Research Interests
Biomedical Engineering Computer Vision Knowledge Representation and Machine LearningProf Gustavo Carneiro
School of Mathematical Sciences
College of Science
Eligible to supervise Masters and PhD - email supervisor to discuss availability.
I have focused my research on the development and application of computer vision and machine learning techniques, with particular emphasis on medical image analysis problems. For more details on the current (and past) research problems, please check this page.
| Date | Position | Institution name |
|---|---|---|
| 2015 - ongoing | Associate Professor | University of Adelaide |
| 2014 - 2015 | Humboldt Experienced Researcher | Technical University of Munich |
| 2011 - 2014 | Senior Lecturer | University of Adelaide |
| 2011 - 2011 | Marie Curie International Incoming Fellow | University of Lisbon |
| 2008 - 2010 | Visiting Assistant Professor | University of Lisbon |
| 2006 - 2008 | Senior Research Scientist | Siemens Corporate Research |
| 2004 - 2005 | Postdoctoral Fellow | University of British Columbia |
| 2004 - 2004 | Postdoctoral Fellow | University of California, San Diego |
| Language | Competency |
|---|---|
| English | Can read, write, speak, understand spoken and peer review |
| French | Can read |
| Portuguese | Can read, write, speak, understand spoken and peer review |
| Spanish; Castilian | Can read and understand spoken |
| Date | Institution name | Country | Title |
|---|---|---|---|
| 1999 - 2004 | University of Toronto | Canada | PhD |
| 1997 - 1999 | Instituto Militar de Engenharia | Brazil | MSc |
| 1992 - 1996 | Universidade Federal do Rio de Janeiro | Brazil | Bachelor's degree |
| Year | Citation |
|---|---|
| 2026 | Zhang, Z., Nguyen, C., Wells, K., Do, T. T., & Carneiro, G. (2026). Learning to complement with multiple humans. Pattern Recognition, 172, 12 pages. |
| 2025 | Wang, Y., Song, K., Liu, Y., Li, T., Yan, Y., & Carneiro, G. (2025). Bimodal defect segmentation with Geometric Prior-supported Anti-imbalance Learning for pavement defect evaluation and repair. Automation in Construction, 180, 106497. |
| 2025 | Khakpour, A., Florescu, L., Tilley, R., Jiang, H., Iyer, K. S., & Carneiro, G. (2025). AI-powered prediction of nanoparticle pharmacokinetics: A multi-view learning approach. Materials Today Communications, 49, 113742. Scopus3 |
| 2025 | Zhang, Y., Wang, H., Butler, D., Smart, B., Xie, Y., To, M. -S., . . . Carneiro, G. (2025). Unpaired multi-modal training and single-modal testing for detecting signs of endometriosis. Computerized Medical Imaging and Graphics, 124, 102575. |
| 2025 | Hoang, D. A., Nguyen, C., Belagiannis, V., Do, T. T., & Carneiro, G. (2025). Maximising the Utility of Validation Sets for Imbalanced Noisy-label Meta-learning. Transactions on Machine Learning Research, 2025-March. |
| 2025 | Wang, C., Chen, Y., Liu, F., Liu, Y., McCarthy, D. J., Frazer, H., & Carneiro, G. (2025). Mixture of Gaussian-Distributed Prototypes With Generative Modelling for Interpretable and Trustworthy Image Recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence, 47(8), 6974-6989. Scopus1 Europe PMC1 |
| 2025 | Wang, Y., Song, K., Liu, Y., Ma, S., Yan, Y., & Carneiro, G. (2025). Leveraging labelled data knowledge: A cooperative rectification learning network for semi-supervised 3D medical image segmentation. Medical Image Analysis, 101, 15 pages. Scopus5 WoS6 |
| 2025 | Wang, C., Liu, F., Chen, Y., Frazer, H., & Carneiro, G. (2025). Cross- and Intra-image Prototypical Learning for Multi-label Disease Diagnosis and Interpretation. IEEE Transactions on Medical Imaging, 44(6), 2568-2580. Scopus8 WoS6 Europe PMC2 |
| 2025 | Assié, G., Carneiro, G., Davies, E., Šojat, A. S., & Mertens, J. (2025). EndoCompass project: artificial intelligence in endocrinology. European Journal of Endocrinology, 193(Supplement_2), ii170-ii176. |
| 2025 | Wang, C., Liu, F., Chen, Y., Kwok, C. F., Elliott, M., Pena-Solorzano, C., . . . Carneiro, G. (2025). Progressive Mining and Dynamic Distillation of Hierarchical Prototypes for Disease Classification and Localisation. IEEE Journal of Biomedical and Health Informatics, 29(8), 5687-5699. Scopus2 WoS2 |
| 2025 | Wang, H., Lu, N., Wang, Z., Yan, Y., Carneiro, G., & Wang, Z. (2025). Self-Correcting Clustering. IEEE Transactions on Knowledge and Data Engineering, 37(3), 1439-1454. Scopus1 |
| 2025 | Cordeiro, F. R., & Carneiro, G. (2025). ANNE: Adaptive Nearest Neighbours and Eigenvector-based sample selection for robust learning with noisy labels. Pattern Recognition, 159, 10 pages. Scopus5 WoS5 |
| 2024 | Frazer, H. M. L., Peña-Solorzano, C. A., Kwok, C. F., Elliott, M. S., Chen, Y., Wang, C., . . . McCarthy, D. J. (2024). Comparison of AI-integrated pathways with human-AI interaction in population mammographic screening for breast cancer. Nature Communications, 15(1), 7525-1-7525-12. Scopus22 WoS20 Europe PMC15 |
| 2024 | Wang, H., Butler, D., Zhang, Y., Avery, J., Knox, S., Ma, C., . . . Carneiro, G. (2024). Human-AI collaborative multi-modal multi-rater learning for endometriosis diagnosis.. Physics in medicine and biology, 70(1), 13 pages. Scopus3 WoS3 Europe PMC2 |
| 2024 | Hermoza, R., Nascimento, J. C., & Carneiro, G. (2024). Weakly-supervised preclinical tumor localization associated with survival prediction from lung cancer screening Chest X-ray images. Computerized Medical Imaging and Graphics, 115, 102395-1-102395-10. Scopus5 WoS3 Europe PMC1 |
| 2024 | Tan, J. L., Pitawela, D., Chinnaratha, M. A., Beany, A., Aguila, E. J., Chen, H. T., . . . Singh, R. (2024). Exploring vision transformers for classifying early Barrett's dysplasia in endoscopic images: A pilot study on white-light and narrow-band imaging. JGH Open, 8(9), 7 pages. Scopus2 |
| 2024 | Liu, Y., Tian, Y., Wang, C., Chen, Y., Liu, F., Belagiannis, V., & Carneiro, G. (2024). Translation Consistent Semi-supervised Segmentation for 3D Medical Images. IEEE Transactions on Medical Imaging, 44(2), 952-968. Scopus9 WoS6 Europe PMC2 |
| 2024 | Vente, C. D., Vermeer, K. A., Jaccard, N., Wang, H., Sun, H., Khader, F., . . . Sánchez, C. I. (2024). AIROGS: Artificial Intelligence for Robust Glaucoma Screening Challenge.. IEEE Trans. Medical Imaging, 43, 542-557. |
| 2024 | Tapper, W., Carneiro, G., Mikropoulos, C., Thomas, S. A., Evans, P. M., & Boussios, S. (2024). The Application of Radiomics and AI to Molecular Imaging for Prostate Cancer. Journal of Personalized Medicine, 14(3), 19 pages. Scopus36 WoS30 Europe PMC24 |
| 2024 | Yap, M. H., Cassidy, B., Byra, M., Liao, T. Y., Yi, H., Galdran, A., . . . Kendrick, C. (2024). Diabetic foot ulcers segmentation challenge report: Benchmark and analysis. Medical Image Analysis, 94, 14 pages. Scopus32 WoS28 Europe PMC6 |
