Dr Lia Song
Lecturer
School of Computer and Mathematical Sciences
Faculty of Sciences, Engineering and Technology
Eligible to supervise Masters and PhD - email supervisor to discuss availability.
My research interests are in streaming data mining and trustworthy AI. My current working topics include:
· Modeling with distributional changes (detection and adaptation)
· Real-time prediction for streaming data
· Privacy protection in federated learning
· AI explainability
I am interested in trustworthy AI, especially the robustness, security, and explainability of machine learning models. My current research includes the following topics:
- Modeling with distributional changes (detection and adaptation)
- Real-time prediction for streaming data
- Privacy protection in federated learning
- AI explainability
-
Appointments
Date Position Institution name 2024 - ongoing Lecturer The University of Adelaide 2022 - ongoing Visting Scholar University of Technology -
Language Competencies
Language Competency Chinese (Mandarin) Can read, write, speak, understand spoken and peer review English Can read, write, speak, understand spoken and peer review -
Education
Date Institution name Country Title University of Technology Sydney Australia PhD -
Research Interests
-
Journals
Year Citation 2024 Zhang, Q., Lai, N., He, M., Yang, Y., Huang, Q., Quan, Y., . . . Wang, R. (2024). Tunable broadband luminescence of Bi-ion-doped glasses via Gd<inf>2</inf>O<inf>3</inf> co-doping. Journal of the American Ceramic Society, 107(6), 3837-3844.
2024 Ma, W., Song, Y., Xue, M., Wen, S., & Xiang, Y. (2024). The &#x201C;Code&#x201D; of Ethics: A Holistic Audit of AI Code Generators. IEEE Transactions on Dependable and Secure Computing, 21(5), 4997-5013.
2024 Abbasnejad, B., Nasirian, A., Duan, S., Diro, A., Prasad Nepal, M., & Song, Y. (2024). Measuring BIM Implementation: A Mathematical Modeling and Artificial Neural Network Approach. Journal of Construction Engineering and Management, 150(5), 14 pages.
Scopus22023 Zhou, M., Lu, J., Song, Y., & Zhang, G. (2023). Multi-Stream Concept Drift Self-Adaptation Using Graph Neural Network. IEEE Transactions on Knowledge and Data Engineering, 35(12), 12828-12841.
Scopus9 WoS12023 Yu, H., Li, J., Lu, J., Song, Y., Xie, S., & Zhang, G. (2023). Type-LDD: A Type-Driven Lite Concept Drift Detector for Data Streams. IEEE Transactions on Knowledge and Data Engineering, 1-14.
Scopus22023 Liu, A., Lu, J., Song, Y., Xuan, J., & Zhang, G. (2023). Concept Drift Detection Delay Index. IEEE Transactions on Knowledge and Data Engineering, 35(5), 4585-4597.
Scopus11 WoS22023 Song, Y., Lu, J., Lu, H., & Zhang, G. (2023). Learning Data Streams with Changing Distributions and Temporal Dependency. IEEE Transactions on Neural Networks and Learning Systems, 34(8), 3952-3965.
Scopus17 WoS72022 Wang, K., Lu, J., Liu, A., Song, Y., Xiong, L., & Zhang, G. (2022). Elastic gradient boosting decision tree with adaptive iterations for concept drift adaptation. Neurocomputing, 491, 288-304.
Scopus25 WoS112022 Yu, E., Song, Y., Zhang, G., & Lu, J. (2022). Learn-to-adapt: Concept drift adaptation for hybrid multiple streams. Neurocomputing, 496, 121-130.
Scopus14 WoS62022 Dong, F., Lu, J., Song, Y., Liu, F., & Zhang, G. (2022). A Drift Region-Based Data Sample Filtering Method. IEEE Transactions on Cybernetics, 52(9), 9377-9390.
Scopus9 WoS72022 Song, Y., Lu, J., Liu, A., Lu, H., & Zhang, G. (2022). A Segment-Based Drift Adaptation Method for Data Streams. IEEE Transactions on Neural Networks and Learning Systems, 33(9), 4876-4889.
Scopus19 WoS132022 Liu, B., Liao, J., Song, Y., Chen, C., Ding, L., Lu, J., . . . Wang, F. (2022). Multiplexed structured illumination super-resolution imaging with lifetime-engineered upconversion nanoparticles. Nanoscale Advances, 4(1), 30-38.
Scopus13 WoS7 Europe PMC42021 Liao, J., Zhou, J., Song, Y., Liu, B., Lu, J., & Jin, D. (2021). Optical Fingerprint Classification of Single Upconversion Nanoparticles by Deep Learning. Journal of Physical Chemistry Letters, 12(41), 10242-10248.
Scopus11 WoS9 Europe PMC22021 Liao, J., Zhou, J., Song, Y., Liu, B., Chen, Y., Wang, F., . . . Jin, D. (2021). Preselectable Optical Fingerprints of Heterogeneous Upconversion Nanoparticles. Nano Letters, 21(18), 7659-7668.
Scopus28 WoS21 Europe PMC62020 Song, Y., Lu, J., Lu, H., & Zhang, G. (2020). Fuzzy Clustering-Based Adaptive Regression for Drifting Data Streams. IEEE Transactions on Fuzzy Systems, 28(3), 544-557.
Scopus38 WoS1032020 Lu, J., Liu, A., Song, Y., & Zhang, G. (2020). Data-driven decision support under concept drift in streamed big data. Complex and Intelligent Systems, 6(1), 157-163.
