Jingxian Yu

Dr Jingxian Yu

Senior Research Fellow and Senior Lecturer

School of Physical Sciences

Faculty of Sciences

Eligible to supervise Masters and PhD - email supervisor to discuss availability.


Dr Jingxian Yu completed his BEng (Applied Chemistry) and MSc (Physical Chemistry) degrees in China, and PhD (nanoscience & nanotechnology) in Australia. Upon the completion of his PhD program he moved to the University of Cambridge, UK as a Roger Pysden Research Fellow and later the University of Nottingham, UK as a postdoctoral research fellow. He returned to Australia in 2009 to take up an ARC Australian Postdoctoral Fellowship (APD Fellow) at the University of Adelaide. Currently, he is a Senior Research Fellow & Senior Lecturer at the ARC Centre of Excellence for Nanoscale BioPhotonics (CNBP) headed by the University of Adelaide. He has a specific interest in electron transfer in peptides using combined electrochemical and computational techniques, and a growing interest in biological applications of nanomaterials. He is a recipient of a number of awards, including the CASS Foundation Award, Roger Pysden Memorial Fellowship, Ian Potter Foundation Award, Flinders University Overseas Travelling Fellowship and AMY Forwood Travelling Award.

Bio-inspired molecular electronics

Electron transfer in proteins can occur over long molecular distances to facilitate a number of crucial biological processes, including respiration and photosynthesis. A fundamental understanding of electron transfer in proteins is not only central to the elucidation of these essential biological processes in living organisms, but also to the design and development of bio-inspired molecular electronic components. Much research has been conducted on charge transfer in proteins, including azurin and the mitochondrial electron carrier, cytochrome C. However, in light of the complexity of such systems, synthetic model peptides present as excellent alternatives. Such peptides can adopt specific secondary structures, for instance helices and β-strands through diligent design, to allow the study of electron transfer in a somewhat more controlled setting. Furthermore, specific functionalization of their backbone enables precision-branching, a key feature of three-dimensional molecular circuitry. While molecular electronics provides an opportunity to begin to redefine integrated circuit technologies, one must first understand and subsequently be able to predict and control the associated charge transfer kinetics and dynamics before this vision can be realized.

A direct link between backbone rigidity and electron transfer has been reported, providing a novel approach for the development of switchable molecular components.
A direct link between backbone rigidity and electron transfer provides a novel approach for the development of switchable molecular components.

To address these questions, we use a combination of theory and experiment to advance a fundamental understanding of electron transport in naturally occurring peptides, while exploiting their electronic properties to promote the design and development of functional bio-inspired molecular electronic devices. A bottom-up approach for the fabrication of components for the electronics industry will be required in the not too distant future, with the combination of solid-state techniques used here closely aligning to future device development.

 

Biological applications of nanomaterials

A case study: Photoswitchable Peptide-Modified Nanoporous Anodic Alumina for On-Demand Molecular Transport

The controlled transport of molecules across membranes is central to nature (e.g., in protein channels and ion pumps) but also to many highly valuable applications such as desalination, on-demand drug delivery, chromatography, and others. Artificial nanoporous membranes, for example nanoporous anodic alumina membranes (NAAMs), provide an important tool for studying the mechanisms and dynamics associated with molecular transporting across a membrane.

Photo-Switchable Membranes based on Peptide-Modified Nanoporous Anodic Alumina: Toward Smart Membranes for On-Demand Molecular Transport
(a) Typical SEM image of nanoporous anodic alumina membranes (NAAMs); (b) Photo-regulated gatekeeper when the PSP-NAAM is exposed to the light of different wavelengths; (c) Molecular transport of dye through PSP-NAAM after alternative exposure to 440 and 364 nm light.

Here, an alternative approach to overcome the inherent limitations of polymer-based stimuli-responsive membranes, while providing the practical and functional requirements for selective on-demand molecular transport applications, are synthetic nanoporous membranes modified with optically switchable molecules (PSP-NAAMs). The results showed that the molecular transport across PSP-NAAMs could be repeatedly switched between on and off state, which is highly significant for on-demand triggered drug release systems.

Research Grants
Funding Body Funding Scheme Project Amount Date Investigators
ARC Discovery Project Bio-inspired molecular electronics: from nanoscience to nanotechnology $ 416,584 2018-2020 Andrew D Abell, Jingxian Yu, Wenjing Hong and David Cahen.
IPAS IPAS Pilot Project Funding Scheme Double remote electrochemical addressing and optical readout of electrochemiluminescence at the nano-patterned tip of an optical fiber for the detection of peroxide explosives. $6,000 2017 Jingxian Yu and Peipei Jia.
CAN CAN Pilot Project Funding Scheme Photoregulated Gating Enabled Smart Nanoconfined Structures $8,000 2012-2013 Jingxian Yu, Mahaveer D Kurkuri, Andrew D Abell, Dusan Losic.
IPAS IPAS Pilot Project Funding Scheme

Photoswitchable β-Hairpin Peptides for Molecular Bio-optoelectronic Devices

$7,000 2012 Jingxian Yu, Yinlan Ruan, Sabrina Heng, David Huang, Denis Scanlon and Andrew Abell.
ARC Linkage Infrastructure, Equipment and Facilities Scheme Ultraviolet, visible and infrared spectroscopic ellipsometers for advanced materials and device characterization $300,000 2011 Heike Ebendorff-Heidepriem, Tanya M Monro, Andrew D Abell, David G Lancaster, Jingxian Yu and Hans J Griesser.
ARC Discovery Project, incorporated with an award of Australian Postdoctoral Fellowship Electron Transfer in Proteins, A Study of Mechanism and Function $ 350,000 2009-2011 Andrew D Abell and Jingxian Yu (APD).
 
National Supercomputing Time Grants
Funding Body Funding Scheme Project Amount Date Investigators
NCMAS National Computational Merit Allocation Scheme Peptronics: Understanding the Relationship between Structures and Properties 530kSU 2018 Jingxian Yu
NCMAS National Computational Merit Allocation Scheme Peptronics: Understanding the Relationship between Structures and Properties 100kSU 2017 Jingxian Yu
NCMAS National Computational Merit Allocation Scheme Peptronics: Understanding the Relationship between Structures and Properties 200kSU 2016 Jingxian Yu
NCMAS National Computational Merit Allocation Scheme Peptronics: Understanding the Relationship between Structures and Properties 250kSU 2015 Jingxian Yu
NCMAS

National Computational Merit Allocation Scheme

Early Career Researcher Award

Electron Transfer in Peptides, Structure and Function 250kSU 2014 Jingxian Yu
NCMAS National Computational Merit Allocation Scheme Electron Transfer in Peptides, Structure and Function 300kSU 2013 Jingxian Yu
NCMAS National Computational Merit Allocation Scheme Electron Transfer in Peptides, A study of Mechanism and Dynamics 450kSU 2012 Jingxian Yu
NCMAS National Computational Merit Allocation Scheme Electron Transfer in Peptides, Mechanism and Structure 200kSU 2011 Jingxian Yu
    Expand
  • Memberships

    Date Role Membership Country
    2006 - ongoing Member International Society of Electrochemistry (ISE) Switzerland
    2006 - ongoing Member The Royal Australian Chemical Institute Inc. (RACI) Australia
  • Position: Senior Research Fellow and Senior Lecturer
  • Phone: 83136694
  • Email: jingxian.yu@adelaide.edu.au
  • Fax: 8313 4380
  • Campus: North Terrace
  • Building: Badger, floor G
  • Room: G 21
  • Org Unit: Chemistry

Connect With Me
External Profiles