., Mehdipour, H., Nasiri, M., Etaati, B., . . . Gandomi, A. H. (2022). Layout and design optimization of ocean wave energy converters: A scoping review of state-of-the-art canonical, hybrid, cooperative, and combinatorial optimization methods. Energy Reports, 8, 15446-15479.
Scopus23 WoS32022 Agostinelli, S., Neshat, M., Majidi Nezhad, M., Piras, G., & Astiaso Garcia, D. (2022). Integrating Renewable Energy Sources in Italian Port Areas towards Renewable Energy Communities. Sustainability (Switzerland), 14(21), 18 pages.
Scopus182022 Majidi Nezhad, M., Neshat, M., Piras, G., & Astiaso Garcia, D. (2022). Sites exploring prioritisation of offshore wind energy potential and mapping for wind farms installation: Iranian islands case studies. Renewable and Sustainable Energy Reviews, 168, 1-16.
Scopus30 WoS102022 Amini, E., Mehdipour, H., Faraggiana, E., Golbaz, D., Mozaffari, S., Bracco, G., & Neshat, M. (2022). Optimization of hydraulic power take-off system settings for point absorber wave energy converter. Renewable Energy, 194, 938-954.
Scopus41 WoS72022 Neshat, M., Majidi Nezhad, M., Mirjalili, S., Piras, G., & Garcia, D. A. (2022). Quaternion convolutional long short-term memory neural model with an adaptive decomposition method for wind speed forecasting: North aegean islands case studies. Energy Conversion and Management, 259, 1-24.
Scopus50 WoS182022 Majidi Nezhad, M., Heydari, A., Neshat, M., Keynia, F., Piras, G., & Garcia, D. A. (2022). A Mediterranean Sea Offshore Wind classification using MERRA-2 and machine learning models. Renewable Energy, 190, 156-166.
Scopus28 WoS82022 Mozaffari, S., Amini, E., Mehdipour, H., & Neshat, M. (2022). Flow Discharge Prediction Study Using a CFD-Based Numerical Model and Gene Expression Programming. Water (Switzerland), 14(4), 15 pages.
Scopus8 WoS22022 Radfar, S., Panahi, R., Nezhad, M. M., & Neshat, M. (2022). A Numerical Methodology to Predict the Maximum Power Output of Tidal Stream Arrays. Sustainability (Switzerland), 14(3), 13 pages.
Scopus5 WoS42022 Nezhad, M. M., Neshat, M., Piras, G., Garcia, D. A., & Sylaios, G. (2022). Marine Online Platforms of Services to Public End-Users—The Innovation of the ODYSSEA Project. Remote Sensing, 14(3), 20 pages.
Scopus4 WoS22022 Etaati, B., Dehkordi, A. A., Sadollah, A., El-Abd, M., & Neshat, M. (2022). A Comparative State-of- the-Art Constrained Metaheuristics Framework for TRUSS Optimisation on Shape and Sizing. MATHEMATICAL PROBLEMS IN ENGINEERING, 2022, 13 pages.
WoS22022 Neshat, M., Mirjalili, S., Sergiienko, N. Y., Esmaeilzadeh, S., Amini, E., Heydari, A., & Garcia, D. A. (2022). Layout optimisation of offshore wave energy converters using a novel multi-swarm cooperative algorithm with backtracking strategy: A case study from coasts of Australia. Energy, 239, 1-29.
Scopus43 WoS182021 Syah, R., Davarpanah, A., Nasution, M. K. M., Tanjung, F. A., Nezhad, M. M., & Nesaht, M. (2021). A comprehensive thermoeconomic evaluation and multi-criteria optimization of a combined MCFC/TEG system. Sustainability (Switzerland), 13(23), 29 pages.