| 2024 | Chen, Y., Liu, Y., Wang, C., Elliott, M., Kwok, C. F., Peña-Solorzano, C., . . . Carneiro, G. (2024). BRAIxDet: Learning to detect malignant breast lesion with incomplete annotations. Medical Image Analysis, 96, 103192-1-103192-13. Scopus12 WoS10 Europe PMC6 |
| 2024 | Tian, Y., Zorron Cheng Tao Pu, L., Liu, Y., Maicas, G., Verjans, J. W., Burt, A. D., . . . Carneiro, G. (2024). Detecting, localizing and classifying polyps from colonoscopy videos using deep learning. Unknown Journal, 425-450. |
| 2024 | Avery, J. C., Knox, S., Deslandes, A., Leonardi, M., Lo, G., Wang, H., . . . Imagendo Study Group. (2024). Noninvasive diagnostic imaging for endometriosis part 2: a systematic review of recent developments in magnetic resonance imaging, nuclear medicine and computed tomography. Fertility and Sterility, 121(2), 189-211. Scopus19 WoS17 Europe PMC10 |
| 2024 | Avery, J. C., Deslandes, A., Freger, S. M., Leonardi, M., Lo, G., Carneiro, G., . . . Imagendo Study Group. (2024). Noninvasive diagnostic imaging for endometriosis part 1: a systematic review of recent developments in ultrasound, combination imaging, and artificial intelligence. Fertility and Sterility, 121(2), 164-188. Scopus37 WoS32 Europe PMC23 |
| 2024 | Wang, C., Chen, Y., Liu, F., Elliott, M., Kwok, C. F., Pena-Solorzano, C., . . . Carneiro, G. (2024). An Interpretable and Accurate Deep-learning Diagnosis Framework Modelled with Fully and Semi-supervised Reciprocal Learning. IEEE Transactions on Medical Imaging, 43(1), 392-404. Scopus32 WoS23 Europe PMC11 |
| 2024 | Bedrikovetski, S., Zhang, J., Seow, W., Traeger, L., Moore, J. W., Verjans, J., . . . Sammour, T. (2024). Deep learning to predict lymph node status on pre-operative staging CT in patients with colon cancer.. J Med Imaging Radiat Oncol, 68(1), 33-40. Scopus4 WoS4 Europe PMC4 |
| 2023 | Nguyen, C., Do, T. -T., & Carneiro, G. (2023). Towards the Identifiability in Noisy Label Learning: A Multinomial Mixture Approach. |
| 2023 | Vente, C. D., Vermeer, K. A., Jaccard, N., Wang, H., Sun, H., Khader, F., . . . Sánchez, C. I. (2023). AIROGS: Artificial Intelligence for RObust Glaucoma Screening Challenge.. CoRR, abs/2302.01738. |
| 2023 | Hollis-Sando, L., Pugh, C., Franke, K., Zerner, T., Tan, Y., Carneiro, G., . . . Bacchi, S. (2023). Deep learning in the marking of medical student short answer question examinations: Student perceptions and pilot accuracy assessment. FOCUS ON HEALTH PROFESSIONAL EDUCATION-A MULTIDISCIPLINARY JOURNAL, 24(1), 38-48. WoS4 |
| 2023 | Tian, Y., Liu, F., Pang, G., Chen, Y., Liu, Y., Verjans, J. W., . . . Carneiro, G. (2023). Self-supervised pseudo multi-class pre-training for unsupervised anomaly detection and segmentation in medical images. Medical Image Analysis, 90, 102930-1-102930-11. Scopus31 WoS18 Europe PMC7 |
| 2023 | Wang, C., Cui, Z., Yang, J., Han, M., Carneiro, G., & Shen, D. (2023). BowelNet: Joint Semantic-Geometric Ensemble Learning for Bowel Segmentation From Both Partially and Fully Labeled CT Images. IEEE Transactions on Medical Imaging, 42(4), 1225-1236. Scopus16 WoS13 Europe PMC7 |
| 2023 | Sachdeva, R., Cordeiro, F. R., Belagiannis, V., Reid, I., & Carneiro, G. (2023). ScanMix : Learning from Severe Label Noise via Semantic Clustering and Semi-Supervised Learning. Pattern Recognition, 134, 109121-1-109121-10. Scopus34 WoS28 |
| 2023 | Frazer, H. M. L., Tang, J. S. N., Elliott, M. S., Kunicki, K. M., Hill, B., Karthik, R., . . . McCarthy, D. J. (2023). ADMANI: Annotated Digital Mammograms and Associated Non-Image Datasets. Radiology: Artificial Intelligence, 5(2), 1-7. Scopus27 WoS23 Europe PMC20 |
| 2023 | Galdran, A., Verjans, J. W., Carneiro, G., & González Ballester, M. A. (2023). Multi-Head Multi-Loss Model Calibration. Lecture Notes in Computer Science, 14222, 108-117. Scopus9 WoS7 |
| 2023 | Cordeiro, F. R., Sachdeva, R., Belagiannis, V., Reid, I., & Carneiro, G. (2023). LongReMix: Robust learning with high confidence samples in a noisy label environment. Pattern Recognition, 133, 109013-1-109013-14. Scopus87 WoS74 |
| 2023 | De Vente, C., Vermeer, K. A., Jaccard, N., Wang, H., Sun, H., Khader, F., . . . Sanchez, C. I. (2023). AIROGS: Artificial Intelligence for RObust Glaucoma Screening Challenge. IEEE Transactions on Medical Imaging, PP(1), 1. Scopus42 WoS18 Europe PMC17 |
| 2023 | Nguyen, C., Do, T. -T., & Carneiro, G. (2023). PAC-Bayes meta-learning with implicit task-specific posteriors. IEEE Transactions on Pattern Analysis and Machine Intelligence, 45(1), 841-851. Scopus7 WoS5 Europe PMC1 |
| 2023 | Avery, J., Zhang, Y., Wang, H., O’Hara, R., Condous, G., Leonardi, M., . . . Hull, M. -L. (2023). #122 : Extrapolating Endometriosis Diagnosis Using Imaging and Machine Learning: The Imagendo Project. Fertility & Reproduction, 05(04), 527. |
| 2023 | Nguyen, C., Do, T. T., & Carneiro, G. (2023). Task Weighting in Meta-learning with Trajectory Optimisation. Transactions on Machine Learning Research, 2023. Scopus1 |
| 2022 | Frazer, H. M. L., Peña-Solorzano, C., Kwok, C. F., Elliott, M., Chen, Y., Wang, C., . . . McCarthy, D. (2022). Comparison of AI-integrated pathways with human-AI interaction for population mammographic screening. |
| 2022 | Chen, H. -T., Zhang, Y., Carneiro, G., Shin, S. H., & Singh, R. (2022). Toward a Human-Centered AI-assisted Colonoscopy System. |
| 2022 | Tan, J. L., Chinnaratha, M. A., Woodman, R., Martin, R., Chen, H. -T., Carneiro, G., & Singh, R. (2022). Diagnostic Accuracy of Artificial Intelligence (AI) to Detect Early Neoplasia in Barrett's Esophagus: A Non-comparative Systematic Review and Meta-Analysis. Frontiers in Medicine, 9, 1-11. Scopus20 WoS19 Europe PMC17 |
| 2022 | Oakden-Rayner, L., Gale, W., Bonham, T. A., Lungren, M. P., Carneiro, G., Bradley, A. P., & Palmer, L. J. (2022). Validation and algorithmic audit of a deep learning system for the detection of proximal femoral fractures in patients in the emergency department: a diagnostic accuracy study.. Lancet Digit Health, 4(5), e351-e358. Scopus68 WoS62 Europe PMC49 |
| 2022 | Galdran, A., Hewitt, K. J., Laleh, N. G., Kather, J. N., Carneiro, G., & Ballester, M. Á. G. (2022). Test Time Transform Prediction for Open Set Histopathological Image Recognition.. CoRR, abs/2206.10033. |
| 2022 | Moura, T. C. M. S., Arruda, L. C. P. M., Silva, R. J. A. F., Silva, R. F., Oliveira, A., Tobal, L. M., . . . Guerra, M. M. P. (2022). Diluent Containing Dimethylformamide Added With Sucrose Improves <i>In Vitro</i> Quality After Freezing/Thawing Stallion Sperm. JOURNAL OF EQUINE VETERINARY SCIENCE, 109, 5 pages. WoS5 |
| 2021 | Tian, Y., Liu, F., Pang, G., Chen, Y., Liu, Y., Verjans, J. W., . . . Carneiro, G. (2021). Multi-centred Strong Augmentation via Contrastive Learning for Unsupervised Lesion Detection and Segmentation.. CoRR, abs/2109.01303. |
