Jingrun Ran

Jingrun Ran

School of Chemical Engineering and Advanced Materials

Faculty of Engineering, Computer and Mathematical Sciences

Eligible to supervise Masters and PhD - email supervisor to discuss availability.


Dr. Jingrun Ran received his PhD degree in Chemical Engineering from the University of Adelaide. Now he is appointed as a senior lecturer in School of Chemical Enigneering and Advanced Materials in University of Adelaide. His research is focused on the atomic-level design and synthesis of photocatalysts for producing energy fuels and value-added chemicals using renewable solar energy. Dr. Jingrun Ran has been recognised as a Clarivate Highly Cited Researcher in 2020 and 2021, and recognised as the World’s Top 2% Scientists (released by Stanford University) in 2020 and 2021. He has published 43 papers in well-renowed journals, including Nat. Commun., Adv. Mater., Angew. Chem. Int. Ed., Energy Environ. Sci., Adv. Energy Mater., Chem. Soc. Rev., Sci. Adv. (over 12063 citations, h-index: 29 based on Google Scholar).

My research is focused on the atomic-level design and fabrication of advanced photocatalysts towards various pivotal reactions (e.g., H2 production, N2 reduction and CO2 conversion) using renewable solar energy. Both state-of-art characterizations and density functional theory based calculations are adopted to unravel the atomic-level structure-performance relationship in photocatalysts as well as the in-depth and delicate photocatalysis mechanism. All these findings are concluded to develop the emerging high-performance photocatalysts.

    Expand
  • Appointments

    Date Position Institution name
    2021 Senior Lecturer University of Adelaide
    2020 - 2022 ARC DECRA Fellow University of Adelaide
    2017 - 2019 Postdoctoral Research Fellow University of Adelaide
  • Education

    Date Institution name Country Title
    2012 - 2016 University of Adelaide Australia PhD in Chemical Engineering
    2009 - 2012 Wuhan University of Technology China Master in Engineering
    2005 - 2009 Wuhan University of Technology China Bachelor in Engineering
    Expand
  • Journals