Scopus32021 Amini, E., Mehdipour, H., Faraggiana, E., Golbaz, D., Mozaffari, S., Bracco, G., & Neshat, M. (2021). Optimization Study of Hydraulic Power Take-off System for an Ocean Wave Energy Converter.. CoRR, abs/2112.09803. 2021 Golbaz, D., Asadi, R., Amini, E., Mehdipour, H., Nasiri, M., Nezhad, M. M., . . . Neshat, M. (2021). Ocean Wave Energy Converters Optimization: A Comprehensive Review on
Research Directions.2021 Ceylan, O., Neshat, M., & Mirjalili, S. (2021). Cascaded H-bridge multilevel inverters optimization using adaptive grey wolf optimizer with local search. Electrical Engineering, 106(2), 15 pages.
Scopus9 WoS52021 Schlueter, M., Neshat, M., Wahib, M., Munetomo, M., & Wagner, M. (2021). GTOPX space mission benchmarks. SoftwareX, 14, 1-10.
Scopus7 WoS22021 Neshat, M., Nezhad, M. M., Abbasnejad, E., Mirjalili, S., Tjernberg, L. B., Astiaso Garcia, D., . . . Wagner, M. (2021). A deep learning-based evolutionary model for short-term wind speed forecasting: A case study of the Lillgrund offshore wind farm. Energy Conversion and Management, 236, 1-25.
Scopus161 WoS832021 Neshat, M., Nezhad, M. M., Abbasnejad, E., Mirjalili, S., Groppi, D., Heydari, A., . . . Wagner, M. (2021). Wind turbine power output prediction using a new hybrid neuro-evolutionary method. Energy, 229, 120617-1-120617-24.
Scopus85 WoS512021 Neshat, M., Sergiienko, N. Y., Mirjalili, S., Nezhad, M. M., Piras, G., & Garcia, D. A. (2021). Multi-mode wave energy converter design optimisation using an improved moth flame optimisation algorithm. Energies, 14(13), 1-17.
Scopus18 WoS92021 Amini, E., Asadi, R., Golbaz, D., Nasiri, M., Naeeni, S. T. O., Nezhad, M. M., . . . Neshat, M. (2021). Comparative study of oscillating surge wave energy converter performance: a case study for southern coasts of the Caspian Sea. Sustainability (Switzerland), 13(19), 1-21.
Scopus13 WoS72021 Filom, S., Radfar, S., Panahi, R., Amini, E., & Neshat, M. (2021). Exploring wind energy potential as a driver of sustainable development in the southern coasts of Iran: The importance of wind speed statistical distribution model. Sustainability (Switzerland), 13(14), 1-24.
Scopus22 WoS72021 Heydari, A., Nezhad, M. M., Neshat, M., Garcia, D. A., Keynia, F., De Santoli, L., & Tjernberg, L. B. (2021). A combined fuzzy gmdh neural network and grey wolf optimization application for wind turbine power production forecasting considering scada data. Energies, 14(12), 1-13.
Scopus20 WoS132021 Ghobadzadeh, F., & Neshat, M. (2021). A Low-Cost Bandpass Filter Based on Hybrid Spoof Plasmonic Waveguides. IEEE Microwave and Wireless Components Letters, 31(7), 837-840.
Scopus2 WoS12021 Syah, R., Rezaei, M., Elveny, M., Majidi Nezhad, M., Ramdan, D., Nesaht, M., & Davarpanah, A. (2021). Day-ahead electricity price forecasting using WPT, VMI, LSSVM-based self adaptive fuzzy kernel and modified HBMO algorithm. Scientific Reports, 11(1), 17375.
Scopus32021 Amini, E., Golbaz, D., Asadi, R., Nasiri, M., Ceylan, O., Nezhad, M. M., & Neshat, M. (2021). A comparative study of metaheuristic algorithms for wave energy converter power take-off optimisation: a case study for Eastern Australia. Journal of Marine Science and Engineering, 9(5), 1-12.