| 2021 | Galdran, A., Carneiro, G., & Ballester, M. Á. G. (2021). Balanced-MixUp for Highly Imbalanced Medical Image Classification.. CoRR, abs/2109.09850. |
| 2021 | Galdran, A., Carneiro, G., & Ballester, M. Á. G. (2021). Double Encoder-Decoder Networks for Gastrointestinal Polyp Segmentation.. CoRR, abs/2110.01939. |
| 2021 | Galdran, A., Carneiro, G., & Ballester, M. Á. G. (2021). Convolutional Nets Versus Vision Transformers for Diabetic Foot Ulcer Classification.. CoRR, abs/2111.06894. |
| 2021 | Santiago, C., Barata, C., Sasdelli, M., Carneiro, G., & Nascimento, J. C. (2021). LOW: Training deep neural networks by learning optimal sample weights. Pattern Recognition, 110, 1-12. Scopus43 WoS36 |
| 2021 | Ang, T. L., & Carneiro, G. (2021). Artificial intelligence in gastrointestinal endoscopy. Journal of Gastroenterology and Hepatology (Australia), 36(1), 5-6. Scopus12 WoS11 Europe PMC10 |
| 2021 | David, R., Menezes, R. -J. D., De Klerk, J., Castleden, I. R., Hooper, C. M., Carneiro, G., & Gilliham, M. (2021). Identifying protein subcellular localisation in scientific literature using bidirectional deep recurrent neural network. Scientific Reports, 11(1), 1-11. Scopus4 WoS2 Europe PMC4 |
| 2021 | Bedrikovetski, S., Dudi-Venkata, N. N., Maicas Suso, G., Kroon, H. M., Seow, W., Carneiro, G., . . . Sammour, T. (2021). Artificial intelligence for the diagnosis of lymph node metastases in patients with abdominopelvic malignancy: a systematic review and meta-analysis. Artificial Intelligence in Medicine, 113, 1-11. Scopus33 WoS28 Europe PMC25 |
| 2021 | Nguyen, L. V., Nguyen, C. C., Carneiro, G., Ebendorff-Heidepriem, H., & Warren-Smith, S. C. (2021). Sensing in the presence of strong noise by deep learning of dynamic multimode fiber interference. Photonics Research, 9(4), 109-118. Scopus75 WoS65 |
| 2021 | Banach, A., Strydom, M., Jaiprakash, A., Carneiro, G., Eriksson, A., Crawford, R., & McFadyen, A. (2021). Visual Localisation for Knee Arthroscopy. International Journal of Computer Assisted Radiology and Surgery, 16(12), 2137-2145. Scopus5 WoS5 Europe PMC3 |
| 2021 | Condon, J. J. J., Oakden-Rayner, L., Hall, K. A., Reintals, M., Holmes, A., Carneiro, G., & Palmer, L. J. (2021). Replication of an open-access deep learning system for screening mammography: Reduced performance mitigated by retraining on local data. |
| 2021 | Bedrikovetski, S., Dudi-Venkata, N. N., Kroon, H. M., Seow, W., Vather, R., Carneiro, G., . . . Sammour, T. (2021). Artificial intelligence for pre-operative lymph node staging in colorectal cancer: a systematic review and meta-analysis. BMC Cancer, 21(1), 1058-1-1058-10. Scopus120 WoS111 Europe PMC98 |
| 2021 | van der Burgt, J. M. A., Camps, S. M., Antico, M., Carneiro, G., & Fontanarosa, D. (2021). Arthroscope localization in 3D ultrasound volumes using weakly supervised deep learning. Applied Sciences, 11(15), 1-13. |
| 2021 | Maicas Suso, G., Leonardi, M., Avery, J., Panuccio, C., Carneiro, G., Hull, M. L., & Condous, G. (2021). Deep learning to diagnose pouch of Douglas obliteration with ultrasound sliding sign. Reproduction and Fertility, 2(4), 236-243. Scopus30 WoS26 Europe PMC14 |
| 2020 | Antico, M., Sasazawa, F., Takeda, Y., Jaiprakash, A. T., Wille, M. L., Pandey, A. K., . . . Fontanarosa, D. (2020). Bayesian CNN for Segmentation Uncertainty Inference on 4D Ultrasound Images of the Femoral Cartilage for Guidance in Robotic Knee Arthroscopy. IEEE Access, 8, 223961-223975. Scopus21 WoS19 |
| 2020 | Tian, Y., Maicas, G., Pu, L. Z. C. T., Singh, R., Verjans, J. W., & Carneiro, G. (2020). Few-Shot Anomaly Detection for Polyp Frames from Colonoscopy.. CoRR, abs/2006.14811. |
| 2020 | Ranasinghe, I., Hossain, S., Ali, A., Horton, D., Adams, R. J., Aliprandi-Costa, B., . . . Woodman, R. J. (2020). SAFety, Effectiveness of care and Resource use among Australian Hospitals (SAFER Hospitals): a protocol for a population-wide cohort study of outcomes of hospital care. BMJ, 10(8), e035446-1-e035446-9. Scopus2 WoS2 Europe PMC2 |
| 2020 | Carneiro, G., Zorron Cheng Tao Pu, L., Singh, R., & Burt, A. (2020). Deep learning uncertainty and confidence calibration for the five-class polyp classification from colonoscopy. Medical Image Analysis, 62, 1-13. Scopus59 WoS53 Europe PMC23 |
| 2020 | Jonmohamadi, Y., Takeda, Y., Liu, F., Sasazawa, F., Maicas, G., Crawford, R., . . . Carneiro, G. (2020). Automatic segmentation of multiple structures in knee arthroscopy using deep learning. IEEE Access, 8, 51853-51861. Scopus30 WoS19 |
| 2020 | Angelova, A., Carneiro, G., Sünderhauf, N., & Leitner, J. (2020). Special Issue on Deep Learning for Robotic Vision. International Journal of Computer Vision, 128(5), 2 pages. Scopus2 WoS1 |
| 2020 | Nascimento, J. C., & Carneiro, G. (2020). One shot segmentation: unifying rigid detection and non-rigid segmentation using elastic regularization. IEEE Transactions on Pattern Analysis and Machine Intelligence, 42(12), 3054-3070. Scopus13 WoS11 Europe PMC4 |
| 2020 | Banach, A., Strydom, M., Jaiprakash, A., Carneiro, G., Brown, C., Crawford, R., & McFadyen, A. (2020). Saliency improvement in feature-poor surgical environments using Local Laplacian of Specified Histograms. IEEE Access, 8, 213378-213388. Scopus2 WoS2 |
| 2020 | Carneiro, G., Tavares, J. M. R. S., Bradley, A. P., Papa, J. P., Belagiannis, V., Nascimento, J. C., & Lu, Z. (2020). Special issue: 4<sup>th</sup> MICCAI workshop on deep learning in medical image analysis. Computer Methods in Biomechanics and Biomedical Engineering: Imaging and Visualization, 8(5), 501. Scopus1 WoS1 |
| 2020 | Cheng Tao Pu, L. Z., Maicas, G., Tian, Y., Yamamura, T., Nakamura, M., Suzuki, H., . . . Singh, R. (2020). Computer-aided diagnosis for characterisation of colorectal lesions: a comprehensive software including serrated lesions. Gastrointestinal Endoscopy, 92(4), 891-899. Scopus43 WoS39 Europe PMC23 |
| 2020 | Dunnhofer, M., Antico, M., Sasazawa, F., Takeda, Y., Camps, S., Martinel, N., . . . Fontanarosa, D. (2020). Siam-U-Net: encoder-decoder siamese network for knee cartilage tracking in ultrasound images. Medical Image Analysis, 60, 101631-1-101631-17. Scopus72 WoS64 Europe PMC23 |
| 2020 | Antico, M., Fontanarosa, D., Carneiro, G., Vukovic, D., Camps, S. M., Sasazawa, F., . . . Crawford, R. (2020). Deep learning for US image quality assessment based on femoral cartilage boundaries detection in autonomous knee arthroscopy. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 67(12), 2543-2552. Scopus10 WoS8 Europe PMC3 |
| 2020 | David, R., Menezes, R. -J., De Klerk, J., Castleden, I., Hooper, C., Carneiro, G., & Gilliham, M. (2020). Identifying protein subcellular localisation in scientific literature using bidirectional deep recurrent neural network. Europe PMC1 |
