Hemanth Saratchandran

Hemanth Saratchandran

Australian Institute for Machine Learning - Projects

Faculty of Sciences, Engineering and Technology

Eligible to supervise Masters and PhD (as Co-Supervisor) - email supervisor to discuss availability.


I am a mathematician primarily working in the areas of Artificial Intelligence, Deep Learning, Geometric Analysis and Topology.

  • Appointments

    Date Position Institution name
    2022 - ongoing Research Fellow Australian Institute of Machine Learning
    2020 - 2022 Laureate Research Associate University of Adelaide
    2019 - 2020 Scientific Assistant (Wissenschaftlicher Mitarbeiter, TV-L 13, full time) University of Augsburg
    2016 - 2018 Postdoctoral Research Fellow Beijing International Centre for Mathematical Research
  • Language Competencies

    Language Competency
    English Can read, write, speak, understand spoken and peer review
  • Education

    Date Institution name Country Title
    2011 - 2016 Univeristy of Oxford United Kingdom Dphil
    2006 - 2010 Australian National University Australia Bachelors of Advanced Science (with Honours)
  • Research Interests

  • Journals

    Year Citation
    2025 Gordon, C., E. MacDonald, L., Saratchandran, H., & Lucey, S. (2025). D’OH: Decoder-Only Random Hypernetworks for Implicit Neural Representations. Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 15478 LNCS, 128-147.
    DOI
    2024 Saratchandran, H., Ramasinghe, S., Shevchenko, V., Long, A., & Lucey, S. (2024). A Sampling Theory Perspective on Activations for Implicit Neural Representations. Proceedings of Machine Learning Research, 235, 43422-43444.
    2024 Saratchandran, H., Ch'ng, S. -F., & Lucey, S. (2024). Architectural Strategies for the optimization of Physics-Informed Neural Networks.. CoRR, abs/2402.02711.
    2023 Bandara, L., Goffeng, M., & Saratchandran, H. (2023). Realisations of elliptic operators on compact manifolds with boundary. Advances in Mathematics, 420, 108968.
    DOI Scopus1
    2023 Hochs, P., & Saratchandran, H. (2023). A Ruelle dynamical zeta function for equivariant flows.
    2023 Ramasinghe, S., Saratchandran, H., Shevchenko, V., & Lucey, S. (2023). On the effectiveness of neural priors in modeling dynamical systems.. CoRR, abs/2303.05728.
    2022 Milatovic, O., & Saratchandran, H. (2022). Generalized Ornstein–Uhlenbeck semigroups in weighted Lp-spaces on Riemannian manifolds. Journal of Functional Analysis, 283(8), 62 pages.
    DOI
    2022 Saratchandran, H., Zhang, J., & Zhang, P. (2022). A New Higher Order Yang-Mills-Higgs Flow on Riemannian 4-Manifolds. Bulletin of the Australian Mathematical Society, 107(2), 320-329.
    DOI
    2022 Hochs, P., & Saratchandran, H. (2022). Equivariant analytic torsion for proper actions.
    2022 Ramasinghe, S., MacDonald, L. E., Farazi, M. R., Saratchandran, H., & Lucey, S. (2022). How You Start Matters for Generalization.. CoRR, abs/2206.08558.
    2021 MacDonald, L., Mathai, V., & Saratchandran, H. (2021). On the Chern character in Higher Twisted K-theory and spherical T-duality. Communications in Mathematical Physics, 385(1), 331-368.
    DOI Scopus1
    2021 Saratchandran, H. (2021). Essential self-adjointness of perturbed quadharmonic operators on Riemannian manifolds with an application to the separation problem. Mathematische Nachrichten, 294(5), 997-1044.
    DOI Scopus1 WoS1
    2021 Milatovic, O., & Saratchandran, H. (2021). Essential Self-Adjointness of Perturbed Biharmonic Operators via Conformally Transformed Metrics. Potential Analysis, 56(4), 623-647.
    DOI
    2019 Saratchandran, H. (2019). Higher order Seiberg–Witten functionals and their associated gradient flows. Manuscripta Mathematica, 160(3-4), 411-481.
    DOI Scopus2 WoS2
    2019 Milatovic, O., & Saratchandran, H. (2019). Inequalities and separation for covariant Schrödinger operators. Journal of Geometry and Physics, 138, 215-222.
    DOI Scopus2 WoS2
    2018 Saratchandran, H. (2018). Finite volume hyperbolic complements of 2-tori and Klein bottles in closed smooth simply connected 4-manifolds. New York Journal of Mathematics, 24, 443-450.
    Scopus2 WoS1
    2017 Bandara, L., & Saratchandran, H. (2017). Essential self-adjointness of powers of first-order differential operators on non-compact manifolds with low-regularity metrics. Journal of Functional Analysis, 273(12), 3719-3758.
    DOI Scopus6 WoS6
    2016 Saratchandran, H. (2016). Kirby diagrams and the Ratcliffe-Tschantz hyperbolic 4-manifolds. Topology and its Applications, 202, 301-317.
    DOI Scopus1 WoS1
    2015 Saratchandran, H. (2015). A four dimensional hyperbolic link complement in a standard $S^4$.
    2015 Saratchandran, H. (2015). A four dimensional hyperbolic link complement in a standard $S^2 \times
    S^2$.
    2015 Saratchandran, H. (2015). Complements of tori in $\#_{2k}S^2 \times S^2$ that admit a hyperbolic
    structure.
  • Conference Papers