Scopus22 WoS132021 Nezhad, M. M., Neshat, M., Heydari, A., Razmjoo, A., Piras, G., & Garcia, D. A. (2021). A new methodology for offshore wind speed assessment integrating Sentinel-1, ERA-Interim and in-situ measurement. Renewable Energy, 172, 1301-1313.
Scopus21 WoS172021 Nezhad, M. M., Neshat, M., Groppi, D., Marzialetti, P., Heydari, A., Sylaios, G., & Garcia, D. A. (2021). A primary offshore wind farm site assessment using reanalysis data: a case study for Samothraki island. Renewable Energy, 172, 667-679.
Scopus43 WoS272020 Amini, E., Golbaz, D., Amini, F., Nezhad, M. M., Neshat, M., & Garcia, D. A. (2020). A parametric study of wave energy converter layouts in real wave models. Energies, 13(22), 6095.
Scopus23 WoS142020 Neshat, M., Alexander, B., & Wagner, M. (2020). A hybrid cooperative co-evolution algorithm framework for optimising power take offand placements of wave energy converters. Information Sciences, 534, 218-244.
Scopus51 WoS322020 Neshat, M., Alexander, B., Sergiienko, N. Y., & Wagner, M. (2020). New insights into position optimization of wave energy converters using hybrid local search. Swarm and Evolutionary Computation, 59, 100744-1-100744-18.
Scopus24 WoS142020 Neshat, M., Nezhad, M. M., Abbasnejad, E., Groppi, D., Heydari, A., Tjernberg, L. B., . . . Wagner, M. (2020). Hybrid Neuro-Evolutionary Method for Predicting Wind Turbine Power Output.. CoRR, abs/2004.12794. 2020 Neshat, M., Sergiienko, N. Y., Amini, E., Nezhad, M. M., Garcia, D. A., Alexander, B., & Wagner, M. (2020). A new bi-level optimisation framework for optimising a multi-modewave energy converter design: A case study for the marettimo island, mediterranean sea. Energies, 13(20), 5498.
Scopus23 WoS162020 Neshat, M., Nezhad, M. M., Abbasnejad, E., Tjernberg, L. B., Garcia, D. A., Alexander, B., & Wagner, M. (2020). An Evolutionary Deep Learning Method for Short-term Wind Speed Prediction: A Case Study of the Lillgrund Offshore Wind Farm.. CoRR, abs/2002.09106. 2019 Neshat, M., Alexander, B., & Simpson, A. R. (2019). Covariance Matrix Adaptation Greedy Search Applied to Water Distribution System Optimization.. CoRR, abs/1909.04846. 2016 Neshat, M., Tabatabi, M., Zahmati, E., & Shirdel, M. (2016). A hybrid fuzzy knowledge-based system for forest fire risk forecasting. International Journal of Reasoning-based Intelligent Systems, 8(3-4), 132-154.
Scopus22016 Neshat, M., & Ahmadi, M. (2016). Recognising the kind of cloud using a new fuzzy knowledge-based system. International Journal of Reasoning-based Intelligent Systems, 8(3-4), 168-180.
Scopus12016 Pourahmad, A., Neshat, M., & Hasani, M. (2016). Using LibQUAL model for improving the level of students' satisfaction from quality of services in academic libraries: a case study in North Khorasan Province, Iran. Journal of Information and Knowledge Management, 15(1), 1650011-1-1650011-12.
Scopus9 WoS32016 Neshat, M., Pourahmad, A. A., & Hasani, M. R. (2016). Designing an adaptive neuro fuzzy inference system for prediction of customers satisfaction. Journal of Information and Knowledge Management, 15(4), 21 pages.
Scopus12016 Neshat, M., Sepidname, G., Mehri, E., & Zalimoghadam, A. (2016). The review of soft computing applications in humanitarian demining robots design. Indian Journal of Science and Technology, 9(4), 1-13.
Scopus32015 Neshat, M., Sepidname, G., Eizi, A., & Amani, A. (2015). A new skin color detection approach based on fuzzy expert system. Indian Journal of Science and Technology, 8(21).