| 2020 | Le, H. -S., Akmeliawati, R., & Carneiro, G. (2020). Domain Generalisation with Domain Augmented Supervised Contrastive Learning (Student Abstract).. CoRR, abs/2012.13973. |
| 2020 | Carneiro, G. F., Ferreira, M. P., & de Sá Volotão, C. F. (2020). Multi-source remote sensing data improves the classification accuracy of natural forests and eucalyptus plantations. Revista Brasileira de Cartografia, 72(1), 110-124. Scopus1 |
| 2020 | Liao, Z., Drummond, T., Reid, I., & Carneiro, G. (2020). Approximate Fisher information matrix to characterise the training of deep neural networks. IEEE Transactions on Pattern Analysis and Machine Intelligence, 42(1), 15-26. Scopus21 WoS16 Europe PMC1 |
| 2020 | Antico, M., Sasazawa, F., Dunnhofer, M., Camps, S. M., Jaiprakash, A. T., Pandey, A. K., . . . Fontanarosa, D. (2020). Deep learning-based femoral cartilage automatic segmentation in ultrasound imaging for guidance in robotic knee arthroscopy. Ultrasound in Medicine and Biology, 46(2), 422-435. Scopus36 WoS34 Europe PMC21 |
| 2020 | Camps, S. M., Houben, T., Carneiro, G., Edwards, C., Antico, M., Dunnhofer, M., . . . Fontanarosa, D. (2020). Automatic quality assessment of transperineal ultrasound images of the male pelvic region, using deep learning. Ultrasound in Medicine and Biology, 46(2), 445-454. Scopus13 WoS11 Europe PMC9 |
| 2019 | Felix, R., Harwood, B., Sasdelli, M., & Carneiro, G. (2019). Generalised zero-shot learning with a classifier ensemble over multi-modal embedding spaces. arXiv, abs/1908.02013, 1-9. |
| 2019 | Maicas, G., Bradley, A. P., Nascimento, J. C., Reid, I., & Carneiro, G. (2019). Pre and post-hoc diagnosis and interpretation of malignancy from breast DCE-MRI. Medical Image Analysis, 58, 101562-1-101562-14. Scopus30 WoS24 Europe PMC14 |
| 2019 | Carneiro, G., Manuel, J., Tavares, R. S., Bradley, A. P., Papa, J. P., Nascimento, J. C., . . . Belagiannis, V. (2019). Editorial. Computer Methods in Biomechanics and Biomedical Engineering Imaging and Visualization, 7(3), 241. Scopus1 WoS1 |
| 2019 | Liu, Y., Tian, Y., Maicas, G., Pu, L. Z. C. T., Singh, R., Verjans, J. W., & Carneiro, G. (2019). Photoshopping Colonoscopy Video Frames.. CoRR, abs/1910.10345. |
| 2019 | Glaser, S., Maicas, G., Bedrikovetski, S., Sammour, T., & Carneiro, G. (2019). Semi-supervised Multi-domain Multi-task Training for Metastatic Colon Lymph Node Diagnosis From Abdominal CT.. CoRR, abs/1910.10371. |
| 2019 | Felix, R., Harwood, B., Sasdelli, M., & Carneiro, G. (2019). Generalised Zero-Shot Learning with Domain Classification in a Joint Semantic and Visual Space.. CoRR, abs/1908.04930. |
| 2019 | Sünderhauf, N., Dayoub, F., Hall, D., Skinner, J., Zhang, H., Carneiro, G., & Corke, P. (2019). A probabilistic challenge for object detection. Nature Machine Intelligence, 1(9), 443. WoS3 |
| 2018 | Snaauw, G., Gong, D., Maicas, G., Hengel, A. V. D., Niessen, W. J., Verjans, J., & Carneiro, G. (2018). End-to-End Diagnosis and Segmentation Learning from Cardiac Magnetic Resonance Imaging.. CoRR, abs/1810.10117. |
| 2018 | Gale, W., Oakden-Rayner, L., Carneiro, G., Bradley, A. P., & Palmer, L. J. (2018). Producing radiologist-quality reports for interpretable artificial intelligence.. CoRR, abs/1806.00340. |
| 2018 | Carneiro, G., Tavares, J. M. R. S., Bradley, A. P., Papa, J. P., Nascimento, J. C., Cardoso, J. S., . . . Belagiannis, V. (2018). 1st MICCAI workshop on deep learning in medical image analysis. Computer Methods in Biomechanics and Biomedical Engineering Imaging and Visualization, 6(3), 241-242. |
| 2017 | Dhungel, N., Carneiro, G., & Bradley, A. (2017). A deep learning approach for the analysis of masses in mammograms with minimal user intervention. Medical Image Analysis, 37, 114-128. Scopus309 WoS243 Europe PMC108 |
| 2017 | Gale, W., Oakden-Rayner, L., Carneiro, G., Bradley, A. P., & Palmer, L. J. (2017). Detecting hip fractures with radiologist-level performance using deep neural networks.. CoRR, abs/1711.06504. |
| 2017 | Carneiro, G., Nascimento, J., & Bradley, A. (2017). Automated analysis of unregistered multi-view mammograms with deep learning. IEEE Transactions on Medical Imaging, 36(11), 2355-2365. Scopus179 WoS145 Europe PMC52 |
| 2017 | Nascimento, J., & Carneiro, G. (2017). Deep learning on sparse manifolds for faster object segmentation. IEEE Transactions on Image Processing, 26(10), 4978-4990. Scopus14 WoS13 Europe PMC4 |
| 2017 | Ngo, T. A., Lu, Z., & Carneiro, G. (2017). Combining deep learning and level set for the automated segmentation of the left ventricle of the heart from cardiac cine magnetic resonance. Medical Image Analysis, 35, 159-171. Scopus301 WoS258 Europe PMC127 |
| 2017 | Lu, Z., Carneiro, G., Bradley, A., Ushizima, D., Nosrati, M., Bianchi, A., . . . Hamarneh, G. (2017). Evaluation of three algorithms for the segmentation of overlapping cervical cells. IEEE Journal of Biomedical and Health Informatics, 21(2), 441-450. Scopus128 WoS107 Europe PMC42 |
| 2017 | Ribeiro, D., Nascimento, J., Bernardino, A., & Carneiro, G. (2017). Improving the performance of pedestrian detectors using convolutional learning. Pattern Recognition, 61, 641-649. Scopus34 WoS29 |
| 2017 | Oakden-Rayner, L., Carneiro, G., Bessen, T., Nascimento, J., Bradley, A., & Palmer, L. (2017). Precision Radiology: Predicting longevity using feature engineering and deep learning methods in a radiomics framework. Scientific Reports, 7(1), 13 pages. Scopus127 WoS105 Europe PMC86 |
| 2017 | Liao, Z., & Carneiro, G. (2017). A deep convolutional neural network module that promotes competition of multiple-size filters. Pattern Recognition, 71, 94-105. Scopus25 WoS24 |
| 2017 | Carneiro, G., Peng, T., Bayer, C., & Navab, N. (2017). Automatic quantification of tumour hypoxia from multi-modal microscopy images using weakly-supervised learning methods. IEEE Transactions on Medical Imaging, 36(7), 1405-1417. Scopus4 WoS4 Europe PMC3 |
| 2016 | Lu, Z., Carneiro, G., Dhungel, N., & Bradley, A. P. (2016). Automated Detection of Individual Micro-calcifications from Mammograms using a Multi-stage Cascade Approach. |
| 2015 | Vochin, M., Borcoci, E., & Carneiro, G. (2015). Media aware network element data plane performance evaluation. UPB Scientific Bulletin Series C Electrical Engineering and Computer Science, 77(3), 77-84. |
| 2015 | Lu, Z., Carneiro, G., & Bradley, A. (2015). An improved joint optimization of multiple level set functions for the segmentation of overlapping cervical cells. IEEE Transactions on Image Processing, 24(4), 1261-1272. Scopus229 WoS194 Europe PMC66 |
| 2014 | Iorga, R., Borcoci, E., Miruta, R., Pinto, A., Carneiro, G., & Calcada, T. (2014). Management driven hybrid multicast framework for content aware networks. IEEE Communications Magazine, 52(1), 158-165. Scopus1 WoS1 |