Scopus58 WoS412017 Jiang, P., Liu, F., & Song, Y. (2017). A hybrid forecasting model based on date-framework strategy and improved feature selection technology for short-term load forecasting. Energy, 119, 694-709.
Scopus107 WoS882017 Song, Y., Wang, Y., Liu, F., & Zhang, Y. (2017). Development of a hybrid model to predict construction and demolition waste: China as a case study. Waste Management, 59, 350-361.
Scopus67 WoS40 Europe PMC132016 Jiang, P., Liu, F., & Song, Y. (2016). A hybrid multi-step model for forecasting day-ahead electricity price based on optimization, fuzzy logic and model selection. Energies, 9(8), 27 pages.
Scopus10 WoS72016 Wang, J., Liu, F., Song, Y., & Zhao, J. (2016). A novel model: Dynamic choice artificial neural network (DCANN) for an electricity price forecasting system. Applied Soft Computing Journal, 48, 281-297.
Scopus77 WoS602016 Jiang, P., Liu, F., Wang, J., & Song, Y. (2016). Cuckoo search-designated fractal interpolation functions with winner combination for estimating missing values in time series. Applied Mathematical Modelling, 40(23-24), 9692-9718.
Scopus26 WoS182016 Zhang, Z., Song, Y., Liu, F., & Liu, J. (2016). Daily average wind power interval forecasts based on an optimal adaptive-network-based fuzzy inference system and singular spectrum analysis. Sustainability (Switzerland), 8(2), 30 pages.
Scopus9 WoS72016 Wang, J., Song, Y., Liu, F., & Hou, R. (2016). Analysis and application of forecasting models in wind power integration: A review of multi-step-ahead wind speed forecasting models. Renewable and Sustainable Energy Reviews, 60, 960-981.
Scopus216 WoS1752015 Qin, S., Liu, F., Wang, C., Song, Y., & Qu, J. (2015). Spatial-temporal analysis and projection of extreme particulate matter (PM<inf>10</inf> and PM<inf>2.5</inf>) levels using association rules: A case study of the Jing-Jin-Ji region, China. Atmospheric Environment, 120, 339-350.
Scopus47 WoS382015 Song, Y., Qin, S., Qu, J., & Liu, F. (2015). The forecasting research of early warning systems for atmospheric pollutants: A case in Yangtze River Delta region. Atmospheric Environment, 118, 58-69.
Scopus79 WoS672015 Qin, S., Liu, F., Wang, J., & Song, Y. (2015). Interval forecasts of a novelty hybrid model for wind speeds. Energy Reports, 1, 8-16.
Scopus47 WoS45 -
Conference Papers
Year Citation 2021 Zhou, M., Song, Y., Zhang, G., Zhang, B., & Lu, J. (2021). An Efficient Bayesian Neural Network for Multiple Data Streams. In Proceedings of the International Joint Conference on Neural Networks Vol. 2021-July (pp. 8 pages). Shenzhen, China: IEEE.
DOI Scopus32020 Song, Y., Zhang, G., Lu, H., & Lu, J. (2020). A fuzzy drift correlation matrix for multiple data stream regression. In IEEE International Conference on Fuzzy Systems Vol. 2020-July (pp. 6 pages). Glasgow, UK: IEEE.
DOI Scopus11 WoS112019 Song, Y., Zhang, G., Lu, H., & Lu, J. (2019). A Noise-tolerant Fuzzy c-Means based Drift Adaptation Method for Data Stream Regression. In IEEE International Conference on Fuzzy Systems Vol. 2019-June (pp. 1-6). IEEE.
DOI Scopus62018 Song, Y., Zhang, G., Lu, H., & Lu, J. (2018). A self-adaptive fuzzy network for prediction in non-stationary environments. In IEEE International Conference on Fuzzy Systems Vol. 2018-July (pp. 8 pages). BRAZIL, Rio de Janeiro: IEEE.
DOI Scopus52017 Liu, A., Song, Y., Zhang, G., & Lu, J. (2017). Regional concept drift detection and density synchronized drift adaptation. In C. Sierra (Ed.), IJCAI International Joint Conference on Artificial Intelligence Vol. 0 (pp. 2280-2286). AUSTRALIA, Melbourne: IJCAI-INT JOINT CONF ARTIF INTELL.
DOI Scopus78 WoS272017 Song, Y., Zhang, G., Lu, J., & Lu, H. (2017). A fuzzy kernel c-means clustering model for handling concept drift in regression. In IEEE International Conference on Fuzzy Systems Vol. 14 (pp. 6 pages). ITALY, Naples: IEEE.
DOI Scopus11 WoS12
- UoA Start-up Grant - Chief Investigator (2023-2025)
- BITS Pilani-RMIT PhD Program - Chief Investigator (2023-2027) Adversarial deep learning algorithms applied to outlier detection in dynamic networks
- Data61 Net Gen Graduate Program - Associate Investigator (2023-2027) Developing Digital Capabilities to Support the Aged Care Sector
- UTS Cross Faculty Scheme - Chief Investigator (2022-2023) AI-empowered Privacy and Ethics Risk Assessment Tool
2024
- COMPSCI 2008, Topics in Computer Science
- COMPSCI 4405/7405 Research Methods in Software Engineering and Computer Science
2023
- ECON1555, Business Data Analytics (PG), RMIT University
- AI in Web3, RMIT University
2022
- ECON1555, Business Data Analytics (PG), RMIT University
- Introduction to Software Development (UG), University of Technology Sydney
Connect With Me
External Profiles