    Year Citation
    2021 Fu, S., Liu, X., Ran, J., Jiao, Y., & Qiao, S. (2021). CO₂ reduction by single copper atom supported on g-C₃N₄ with asymmetrical active sites. Applied Surface Science, 540, 1-7.
    DOI Scopus4 WoS1
    2021 Xia, B., Zhang, Y., Ran, J., Jaroniec, M., & Qiao, S. Z. (2021). Single-atom photocatalysts for emerging reactions. ACS Central Science, 7(1), 39-54.
    DOI Scopus15 WoS13
    2021 Zhang, Y., Yao, D., Xia, B., Xu, H., Tang, Y., Davey, K., . . . Qiao, S. -Z. (2021). Res2 Nanosheets with In Situ Formed Sulfur Vacancies for Efficient and Highly Selective Photocatalytic CO2 Reduction. Small Science, 1(2), 1-7.
    DOI
    2021 Fu, S., Liu, X., Ran, J., & Jiao, Y. (2021). Theoretical considerations on activity of the electrochemical CO<inf>2</inf> reduction on metal single-atom catalysts with asymmetrical active sites. Catalysis Today.
    DOI
    2021 Ran, J., Zhang, H., Qu, J., Shan, J., Davey, K., Cairney, J. M., . . . Qiao, S. -Z. (2021). Significantly raised visible-light photocatalytic H₂ evolution on a 2D/2D ReS₂/In₂ZnS₄ van der Waals heterostructure. Small, 17(32), 2100296-1-2100296-8.
    DOI
    2021 Ran, J., Xia, B., Zhang, Y., & Qiao, S. Z. (2021). Two-dimensional building blocks for photocatalytic ammonia production. Journal of Materials Chemistry A, 9(35), 18733-18745.
    DOI Scopus3 WoS1
    2020 Zhang, Y., Xia, B., Ran, J., Davey, K., & Qiao, S. Z. (2020). Atomic-level reactive sites for semiconductor-based photocatalytic CO₂ reduction. Advanced Energy Materials, 10(9), 1903879-1-1903879-23.
    DOI Scopus102 WoS85
    2020 Xia, B., Zhang, Y., Shi, B., Ran, J., Davey, K., & Qiao, S. Z. (2020). Photocatalysts for hydrogen evolution coupled with production of value-added chemicals. Small Methods, 4(7), 2000063-1-2000063-9.
    DOI Scopus39 WoS39
    2020 Su, D. W., Ran, J., Zhuang, Z. W., Chen, C., Qiao, S. Z., Li, Y. D., & Wang, G. X. (2020). Atomically dispersed Ni in cadmium-zinc sulfide quantum dots for high-performance visible-light photocatalytic hydrogen production. Science Adavances, 6(33), eaaz8447-1-eaaz8447-16.
    DOI Scopus28 WoS23 Europe PMC2
    2020 Ran, J., Zhang, H., Qu, J., Shan, J., Chen, S., Yang, F., . . . Qiao, S. Z. (2020). Atomic-level insights into the edge active ReS₂ ultrathin nanosheets for high-efficiency light-to-hydrogen conversion. ACS Materials Letters, 2(11), 1484-1494.
    DOI Scopus18 WoS16
    2019 Ran, J., Qu, J., Zhang, H., Wen, T., Wang, H., Chen, S., . . . Qiao, S. Z. (2019). 2D metal organic framework nanosheet: a universal platform promoting highly efficient visible-light-induced hydrogen production. Advanced Energy Materials, 9(11), 1803402-1-1803402-8.
    DOI Scopus112 WoS110
    2019 Xia, B., Ran, J., Chen, S., Song, L., Zhang, X., Jing, L., & Qiao, S. Z. (2019). A two-dimensional metal-organic framework accelerating visible-light-driven H₂ production. Nanoscale, 11(17), 8304-8309.
    DOI Scopus13 WoS12 Europe PMC1
    2019 Ran, J., Zhang, H., Qu, J., Xia, B., Zhang, X., Chen, S., . . . Qiao, S. Z. (2019). Atomically dispersed single co sites in zeolitic imidazole frameworks promoting high-efficiency visible-light-driven hydrogen production. Chemistry - A European Journal, 25(41), 9670-9677.
    DOI Scopus8 WoS10 Europe PMC1
    2019 Zhang, L., Ran, J., Qiao, S. Z., & Jaroniec, M. (2019). Characterization of semiconductor photocatalysts. Chemical Society Reviews, 48(20), 5184-5206.
    DOI Scopus73 WoS74 Europe PMC2
    2018 Ran, J., Jaroniec, M., & Qiao, S. (2018). Cocatalysts in semiconductor-based photocatalytic CO₂ reduction: Achievements, challenges, and opportunities. Advanced Materials, 30(7), 1704649-1-1704649-3.1.
    DOI Scopus454 WoS421 Europe PMC30
    2018 Guo, C., Ran, J., Vasileff, A., & Qiao, S. (2018). Rational design of electrocatalysts and photo(electro)catalysts for nitrogen reduction to ammonia (NH₃) under ambient conditions. Energy and Environmental Science, 11(1), 45-56.
    DOI Scopus717 WoS710
    2018 Ran, J., Guo, W., Wang, H., Zhu, B., Yu, J., & Qiao, S. (2018). Metal-free 2D/2D phosphorene/g-C₃N₄ van der Waals heterojunction for highly enhanced visible-light photocatalytic H₂ production. Advanced Materials, 30(25), 1800128-1-1800128-6.
    DOI Scopus452 WoS418 Europe PMC24
    2018 Zhang, K., Ran, J., Zhu, B., Ju, H., Yu, J., Song, L., & Qiao, S. (2018). Nanoconfined nickel@carbon core-shell cocatalyst promoting highly efficient visible-light photocatalytic H₂ production. Small, 14(38), 1-9.
    DOI Scopus44 WoS40 Europe PMC2
    2018 Ran, J., Wang, H., Jin, H., Ling, C., Zhang, X., Ju, H., . . . Qiao, S. (2018). Metallic MoN ultrathin nanosheets boosting high performance photocatalytic H₂ production. Journal of Materials Chemistry A, 6(46), 23278-23282.
    DOI Scopus25 WoS24
    2017 Ran, J., Gao, G., Li, F., Ma, T., Du, A., & Qiao, S. (2017). Ti₃C₂ MXene co-catalyst on metal sulfide photo-absorbers for enhanced visible-light photocatalytic hydrogen production. Nature Communications, 8(1), 13907-1-13907-10.
    DOI Scopus895 WoS902 Europe PMC82
    2017 Guo, C., Zheng, Y., Ran, J., Xie, F., Jaroniec, M., & Qiao, S. -Z. (2017). Engineering high-energy interfacial structures for high performance oxygen-involving electrocatalysis. Angewandte Chemie International Edition, 59(29), 8539-8543.
    DOI Scopus214 WoS230 Europe PMC43
    2017 Ran, J., Zhu, B., & Qiao, S. (2017). Phosphorene co-catalyst advancing highly efficient visible-light photocatalytic hydrogen production. Angewandte Chemie - International Edition, 56(35), 10373-10377.
    DOI Scopus218 WoS208 Europe PMC22