| 2013 | Carneiro, G., & Nascimento, J. (2013). Combining Multiple Dynamic Models and Deep Learning Architectures for Tracking the Left Ventricle Endocardium in Ultrasound Data.. IEEE transactions on pattern analysis and machine intelligence. |
| 2013 | Carneiro, G., & Nascimento, J. (2013). Combining multiple dynamic models and deep learning architectures for tracking the left ventricle endocardium in ultrasound data. IEEE Transactions on Pattern Analysis and Machine Intelligence, 35(11), 2592-2607. Scopus124 WoS100 Europe PMC47 |
| 2013 | Carneiro, G. (2013). Artistic image analysis using graph-based learning approaches. IEEE Transactions on Image Processing, 22(8), 3168-3178. Scopus5 WoS4 |
| 2013 | Carneiro, G. L., Braz, D., de Jesus, E. F., Santos, S. M., Cardoso, K., Hecht, A. A., & da Cunha, M. K. D. (2013). Radon in indoor concentrations and indoor concentrations of metal dust particles in museums and other public buildings. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH, 35(3), 333-340. WoS6 |
| 2012 | Carneiro, G., Nascimento, J., & Freitas, A. (2012). The segmentation of the left ventricle of the heart from ultrasound data using deep learning architectures and derivative-based search methods. IEEE Transactions on Image Processing, 21(3), 968-982. Scopus187 WoS162 Europe PMC77 |
| 2012 | Carneiro, G., Fortuna, P., Dias, J., & Ricardo, M. (2012). Transparent and scalable terminal mobility for vehicular networks. Computer Networks, 56(2), 577-597. Scopus2 WoS1 |
| 2012 | Del Monego, H., Carneiro, G., Oliveira, J. M., & Ricardo, M. (2012). An ns-3 architecture for simulating joint radio resource management strategies in interconnected WLAN and UMTS networks. Transactions on Emerging Telecommunications Technologies, 23(6), 537-549. Scopus1 WoS1 |
| 2011 | Carneiro, G., Fontes, H., & Ricardo, M. (2011). Fast prototyping of network protocols through ns-3 simulation model reuse. Simulation Modelling Practice and Theory, 19(9), 2063-2075. Scopus21 WoS14 |
| 2009 | Wels, M., Zheng, Y., Carneiro, G., Huber, M., Hornegger, J., & Comaniciu, D. (2009). Fast and robust 3-D MRI brain structure segmentation. Lecture Notes in Computer Science Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics, 5762 LNCS(PART 2), 575-583. Scopus19 Europe PMC6 |
| 2009 | Carneiro, G., & Vasconcelos, N. (2009). Minimum Bayes error features for visual recognition. Image and Vision Computing, 27(1-2), 131-140. Scopus2 WoS2 |
| 2009 | Carneiro, G., & Jepson, A. (2009). The quantitative characterization of the distinctiveness and robustness of local image descriptors. Image and Vision Computing, 27(8), 1143-1156. Scopus11 WoS10 |
| 2009 | Zalud, I., Good, S., Carneiro, G., Georgescu, B., Aoki, K., Green, L., . . . Okumura, R. (2009). Fetal biometry: a comparison between experienced sonographers and automated measurements. The Journal of Maternal - Fetal & Neonatal Medicine, 22(1), 43-50. Scopus15 WoS16 Europe PMC11 |
| 2008 | Carneiro, G., Georgescu, B., Good, S., & Comaniciu, D. (2008). Detection and measurement of fetal anatomies from ultrasound images using a constrained probabilistic boosting tree. IEEE Transactions on Medical Imaging, 27(9), 1342-1355. Scopus187 WoS155 Europe PMC74 |
| 2008 | Wels, M., Carneiro, G., Aplas, A., Huber, M., Hornegger, J., & Comaniciu, D. (2008). A discriminative model-constrained graph cuts approach to fully automated pediatric brain tumor segmentation in 3-D MRI. Lecture Notes in Computer Science Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics, 5241 LNCS(PART 1), 67-75. Scopus72 WoS49 Europe PMC22 |
| 2007 | Carneiro, G., Georgescu, B., Good, S., & Comaniciu, D. (2007). Automatic fetal measurements in ultrasound using constrained probabilistic boosting tree. Lecture Notes in Computer Science Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics, 4792 LNCS(PART 2), 571-579. Scopus22 Europe PMC5 |
| 2007 | Carneiro, G., & Ricardo, M. (2007). QoS abstraction layer in 4G access networks. Telecommunication Systems, 35(1-2), 55-65. Scopus2 WoS1 |
| 2007 | Carneiro, G., & Jepson, A. (2007). Flexible spatial configuration of local image features. IEEE Transactions on Pattern Analysis and Machine Intelligence, 29(12), 2089-2104. Scopus50 WoS34 Europe PMC5 |
| 2007 | Carneiro, G., Chan, A., Moreno, P., & Vasconcelos, N. (2007). Supervised learning of semantic classes for image annotation and retrieval. IEEE Transactions on Pattern Analysis and Machine Intelligence, 29(3), 394-410. Scopus797 WoS532 Europe PMC46 |
| 2004 | Carneiro, G., Ruela, J., & Ricardo, M. (2004). Cross-layer design in 4G wireless terminals. IEEE Wireless Communications, 11(2), 7-13. Scopus138 WoS75 |
| 1999 | Aude, E. P. L., Carneiro, G. H. M. B., Serdeira, H., Silveira, J. T. C., Martins, M. F., & Lopes, E. P. (1999). CONTROLAB MUFA: a multi-level fusion architecture for intelligent navigation of a telerobot. Proceedings IEEE International Conference on Robotics and Automation, 1, 465-472. Scopus13 WoS11 |
| - | Dalva, M., Van Leeuwen Bichara, G. C., Campos Cunha Filho, C. E., Carneiro, G. F., Saliba, G. N., Camacho, J. A., . . . Limaco, R. P. (2009). Intermittent annular reduction with Alfieri's repair in the treatment of mitral insufficiency in children: initial results. REVISTA BRASILEIRA DE CIRURGIA CARDIOVASCULAR, 24(3), 354-358. WoS6 |
| Year | Citation |
|---|---|
| 2024 | Carneiro, G. (2024). Machine Learning With Noisy Labels. Elsevier. DOI Scopus1 |
| 2021 | Rosen-Zvi, M., Gabrani, M., Konukoglu, E., Beymer, D., Carneiro, G., & Guindy, M. (2021). LL-COVID-19 preface (Vol. 12969 LNCS). |
| 2020 | Garg, S., Sünderhauf, N., Dayoub, F., Morrison, D., Cosgun, A., Carneiro, G., . . . Milford, M. (2020). Semantics for Robotic Mapping, Perception and Interaction: A Survey (Vol. 8). United States: Now Publishers. DOI |
| 2019 | Carneiro, G., & You, S. (2019). Computer Vision – ACCV 2018 Workshops (Vol. 11367 LNCS). G. Carneiro, & S. You (Eds.), Springer. |
| 2019 | Carneiro, G., & You, S. (2019). Computer Vision – ACCV 2018 Workshops (Vol. 11367 LNCS). G. Carneiro, & S. You (Eds.), Springer. |
| 2019 | Lu, L., Wang, X., Carneiro, G., & Yang, L. (2019). Preface. |
| 2016 | Carneiro, G., Tavares, J. M. R. S., Bradley, A., Papa, J. P., Nascimento, J. C., Cardoso, J. S., . . . Lu, Z. (2016). Preface: DLMIA 2016 (Vol. 10008 LNCS). |
| 2016 | Mateus, D., Peter, L., Carneiro, G., Loog, M., & Cornebise, J. (2016). Preface: LABELS 2016 (Vol. 10008 LNCS). |
| 2016 | Carneiro, G., Mateus, D., Peter, L., Bradley, A., Tavares, J. M. R. S., Belagiannis, V., . . . Cornebise, J. (Eds.) (2016). Deep Learning and Data Labeling for Medical Applications. Springer International Publishing. DOI |