Scopus122015 Neshat, M., & Sepidname, G. (2015). A new hybrid optimization method inspired from swarm intelligence: Fuzzy adaptive swallow swarm optimization algorithm (FASSO). Egyptian Informatics Journal, 16(3), 339-350.
Scopus20 WoS102014 Neshat, M., Sepidnam, G., Sargolzaei, M., & Toosi, A. N. (2014). Artificial fish swarm algorithm: a survey of the state-of-the-art, hybridization, combinatorial and indicative applications. Artificial Intelligence Review, 42(4), 965-997.
Scopus372 WoS2462013 Neshat, M. (2013). FAIPSO: Fuzzy adaptive informed particle swarm optimization. Neural Computing and Applications, 23(SUPPL1), 95-116.
Scopus23 WoS182013 Neshat, M., Sepidnam, G., & Sargolzaei, M. (2013). Swallow swarm optimization algorithm: A new method to optimization. Neural Computing and Applications, 23(2), 429-454.
Scopus86 WoS522012 Neshat, M., Adeli, A., Sepidnam, G., & Sargolzaei, M. (2012). Predication of concrete mix design using adaptive neural fuzzy inference systems and fuzzy inference systems. International Journal of Advanced Manufacturing Technology, 63(1-4), 373-390.
Scopus15 WoS122012 Neshat, M., Sargolzaei, M., Masoumi, A., & Najaran, A. (2012). A New kind of PSO: Predator particle swarm optimization. International Journal on Smart Sensing and Intelligent Systems, 5(2), 521-539.
Scopus8 WoS52012 Neshat, M., Adeli, A., Sepidnam, G., Sargolzaei, M., & Toosi, A. N. (2012). A review of Artificial Fish Swarm Optimization methods and applications. International Journal on Smart Sensing and Intelligent Systems, 5(1), 107-148.
Scopus52 WoS322012 Neshat, M., Sargolzaei, M., Najaran, A., & Adeli, A. (2012). The new method of adaptive CPU scheduling using Fonseca and Fleming's Genetic Algorithm. Journal of Theoretical and Applied Information Technology, 37(1), 1-16.
Scopus102012 Neshat, M., Yazdi, S. F., Yazdani, D., & Sargolzaei, M. (2012). A new cooperative algorithm based on PSO and K-means for data clustering. Journal of Computer Science, 8(2), 188-194.
Scopus28 -
Conference Papers
Year Citation 2024 Ghasemi, Z., Neshat, M., Aldrich, C., Karageorgos, J., Zanin, M., Neumann, F., & Chen, L. (2024). Enhanced Genetic Programming Models with Multiple Equations for Accurate Semi-Autogenous Grinding Mill Throughput Prediction. In Proceedings of the IEEE Congress on Evolutionary Computation (CEC 2024) (pp. 1-9). Yokohama, Japan: IEEE.
DOI2023 Zrubka, Z., Holgyesi, A., Neshat, M., Nezhad, H. M., Mirjalili, S., Kovacs, L., . . . Gulacsi, L. (2023). Towards a single goodness metric of clinically relevant, accurate, fair and unbiased machine learning predictions of health-related quality of life. In INES 2023 - 27th IEEE International Conference on Intelligent Engineering Systems 2023, Proceedings (pp. 285-290). Online: IEEE.
DOI Scopus12023 Dadgar, S., & Neshat, M. (2023). Comparative Hybrid Deep Convolutional Learning Framework with Transfer Learning for Diagnosis of Lung Cancer. In A. Abraham, T. Hanne, N. Gandhi, P. Manghirmalani Mishra, A. Bajaj, & P. Siarry (Eds.), Proceedings of the 14th International Conference on Soft Computing and Pattern Recognition (SoCPaR 2022) Vol. 648 (pp. 296-305). Online: Springer Nature Switzerland.