    Year Citation
    2024 Saratchandran, H., Chng, S. -F., Ramasinghe, S., MacDonald, L. E., & Lucey, S. (2024). Curvature-Aware Training for Coordinate Networks. In Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV 2023) (pp. 13282-13292). online: IEEE.
    DOI Scopus1
    2024 Saratchandran, H., Ramasinghe, S., & Lucey, S. (2024). From Activation to Initialization: Scaling Insights for Optimizing Neural Fields.. In CVPR (pp. 413-422). Seattle, WA, USA: IEEE.
    2024 Saratchandran, H., Ramasinghe, S., Shevchenko, V., Long, A., & Lucey, S. (2024). A sampling theory perspective on activations for implicit neural representations.. In ICML (pp. 23 pages). Vienna, Austria: OpenReview.net.
    2024 Ch'ng, S. -F., Garg, R., Saratchandran, H., & Lucey, S. (2024). Invertible Neural Warp for NeRF.. In A. Leonardis, E. Ricci, S. Roth, O. Russakovsky, T. Sattler, & G. Varol (Eds.), ECCV (17) Vol. 15075 (pp. 405-421). Springer.
    2024 Saratchandran, H., Wang, T. X., & Lucey, S. (2024). Weight Conditioning for Smooth Optimization of Neural Networks.. In A. Leonardis, E. Ricci, S. Roth, O. Russakovsky, T. Sattler, & G. Varol (Eds.), ECCV (85) Vol. 15143 (pp. 310-325). Springer.
    2024 Gordon, C., MacDonald, L. E., Saratchandran, H., & Lucey, S. (2024). D'OH: Decoder-Only Random Hypernetworks for Implicit Neural Representations.. In M. Cho, I. Laptev, D. Tran, A. Yao, & H. Zha (Eds.), ACCV (7) Vol. 15478 (pp. 128-147). Springer.
    2023 MacDonald, L. E., Valmadre, J., Saratchandran, H., & Lucey, S. (2023). On skip connections and normalisation layers in deep optimisation.. In A. Oh, T. Naumann, A. Globerson, K. Saenko, M. Hardt, & S. Levine (Eds.), NeurIPS Vol. 36 (pp. 20 pages). Online: Neural information processing systems foundation.
    2023 Ramasinghe, S., MacDonald, L., Farazi, M., Saratchandran, H., & Lucey, S. (2023). How Much does Initialization Affect Generalization?. In ICML'23: Proceedings of the 40th International Conference on Machine Learning Vol. 202 (pp. 28637-28655). Honolulu, Hawaii, USA: Association for Computing Machinery. ACM.
    Scopus2
  • Working Paper

    Year Citation
    2022 MacDonald, L. E., Saratchandran, H., Valmadre, J., & Lucey, S. (2022). A global analysis of global optimisation..
  • Preprint

    Year Citation
    2024 Ji, Y., Saratchandran, H., Gordon, C., Zhang, Z., & Lucey, S. (2024). Sine Activated Low-Rank Matrices for Parameter Efficient Learning.
    2024 Gordon, C., MacDonald, L. E., Saratchandran, H., & Lucey, S. (2024). D'OH: Decoder-Only Random Hypernetworks for Implicit Neural
    Representations.
    2024 Saratchandran, H., Chng, S. -F., & Lucey, S. (2024). Architectural Strategies for the optimization of Physics-Informed Neural
    Networks.
    2024 Saratchandran, H., Chng, S. -F., & Lucey, S. (2024). Analyzing the Neural Tangent Kernel of Periodically Activated Coordinate
    Networks.
    2024 Chng, S. -F., Saratchandran, H., & Lucey, S. (2024). Preconditioners for the Stochastic Training of Implicit Neural
    Representations.
    2024 Saratchandran, H., Ramasinghe, S., Shevchenko, V., Long, A., & Lucey, S. (2024). A Sampling Theory Perspective on Activations for Implicit Neural
    Representations.
    2024 Chng, S. -F., Garg, R., Saratchandran, H., & Lucey, S. (2024). Invertible Neural Warp for NeRF.
    2024 Saratchandran, H., Wang, T. X., & Lucey, S. (2024). Weight Conditioning for Smooth Optimization of Neural Networks.
    2024 Saratchandran, H., Zheng, J., Ji, Y., Zhang, W., & Lucey, S. (2024). Rethinking Softmax: Self-Attention with Polynomial Activations.
    2023 Saratchandran, H., Ch'ng, S. -F., Ramasinghe, S., MacDonald, L. E., & Lucey, S. (2023). Curvature-Aware Training for Coordinate Networks..

Connect With Me
External Profiles