| 2016 | Carneiro, G., Mateus, D., Peter, L., Bradley, A., Tavares, J. M. R. S., Belagiannis, V., . . . Cornebise, J. (Eds.) (2016). Deep Learning and Data Labeling for Medical Applications. Springer International Publishing. DOI |
| Year | Citation |
|---|---|
| 2023 | Nguyen, C. C., Dawoud, Y., Do, T. -T., Nascimento, J. C., Belagiannis, V., & Carneiro, G. (2023). Smart task design for meta learning medical image analysis systems. In H. V. Nguyen, R. Summers, & R. Chellappa (Eds.), Meta Learning With Medical Imaging and Health Informatics Applications (pp. 185-209). Elsevier. DOI |
| 2022 | Nguyen, C., Dawoud, Y., Do, T. -T., Nascimento, J., Belagiannis, V., & Carneiro, G. (2022). Smart task design for meta learning medical image analysis systems: Unsupervised, weakly-supervised, and cross-domain design of meta learning tasks. In H. V. Nguyen, R. Summers, & R. Chellappa (Eds.), Meta-Learning with Medical Imaging and Health Informatics Applications (pp. 185-209). Elsevier. DOI Scopus1 |
| 2022 | Mehta, O., Liao, Z., Jenkinson, M., Carneiro, G., & Verjans, J. (2022). Machine Learning in Medical Imaging - Clinical Applications and Challenges in Computer Vision. In Artificial Intelligence in Medicine: Applications, Limitations and Future Directions (pp. 79-99). Springer Nature Singapore. DOI Scopus5 |
| 2019 | Verjans, J., Veldhuis, W. B., Carneiro, G., Wolterink, J. M., Išgum, I., & Leiner, T. (2019). Cardiovascular diseases. In E. R. Ranschaert, S. Morozov, & P. R. Algra (Eds.), Artificial Intelligence in Medical Imaging: Opportunities, Applications and Risks (pp. 167-185). Cham, Switzerland: Springer. DOI Scopus3 |
| 2019 | Maicas, G., Bradley, A. P., Nascimento, J. C., Reid, I., & Carneiro, G. (2019). Deep Reinforcement Learning for Detecting Breast Lesions from DCE-MRI. In L. Lu, X. Wang, G. Carneiro, & L. Yang (Eds.), Deep Learning and Convolutional Neural Networks for Medical Imaging and Clinical Informatics (pp. 163-178). Cham, Switzerland: Springer. DOI Scopus2 |
| 2019 | Maicas, G., Bradley, A. P., Nascimento, J. C., Reid, I., & Carneiro, G. (2019). Deep Reinforcement Learning for Detecting Breast Lesions from DCE-MRI. In L. Lu, X. Wang, G. Carneiro, & L. Yang (Eds.), Deep Learning and Convolutional Neural Networks for Medical Imaging and Clinical Informatics (pp. 163-178). Cham, Switzerland: Springer. DOI Scopus2 |
| 2019 | Carneiro, G., & You, S. (2019). Preface. In G. Carneiro, & S. You (Eds.), Computer Vision – ACCV 2018 Workshops (Vol. 11367 LNCS, pp. v). |
| 2019 | Carneiro, G., & You, S. (2019). Preface. In G. Carneiro, & S. You (Eds.), Computer Vision – ACCV 2018 Workshops (Vol. 11367 LNCS, pp. v). |
| 2018 | Carneiro, G., Tavares, J. M. R. S., Bradley, A., Papa, J. P., Belagiannis, V., Nascimento, J. C., . . . Conjeti, S. (2018). DLMIA 2018 Preface. In D. Stoyanov, Z. Taylor, G. Carneiro, & T. Syeda-Mahmood (Eds.), Deep Learning in Medical Image Analysis and Multimodal Learning for Clinical Decision Support: 4th International Workshop, DLMIA 2018 and 8th International Workshop, ML-CDS 2018 Held in Conjunction with MICCAI 2018 Granada, Spain, September 20, 2018 Proceedings (Vol. 11045 LNCS, pp. VII). |
| 2018 | Carneiro, G., Tavares, J. M. R. S., Bradley, A., Papa, J. P., Belagiannis, V., Nascimento, J. C., . . . Conjeti, S. (2018). DLMIA 2018 Preface. In D. Stoyanov, Z. Taylor, G. Carneiro, & T. Syeda-Mahmood (Eds.), Deep Learning in Medical Image Analysis and Multimodal Learning for Clinical Decision Support: 4th International Workshop, DLMIA 2018 and 8th International Workshop, ML-CDS 2018 Held in Conjunction with MICCAI 2018 Granada, Spain, September 20, 2018 Proceedings (Vol. 11045 LNCS, pp. VII). |
| 2017 | Carneiro, G., Nascimento, J., & Bradley, A. (2017). Deep Learning Models for Classifying Mammogram Exams Containing Unregistered Multi-View Images and Segmentation Maps of Lesions. In S. Zhou, H. Greenspan, & D. Shen (Eds.), Deep Learning for Medical Image Analysis (pp. 321-339). London: Elsevier. DOI Scopus39 |
| 2017 | Carneiro, G., Zheng, Y., Xing, F., & Yang, L. (2017). Review of deep learning methods in mammography, cardiovascular, and microscopy image analysis. In L. Lu, Y. Zheng, G. Carneiro, & L. Yang (Eds.), Deep Learning and Convolutional Neural Networks for Medical Image Computing: precision medicine, high performance and large-scale datasets (pp. 11-32). Switzerland: Springer. DOI Scopus42 |
| 2017 | Ngo, T., & Carneiro, G. (2017). Fully automated segmentation using distance regularised level set and deep-structured learning and inference. In L. Lu, Y. Zheng, G. Carneiro, & L. Yang (Eds.), Deep Learning and Convolutional Neural Networks for Medical Image Computing: precision medicine, high performance and large-scale datasets (pp. 197-224). Switzerland: Springer. DOI Scopus5 |
| 2017 | Dhungel, N., Carneiro, G., & Bradley, A. (2017). Combining deep learning and structured prediction for segmenting masses in mammograms. In L. Lu, Y. Zheng, G. Carneiro, & L. Yang (Eds.), Deep Learning and Convolutional Neural Networks for Medical Image Computing: precision medicine, high performance and large-scale datasets (pp. 225-240). Switzerland: Springer. DOI Scopus9 |
| 2016 | Nascimento, J., Carneiro, G., & Freitas, A. (2016). Tracking and segmentation of the endocardium of the left ventricle in a 2D ultrasound using deep learning architectures and monte carlo sampling. In A. El-Baz, X. Jiang, & J. S. Suri (Eds.), Biomedical Image Segmentation: Advances and Trends (pp. 387-406). Florida; USA: CRC Press. DOI Scopus2 |
| 2015 | Chen, Q., & Carneiro, G. (2015). Artistic Image Analysis Using the Composition of Human Figures. In Lecture Notes in Computer Science (pp. 117-132). Springer International Publishing. DOI |
| Year | Citation |
|---|---|
| 2023 | Tan, J. L., Pitawela, D., Chinnaratha, A., Chen, H. -T., Carneiro, G., & Singh, R. (2023). Enhancing accuracy in Barrett's surveillance using artificial intelligence: A multimodal (white-light and narrow-band imaging) model comparing vision transformer and convolutional neural networks. Poster session presented at the meeting of Abstracts of the Gastroenterological Society of Australia (GESA) Australian Gastroenterology Week (AGW) 2023, as published in Journal of gastroenterology and hepatology. Brisbane: Wiley. DOI |
| 2017 | Carneiro, G., Oakden-Rayner, L., Bradley, A. P., Nascimento, J. C., & Palmer, L. J. (2017). Automated 5-year mortality prediction using deep learning and radiomics features from chest computed tomography.. Poster session presented at the meeting of ISBI. IEEE. |
| 2017 | Carneiro, G., Tavares, J., Bradley, A., Papa, J., Nascimento, J., Cardoso, J., . . . Lu, Z. (2017). Preface DLMIA 2017. Poster session presented at the meeting of Lecture Notes in Computer Science Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics. |