DOI Scopus32022 Agostinelli, S., Neshat, M., Nezhad, M. M., Piras, G., & Garcia, D. A. (2022). METHODOLOGY FRAMEWORK FOR PRIORITISATION OF RENEWABLE ENERGY SOURCES IN PORT AREAS. In WIT Transactions on the Built Environment Vol. 212 (pp. 113-121). Online: WIT Press.
DOI2021 Burramukku, B., Ceylan, O., & Neshat, M. (2021). Power output prediction of wave farms using fully connected networks. In 2021 56th International Universities Power Engineering Conference: Powering Net Zero Emissions, UPEC 2021 - Proceedings (pp. 6 pages). Middlesbrough, United Kingdom: IEEE.
DOI Scopus12021 Ceylan, O., Neshat, M., & Mirjalili, S. (2021). Optimization of multilevel inverters using novelty-driven Multi-verse Optimization algorithm. In 2021 56th International Universities Power Engineering Conference: Powering Net Zero Emissions, UPEC 2021 - Proceedings (pp. 1-6). online: IEEE.
DOI2020 Sergiienko, N. Y., Neshat, M., Silva, L. S. P. D., Alexander, B., & Wagner, M. (2020). Design optimisation of a multi-mode wave energy converter. In Proceedings of the 39th International Conference on Ocean, Offshore and Arctic Engineering (OMAE 2020) Vol. 9 (pp. 1-11). Online: American Society of Mechanical Engineers (ASME).
DOI Scopus162020 Neshat, M., Alexander, B., Sergiienko, N. Y., & Wagner, M. (2020). Optimisation of large wave farms using a multi-strategy evolutionary framework. In Proceedings of the 2020 Genetic and Evolutionary Computation Conference (GECCO'20) Vol. abs/2003.09594 (pp. 1150-1158). New York: Association for Computing Machinery.
DOI Scopus17 WoS102019 Neshat, M., Abbasnejad, E., Shi, Q., Alexander, B., & Wagner, M. (2019). Adaptive neuro-surrogate-based optimisation method for wave energy converters placement optimisation. In T. Gedeon, K. W. Wong, & M. Lee (Eds.), Proceedings of the 26th International Conference on Neural Information Processing (ICONIP 2019), as published in Lecture Notes in Computer Science (Neural Information Processing Proceedings, Part II) Vol. 11954 (pp. 353-366). Switzerland: Springer Nature.
DOI Scopus25 WoS162019 Neshat, M., Alexander, B., Sergiienko, N., & Wagner, M. (2019). A hybrid evolutionary algorithm framework for optimising power take off and placements of wave energy converters. In GECCO '19 Proceedings of the Genetic and Evolutionary Computation Conference Vol. abs/1904.07043 (pp. 1293-1301). New York: ACM.
DOI Scopus19 WoS142018 Neshat, M., Alexander, B., Wagner, M., & Xia, Y. (2018). A detailed comparison of meta-heuristic methods for optimising wave energy converter placements. In H. E. Aguirre, & K. Takadama (Eds.), Proceedings of the 2018 Genetic and Evolutionary Computation Conference as published in GECCO 2018 (pp. 1318-1325). online: ACM.
DOI Scopus37 WoS262012 Adeli, A., Ghorbani-Rad, A., Zomorodian, M. J., Neshat, M., & Mozaffari, S. (2012). Improving nearest neighbor classification using particle swarm optimization with novel fitness function. In N. T. Nguyen, K. Hoang, & P. Jedrzejowicz (Eds.), Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) Vol. 7654 LNAI (pp. 365-372). Ho Chi Minh City, VIETNAM: SPRINGER-VERLAG BERLIN.
DOI Scopus4 WoS32012 Adeli, A., Sinaee, M., Zomorodian, J., & Neshat, M. (2012). Harmony-based feature selection to improve the nearest neighbor classification. In N. Meghanathan, & M. Wozniak (Eds.), ACM International Conference Proceeding Series (pp. 12-18). ACM.