    2017 Ran, J., Wang, X., Zhu, B., & Qiao, S. (2017). Strongly interactive 0D/2D hetero-structure of a ZnₓCd₁₋ₓS nano-particle decorated phosphorene nano-sheet for enhanced visible-light photocatalytic H₂ production. Chemical Communications, 53(71), 9882-9885.
    DOI Scopus54 WoS55 Europe PMC10
    2017 Zhao, Z., Zhou, H., Zheng, L., Niu, P., Yang, G., Hu, W., . . . Zheng, H. (2017). Molecules interface engineering derived external electric field for effective charge separation in photoelectrocatalysis. Nano Energy, 42, 90-97.
    DOI Scopus18 WoS17
    2017 Zhu, Y., Ran, J., & Qiao, S. (2017). Scalable self-supported graphene foam for high-performance electrocatalytic oxygen evolution. ACS Applied Materials and Interfaces, 9(48), 41980-41987.
    DOI Scopus16 WoS16 Europe PMC1
    2016 Rahman, M., Ran, J., Tang, Y., Jaroniec, M., & Qiao, S. (2016). Surface activated carbon nitride nanosheets with optimized electro-optical properties for highly efficient photocatalytic hydrogen production. Journal of Materials Chemistry A, 4(7), 2445-2452.
    DOI Scopus98 WoS93
    2015 Kuang, P., Ran, J., Liu, Z., Wang, H., Li, N., Su, Y., . . . Qiao, S. (2015). Enhanced photoelectrocatalytic activity of BiOI nanoplate-zinc oxide nanorod p-n heterojunction. Chemistry - A European Journal, 21(43), 15360-15368.
    DOI Scopus115 WoS109 Europe PMC12
    2015 Li, F., Ran, J., Jaroniec, M., & Qiao, S. (2015). Solution combustion synthesis of metal oxide nanomaterials for energy storage and conversion. Nanoscale, 7(42), 17590-17610.
    DOI Scopus233 WoS224 Europe PMC14
    2015 Ran, J., Ma, T., Gao, G., Du, X., & Qiao, S. (2015). Porous P-doped graphitic carbon nitride nanosheets for synergistically enhanced visible-light photocatalytic H₂ production. Energy and Environmental Science, 8(12), 3708-3717.
    DOI Scopus809 WoS782
    2015 Ma, T. Y., Ran, J., Dai, S., Jaroniec, M., & Qiao, S. Z. (2015). Phosphorus-doped graphitic carbon nitrides grown In situ on carbon-fiber paper: flexible and reversible oxygen electrodes. Angewandte Chemie International Edition, 54(15), 4646-4650.
    DOI Scopus600 WoS590 Europe PMC73
    2015 Li, F., Wang, Q., Ran, J., Hao, Y., Wang, X., Zhao, D., & Qiao, S. (2015). Ionic liquid self-combustion synthesis of BiOBr/Bi₂₄O₃₁Br₁₀ heterojunctions with exceptional visible-light photocatalytic performances. Nanoscale, 7(3), 1116-1126.
    DOI Scopus146 WoS146 Europe PMC14
    2015 Chen, S., Duan, J., Ran, J., & Qiao, S. (2015). Paper-based N-doped carbon films for enhanced oxygen evolution electrocatalysis. Advanced Science, 2(1-2), 1400015-1-1400015-5.
    DOI Scopus59 WoS61 Europe PMC11
    2014 Zhang, J., Qi, L., Ran, J., Yu, J., & Qiao, S. (2014). Ternary NiS/Znₓcd₁₋ₓS/reduced graphene oxide nanocomposites for enhanced solar photocatalytic h₂-production activity. Advanced Energy Materials, 4(10), 1301925-1-1301925-6.
    DOI Scopus208 WoS179
    2014 Ran, J., Zhang, J., Yu, J., Jaroniec, M., & Qiao, S. (2014). Earth-abundant cocatalysts for semiconductor-based photocatalytic water splitting. Chemical Society Reviews, 43(22), 7787-7812.
    DOI Scopus1567 WoS1543 Europe PMC223
    2014 Ran, J., Zhang, J., Yu, J., & Qiao, S. (2014). Enhanced visible-light photocatalytic H₂ production by ZnₓCd₁−ₓS modified with earth-abundant nickel-based cocatalysts. ChemSusChem, 7(12), 3426-3434.
    DOI Scopus136 WoS140 Europe PMC18
    2013 Chen, S., Duan, J., Ran, J., Jaroniec, M., & Qiao, S. (2013). N-doped graphene film-confined nickel nanoparticles as a highly efficient three-dimensional oxygen evolution electrocatalyst. Energy & Environmental Science, 6(12), 3693-3699.
    DOI Scopus274 WoS272
    2012 Cheng, B., Wang, W., Shi, L., Zhang, J., Ran, J., & Yu, H. (2012). One-pot template-free hydrothermal synthesis of monoclinic BiVO₄ hollow microspheres and their enhanced visible-light photocatalytic activity. International Journal of Photoenergy, 2012, 797968-1-797968-10.
    DOI Scopus29
    2012 Wang, S., Zhao, L., Ran, J., Shu, Z., Dai, G., & Zhai, P. (2012). Effects of calcination temperatures on photocatalytic activity of ordered titanate nanoribbon/SnO₂ films fabricated during an EPD process. International Journal of Photoenergy, 2012, 1-7.
    DOI Scopus30
    2011 Madhusudan, P., Ran, J., Zhang, J., Yu, J., & Liu, G. (2011). Novel urea assisted hydrothermal synthesis of hierarchical BiVO<inf>4</inf>/Bi<inf>2</inf>O<inf>2</inf>CO<inf>3</inf> nanocomposites with enhanced visible-light photocatalytic activity. Applied Catalysis B: Environmental, 110, 286-295.
    DOI Scopus355
    2011 Li, Q., Guo, B., Yu, J., Ran, J., Zhang, B., Yan, H., & Gong, J. (2011). Highly efficient visible-light-driven photocatalytic hydrogen production of CdS-cluster-decorated graphene nanosheets. Journal of the American Chemical Society, 133(28), 10878-10884.
    DOI Scopus2006
    2011 Yu, J., & Ran, J. (2011). Facile preparation and enhanced photocatalytic H<inf>2</inf>-production activity of Cu(OH)<inf>2</inf> cluster modified TiO<inf>2</inf>. Energy and Environmental Science, 4(4), 1364-1371.
    DOI Scopus507
    2011 Ran, J., Yu, J., & Jaroniec, M. (2011). Ni(OH) <inf>2</inf> modified CdS nanorods for highly efficient visible-light-driven photocatalytic H <inf>2</inf> generation. Green Chemistry, 13(10), 2708-2713.
    DOI Scopus327
    2010 Yu, J., Xiang, Q., Ran, J., & Mann, S. (2010). One-step hydrothermal fabrication and photocatalytic activity of surface-fluorinated TiO<inf>2</inf> hollow microspheres and tabular anatase single micro-crystals with high-energy facets. CrystEngComm, 12(3), 872-879.
    DOI Scopus228