| 2017 | Cheng, L. Z. T. P., Campbell, B., Carneiro, G., Burt, A. D., & Singh, R. (2017). Computer-aided diagnosis (CAD) for characterising colorectal lesions: Initial results of a newly developed software. Poster session presented at the meeting of JOURNAL OF GASTROENTEROLOGY AND HEPATOLOGY. WILEY. |
| Year | Citation |
|---|---|
| 2025 | Bijlani, N., Gustavo., Nilforooshan, R., Group, C. T., Barnaghi, P., & Kouchaki, S. (2025). Remote Monitoring in Dementia Care - Lightweight, Explainable AI Validated for Early Warning of Health Events in the Home. DOI |
| 2024 | Cordeiro, F., & Carneiro, G. (2024). Anne: Adaptive Nearest Neighbors and Eigenvector-Based Sample Selection for Robust Learning with Noisy Labels. DOI |
| 2024 | Al-qershi, O., Nguyen, T., Elliott, M., Schmidt, D., Makalic, E., Li, S., . . . Hopper, J. (2024). AutoCumulus: an Automated Mammographic Density Measure Created Using Artificial Intelligence. DOI |
| 2024 | Garg, A., Nguyen, C., Felix, R., Do, T. -T., & Carneiro, G. (2024). Pass: Peer-Agreement Based Sample Selection for Training with Instance-Dependent Noisy Labels. DOI |
| 2024 | Hopper, J., Nguyen, T. L., Elliott, M. S., Al-qershi, O., Schmidt, D. F., Makalic, E., . . . Frazer, H. (2024). Braix Risk Score: An Automated Mammogram-Based Biomarker for Breast Cancer Created by Applying Artificial Intelligence. DOI |
| 2024 | Masroor, M., Hassan, T., Tian, Y., Wells, K., Rosewarne, D., Do, T. -T., & Carneiro, G. (2024). Fair Distillation: Teaching Fairness from Biased Teachers in Medical Imaging. |
| 2024 | Garg, A., Nguyen, C., Felix, R., Do, T. -T., & Carneiro, G. (2024). Pass: Peer-Agreement Based Sample Selection for Training with Instance Dependent Noisy Labels. DOI |
| 2024 | Garg, A., Nguyen, C., Felix, R., Do, T. -T., & Carneiro, G. (2024). Pass: Peer-Agreement Based Sample Selection for Training with Instance Dependent Noisy Labels. DOI |
| 2023 | Chen, Y., Liu, Y., Wang, H., Liu, F., Wang, C., Frazer, H., & Carneiro, G. (2023). Unraveling Instance Associations: A Closer Look for Audio-Visual Segmentation. |
| 2023 | Galdran, A., Verjans, J., Carneiro, G., & Ballester, M. Á. G. (2023). Multi-Head Multi-Loss Model Calibration.. |
| 2023 | Wang, C., Liu, Y., Chen, Y., Liu, F., Tian, Y., McCarthy, D. J., . . . Carneiro, G. (2023). Learning Support and Trivial Prototypes for Interpretable Image Classification. |
| 2023 | Wang, C., Chen, Y., Liu, F., Liu, Y., McCarthy, D. J., Frazer, H., & Carneiro, G. (2023). Mixture of Gaussian-distributed Prototypes with Generative Modelling for Interpretable and Trustworthy Image Recognition. |
| 2023 | Chen, Y., Liu, Y., Wang, C., Elliott, M., Kwok, C. F., Pena-Solorzano, C., . . . Carneiro, G. (2023). BRAIxDet: Learning to Detect Malignant Breast Lesion with Incomplete Annotations. |
| 2023 | Nguyen, C., Do, T. -T., & Carneiro, G. (2023). Task Weighting in Meta-learning with Trajectory Optimisation. |
| 2022 | Chen, Y., Liu, F., Wang, H., Wang, C., Tian, Y., Liu, Y., & Carneiro, G. (2022). BoMD: Bag of Multi-label Descriptors for Noisy Chest X-ray Classification. |
| 2022 | Galdran, A., Carneiro, G., & Ballester, M. Á. G. (2022). On the Optimal Combination of Cross-Entropy and Soft Dice Losses for Lesion Segmentation with Out-of-Distribution Robustness.. |
| 2022 | Liu, Y., Tian, Y., Wang, C., Chen, Y., Liu, F., Belagiannis, V., & Carneiro, G. (2022). Translation Consistent Semi-supervised Segmentation for 3D Medical Images. |
| 2022 | Liu, Y., Ding, C., Tian, Y., Pang, G., Belagiannis, V., Reid, I., & Carneiro, G. (2022). Residual Pattern Learning for Pixel-wise Out-of-Distribution Detection in Semantic Segmentation. |
| 2022 | Tian, Y., Pang, G., Liu, Y., Wang, C., Chen, Y., Liu, F., . . . Carneiro, G. (2022). Unsupervised Anomaly Detection in Medical Images with a Memory-augmented Multi-level Cross-attentional Masked Autoencoder.. |
| 2021 | Tian, Y., Pu, L. Z. C. T., Liu, Y., Maicas, G., Verjans, J. W., Burt, A. D., . . . Carneiro, G. (2021). Detecting, Localising and Classifying Polyps from Colonoscopy Videos using Deep Learning.. |
| 2019 | Felix, R., Sasdelli, M., Reid, I. D., & Carneiro, G. (2019). Multi-modal Ensemble Classification for Generalized Zero Shot Learning.. |
Centre of Excellence for Robotic Vision (ARC CoE 2014-2020)
Indo-Australian Biotechnology Fund (IABF) Project: New class of intelligent robotic imaging system for keyhole surgeries (2017-2020)
Discovery Project: Automated Analysis of Multi-modal Medical Data using Deep Belief Networks (ARC Discovery Project 2014-2016)
Linkage Infrastructure, Equipment and Facilities Project: Computational infrastructure for developing deep machine learning models (ARC LIEF 2016)
University of Adelaide - Interdisciplinary Research Fund Grant – Project Title: Novel Applications of Machine Learning in Healthcare (2016-2017).
Automatic Quantification of Acute and Chronic Hypoxia in Tumors from Immunohistochemical Fluorescence Images using Deep Structured Inference (Humboldt Fellowship 2014-2015)
Combining Multiple Dynamic Models and Deep Learning Architectures for Tracking the Left Ventricle Endocardium in Ultrasound Data (Portuguese Science Foundation FCT 2010-2012)
Printart: Where Computer Vision Meets Art (Portuguese Science Foundation FCT 2010-2012)
Learning to Combine Hierarchical Image Modeling with 2-D Segmentation and 3-D Pose Recovery of Visual Objects (Marie Curie International Incoming Fellowship 2010-2011)
University of Adelaide
- Puzzle-Based Learning (Fall 2017)
- Computer Graphics (Fall 2017)
- Topics in Computer Science (Fall 2017)
- Advanced Topics in Computer Science (Fall 2017)
- Puzzle-Based Learning (Fall 2016)
- Topics in Computer Science (Fall 2016)
- Object Oriented Programming (Spring 2015)
- Topics in Computer Science (Spring 2015)
- Computer Graphics (Fall 2015) - Videos of Best Projects
- Puzzle-Based Learning (Fall 2015)
- Topics in Computer Science (Fall 2015)
- Puzzle-Based Learning (Fall 2014)
- Software Engineering in Industry (Fall 2014)
- Topics in Computer Science (Fall 2014)
- Puzzle-Based Learning (Spring 2013)
- Software Engineering Group Project 1B (Spring 2013)
- Master of Software Engineering Project (Spring 2013)
- Computer Graphics (Fall 2013) - Videos of Best Projects
- Puzzle-Based Learning (Fall 2013)
- Puzzle-Based Learning (Spring 2012)
- Computer Vision (Fall 2012)
- Computer Graphics (Fall 2012) - Videos of Best Projects
Instituto Superior Tecnico - University of Lisbon
- Signals and Systems (Fall 2009)
- Robotics (Spring 2009)
- Modeling and Simulation (Spring 2009)
- Signal Processing (Fall 2008)
- Control (Fall 2008)
University of Toronto
- CSC 324 - Principles of Programming Languages (Fall 2004)
- CSC 446, Computer Methods for Partial Differential Equations (TA) (Winter 2002).