DOI2011 Neshat, M., & Adeli, A. (2011). Designing a fuzzy expert system to predict the concrete mix design. In IEEE International Conference on Computational Intelligence for Measurement Systems and Applications Proceedings (pp. 80-85). Univ Ottawa, Ottawa, CANADA: IEEE.
DOI Scopus9 WoS12010 Neshat, M. (2010). A hybrid method in informed search: Fuzzy simplified memory-bounded a* approach. In Proceedings - 2010 International Conference on Computational Intelligence and Communication Networks, CICN 2010 (pp. 105-109). IEEE.
DOI2010 Rezaei, M., Neshat, M., & Yazdi, H. S. (2010). A new frequency dependent resistor for modeling skin effect of wire and echo cancellation by PSO. In V. Mahadevan, & Z. Jianhong (Eds.), 2010 The 2nd International Conference on Computer and Automation Engineering, ICCAE 2010 Vol. 1 (pp. 573-577). Singapore, SINGAPORE: IEEE.
DOI Scopus2 WoS12010 Neshat, M., & Zadeh, A. E. (2010). Hopfield neural network and fuzzy hopfield neural network for diagnosis of liver disorders. In 2010 IEEE International Conference on Intelligent Systems, IS 2010 - Proceedings (pp. 162-167). IEEE.
DOI Scopus142010 Neshat, M., & Rezaei, M. (2010). AIPSO: Adaptive informed particle swarm optimization. In 2010 IEEE International Conference on Intelligent Systems, IS 2010 - Proceedings (pp. 438-443). IEEE.
DOI Scopus42010 Adeli, A., & Neshat, M. (2010). A Fuzzy Expert System for heart disease diagnosis. In S. I. Ao, O. Castillo, C. Douglas, D. D. Feng, & J. A. Lee (Eds.), Proceedings of the International MultiConference of Engineers and Computer Scientists 2010, IMECS 2010 (pp. 134-139). Hong Kong, PEOPLES R CHINA: INT ASSOC ENGINEERS-IAENG.
Scopus141 WoS272009 Neshat, M., & Yaghobi, M. (2009). Designing a Fuzzy Expert System of Diagnosing the Hepatitis B Intensity Rate and Comparing it with Adaptive Neural Network Fuzzy System. In S. I. Ao, C. Douglas, W. S. Grundfest, & J. Burgstone (Eds.), WCECS 2009: WORLD CONGRESS ON ENGINEERING AND COMPUTER SCIENCE, VOLS I AND II (pp. 797-+). San Francisco, CA: INT ASSOC ENGINEERS-IAENG.
WoS62009 Neshat, M., & Yaghobi, M. (2009). FESHDD: Fuzzy expert system for hepatitis B diseases diagnosis. In ICSCCW 2009 - 5th International Conference on Soft Computing, Computing with Words and Perceptions in System Analysis, Decision and Control (pp. 1-4). IEEE.
DOI Scopus32008 Neshat, M., Yaghobi, M., Naghibi, M. B., & Esmaelzadeh, A. (2008). Fuzzy expert system design for diagnosis of liver disorders. In C. Zhao, C. Wu, Y. Wang, & Q. Liu (Eds.), Proceedings - 2008 International Symposium on Knowledge Acquisition and Modeling, KAM 2008 (pp. 252-256). Wuhan, PEOPLES R CHINA: IEEE COMPUTER SOC.
DOI Scopus50 WoS272008 Neshat, M., Yaghobi, M., & Naghibi, M. (2008). Designing an expert system of liver disorders by using neural network and comparing it with parametric and nonparametric system. In 2008 5th International Multi-Conference on Systems, Signals and Devices, SSD'08 (pp. 202-208). Amman, JORDAN: IEEE.
DOI Scopus6
Connect With Me
External Profiles