ARC DECRA Fellowship, DE200100629, Jingrun Ran, Single-atom anchored photocatalysts for solar ammonia production, $409,516.

    Expand
  • Current Higher Degree by Research Supervision (University of Adelaide)

    Date Role Research Topic Program Degree Type Student Load Student Name
    2021 Co-Supervisor Nanostructured photocatalysts for solar-driven production of fuels and chemicals Doctor of Philosophy Doctorate Full Time Mr Shuai Zhang
    2021 Principal Supervisor Rational Design and Preparation of Advanced Photocatalysts for Solar Fuels Production Doctor of Philosophy Doctorate Full Time Mr Mahmoud Adel Hamza Elsayed Gharib
    2021 Principal Supervisor Atomic-level design and synthesis of photocatalysts for energy application Doctor of Philosophy Doctorate Full Time Miss Meijun Guo
    2019 Co-Supervisor Design and synthesis of nanomaterials for energy conversion and storage Doctor of Philosophy Doctorate Full Time Mr Yanzhao Zhang
    2018 Co-Supervisor Fabrication of Nanomaterials as Highly Efficient Photocatalysts for Energy Conversion Doctor of Philosophy Doctorate Full Time Mr Bingquan Xia
    2018 Co-Supervisor Carbon Materials for Electrochemical Energy Storage Doctor of Philosophy Doctorate Full Time Mr Huan Li
  • Past Higher Degree by Research Supervision (University of Adelaide)

    Date Role Research Topic Program Degree Type Student Load Student Name
    2019 - 2021 Co-Supervisor Design of g-C3N4 Based Electrocatalysts for CO2 Reduction to Ethylene by Molecular Modelling Master of Philosophy Master Full Time Miss Sijia Fu
    2017 - 2019 Co-Supervisor Metal-Organic Framework Nanosheets for Electrocatalysis Doctor of Philosophy Doctorate Full Time Mr Dongdong Zhu

Connect With Me
External Profiles