- CSC 418, Computer Graphics (TA) (1999-2003).
- CSC 458, Computer Networks (TA) (Winter 2000).
- CSC 258, Computer Organization (TA) (Summer 2000).
- CSC 260, An Introduction to Scientific, Symbolic, and Graphical Computation (TA) (Winter 2003).
- SCI 199, Computer and Images. (TA) (2000-2001)
| Date | Role | Research Topic | Program | Degree Type | Student Load | Student Name |
|---|---|---|---|---|---|---|
| 2023 | Co-Supervisor | Artificial Intelligence and Endoscopy - Enhancing early detection and improving outcomes in dysplasia and cancer of the Upper Gastrointestinal Tracts. | Doctor of Philosophy | Doctorate | Part Time | Mr Jin Lin Tan |
| 2023 | Co-Supervisor | Enhancing Medical Decision-Making with Machine Learning | Master of Philosophy | Master | Full Time | Mr Nilesh Ramgolam |
| 2023 | Co-Supervisor | Enhancing Medical Decision-Making with Machine Learning | Master of Philosophy | Master | Full Time | Mr Nilesh Ramgolam |
| 2023 | Co-Supervisor | Artificial Intelligence and Endoscopy - Enhancing early detection and improving outcomes in dysplasia and cancer of the Upper Gastrointestinal Tracts. | Doctor of Philosophy | Doctorate | Full Time | Mr Jin Lin Tan |
| 2022 | Co-Supervisor | Improving Colorectal cancer detection through Colonoscopy exams with Explainable AI and Teachable AI | Doctor of Philosophy | Doctorate | Full Time | Mr Dileepa Pitawela |
| 2022 | Co-Supervisor | Improving Colorectal cancer detection through Colonoscopy exams with Explainable AI and Teachable AI | Doctor of Philosophy | Doctorate | Full Time | Mr Dileepa Pitawela |
| 2020 | Co-Supervisor | Computer Vision and Machine Learning for Navigation and Planning | Doctor of Philosophy | Doctorate | Full Time | Mr Sam Bahrami |
| Date | Role | Research Topic | Program | Degree Type | Student Load | Student Name |
|---|---|---|---|---|---|---|
| 2021 - 2024 | Principal Supervisor | Exploiting Correspondences in Multi-perspective Data Learning | Doctor of Philosophy | Doctorate | Full Time | Mr Yuanhong Chen |
| 2021 - 2024 | Principal Supervisor | Interpretable Deep Learning for Medical Imaging and Computer Vision | Doctor of Philosophy | Doctorate | Full Time | Mr Chong Wang |
| 2021 - 2023 | Principal Supervisor | The Utility of Validation Sets for Meta-learning Methods for Noisy-Label and Imbalanced Learning Problems | Master of Philosophy | Master | Full Time | Mr Dung Anh Hoang |
| 2021 - 2021 | Principal Supervisor | Relaxed Invariant Representation for Unsupervised Domain Adaptation | Master of Philosophy | Master | Full Time | Mr Hossein Askari Lyarjdameh |
| 2021 - 2025 | Principal Supervisor | Instance-Aware Learning in the Presence of Label Noise: An Adaptive Framework for Image Classification | Doctor of Philosophy | Doctorate | Full Time | Mr Arpit Garg |
| 2021 - 2025 | Principal Supervisor | Unpaired Multi-modal Multi-label Classification for Endometriosis Signs | Doctor of Philosophy | Doctorate | Full Time | Ms Yuan Zhang |
| 2020 - 2024 | Principal Supervisor | Weakly-supervised learning in Computer Vision and Medical Imaging | Doctor of Philosophy | Doctorate | Full Time | Mr Fengbei Liu |
| 2020 - 2024 | Principal Supervisor | Label Efficient Learning for Semantic Segmentation | Doctor of Philosophy | Doctorate | Full Time | Mr Yuyuan Liu |
| 2019 - 2019 | Principal Supervisor | Efficient Deep Learning Models with Autoencoder Regularization and Information Bottleneck Compression | Master of Philosophy | Master | Full Time | Mr Jerome Oskar Williams |
| 2019 - 2022 | Principal Supervisor | Anomaly Detection in Computer Vision and Medical Imaging | Doctor of Philosophy | Doctorate | Full Time | Mr Yu Tian |
| 2018 - 2022 | Principal Supervisor | Harnessing meta-learning via probabilistic modelling and trajectory optimisation | Doctor of Philosophy | Doctorate | Full Time | Mr Cuong Cao Nguyen |
| 2018 - 2022 | Principal Supervisor | Weakly Supervised Localisation for Censor Aware Survival Prediction from Medical Images | Doctor of Philosophy | Doctorate | Full Time | Mr Renato Hermoza Aragones |
| 2017 - 2020 | Co-Supervisor | Endoscopy-Focused Primary, Secondary and Tertiary Prevention of Colorectal Cancer | Doctor of Philosophy under a Jointly-awarded Degree Agreement with | Doctorate | Full Time | Dr Leonardo Zorron Cheng Tao Pu |
| 2017 - 2020 | Co-Supervisor | Self-Supervised Learning for Geometry | Doctor of Philosophy | Doctorate | Full Time | Mr Huangying Zhan |
| 2016 - 2022 | Co-Supervisor | Closing the implementation gap in pre-deployment medical AI study design | Doctor of Philosophy | Doctorate | Part Time | Dr Lauren Oakden-Rayner |
| 2016 - 2020 | Principal Supervisor | Bayesian Data Augmentation and Generative Active Learning for Robust Imbalanced Deep Learning | Doctor of Philosophy | Doctorate | Full Time | Mr Toan Minh Tran |
| 2016 - 2020 | Principal Supervisor | Data Augmentation for Multi-domain and Multi-model Generalised Zero-shot Learning | Doctor of Philosophy | Doctorate | Full Time | Dr Rafael Felix Alves |
| 2015 - 2018 | Principal Supervisor | Pre-hoc and Post-hoc Diagnosis and Interpretation of Breast Magnetic Resonance Volumes | Doctor of Philosophy | Doctorate | Full Time | Mr Gabriel Maicas Suso |
| 2015 - 2020 | Principal Supervisor | Single View 3D Reconstruction using Deep Learning | Doctor of Philosophy | Doctorate | Part Time | Adrian Robert Johnston |
| 2013 - 2017 | Principal Supervisor | Methods for Understanding and Improving Deep Learning Classification Models | Doctor of Philosophy | Doctorate | Full Time | Dr Zhibin Liao |
| 2013 - 2017 | Co-Supervisor | Moving Least Squares Registration in Computer Vision: New Applications and Algorithms | Doctor of Philosophy | Doctorate | Full Time | Mr Xiang Liu |
| 2013 - 2016 | Principal Supervisor | Automated Detection, Segmentation and Classification of Masses from Mammograms using Deep Learning | Doctor of Philosophy | Doctorate | Full Time | Mr Neeraj Dhungel |
| 2011 - 2016 | Principal Supervisor | Medical Image Segmentation Combining Level Set Method and Deep Belief Networks | Doctor of Philosophy | Doctorate | Full Time | Mr Tuan Anh Ngo |