| 2025 |
Stržinar, Ž., Škrjanc, I., Pratama, M., & Pregelj, B. (2025). Evolving clustering of time series for unsupervised analysis of industrial data streams. Computers & Industrial Engineering, 209(111508), 1-16. DOI |
| 2025 |
Chen, Y., Yu, F., Zhang, Q., & Pratama, M. (2025). Energy-efficient adaptive perception for autonomous driving via lightweight policy learning and simulation-based optimization. Knowledge-Based Systems, online, 26 pages. DOI |
| 2025 |
Ma'sum, M. A., Pratama, M., Lughofer, E., Liu, L., Habibullah., & Kowalczyk, R. (2025). Few-shot continual learning via flat-to-wide approaches. IEEE Transactions on Neural Networks and Learning Systems, 36(5), 8966-8978. DOI Scopus1 WoS3 Europe PMC1 |
| 2025 |
A Hady, M., Hu, S., Pratama, M., Cao, Z., & Kowalczyk, R. (2025). Multi-agent reinforcement learning for resources allocation optimization: a survey. Artificial Intelligence Review: an international science and engineering journal, 58(354), 1-49. DOI Scopus1 |
| 2025 |
Furqon, M. T., Pratama, M., Shiddiqi, A., Liu, L., Habibullah, H., & Dogancay, K. (2025). Time and frequency synergy for source-free time-series domain adaptations. Information Sciences, 695(121734), 20 pages. DOI Scopus3 WoS1 |
| 2025 |
Andonovski, G., Leite, D., Precup, R. E., Gomide, F., Pratama, D., & Škrjanc, I. (2025). Advancements in data-driven evolving fuzzy and neuro-fuzzy control: a comprehensive survey. Applied Soft Computing, online(114058), 1-41. DOI |
| 2024 |
Fristiana, A. H., Alfarozi, S. A. I., Permanasari, A. E., Pratama, M., & Wibirama, S. (2024). A survey on Hyperparameters optimization of deep learning for time series classification. IEEE Access, 12, 191162-191198. DOI |
| 2024 |
Paeedeh, N., Pratama, M., Masum, M. A., Mayer, W., Cao, Z., & Kowalczyk, R. (2024). Cross-domain few-shot learning via adaptive transformer networks. Knowledge-based Systems, 288(111458), 1-9. DOI Scopus17 WoS14 |
| 2024 |
Furqon, M., Pratama, M., Liu, L., Habibullah, H., & Dogancay, K. (2024). Mixup domain adaptations for dynamic remaining useful life predictions. Knowledge-based Systems, 295(111783), 1-13. DOI Scopus14 WoS14 |
| 2024 |
Paeedeh, N., Pratama, M., Wibirama, S., Mayer, W., Cao, Z., & Kowalczyk, R. (2024). Few-shot class incremental learning via robust transformer approach. Information Sciences, 675(120751), 1-21. DOI Scopus2 |
| 2024 |
Weng, W., Pratama, M., Zhang, J., Chen, C., Yapp Kien Yie, E., & Ramasamy, S. (2024). Cross-Domain Continual Learning via CLAMP. Information Sciences, 676(120813), 1-23. DOI Scopus3 WoS2 |
| 2024 |
Ma'sum, M. A., Sarkar, M. D. R., Pratama, M., Ramasamy, S., Anavatti, S., Liu, L., . . . Kowalczyk, R. (2024). Dynamic long-term time-series forecasting via meta transformer networks. IEEE Transactions on Artificial Intelligence, 5(8), 4258-4581. DOI Scopus1 |
| 2024 |
Masum, M. A., Pratama, M., Ramasamy, S., Liu, L., & Habibullah, H. (2024). Unsupervised few-shot continual learning for remote sensing image scene classification. IEEE Transactions on Geoscience and Remote Sensing, 62(4707214), 1-14. DOI Scopus3 WoS2 |
| 2023 |
Ding, W., Abdel Basset, M., Hawash, H., Pratama, M., & Pedrycz, W. (2023). Generalizable segmentation of COVID-19 infection from multi-site tomography scans: a federated learning framework. IEEE Transactions on Emerging Topics in Computational Intelligence, 8(1), 126-139. DOI |
| 2023 |
Tan, C. S., Gupta, A., Yew Soon, O., Pratama, M., Tan, P. S., & Siew Kei, L. (2023). Pareto optimization with small data by learning across common objective spaces. Scientific Reports, 13(7842), 1-15. DOI Europe PMC4 |
| 2023 |
Ma'sum, M. A., Pratama, M., Lughofer, E., Ding, W., & Jatmiko, W. (2023). Assessor-guided learning for continual environments. Information Sciences, 640(119088), 1-17. DOI Scopus14 WoS11 |
| 2023 |
Sarkar, M. R., Anavatti, S., Dam, T., Ferdaus, M. M., Tahtali, M., Ramasamy, S., & Pratama, M. (2023). GATE: A guided approach for time series ensemble forecasting. Expert Systems with Applications, in press, 1-44. DOI |
| 2023 |
Weiwei, W., Pratama, M., Za'in, C., De Carvalho, M., Appan, R., Ashfahani, A., & Yapp Kien Yee, E. (2023). Autonomous cross domain adaptation under extreme label scarcity. IEEE Transactions on Neural Networks and Learning Systems, 34(10), 6839-6850. DOI |
| 2023 |
Lughofer, E., & Pratama, M. (2023). Evolving multi-user fuzzy classifier system with advanced explainability and interpretability aspects. Information Fusion, 91, 458-476. DOI |
| 2023 |
Ashfahani, A., & Pratama, M. (2023). Unsupervised continual learning in streaming environments. IEEE Transactions on Neural Networks and Learning Systems, 34(12, article no. 3163362), 9992-10003. DOI |
| 2022 |
Aradya, A. M. S., Ashfahani, A., Angelina, F., Pratama, M., de Mello, R. F., & Sundaram, S. (2022). Autonomous CNN (AutoCNN): a data-driven approach to network architecture determination. Information Sciences, 607, 638-653. DOI |
| 2022 |
Lughofer, E., & Pratama, M. (2022). Online sequential ensembling of predictive fuzzy systems. Evolving Systems, 13(2), 361-386. DOI |
| 2022 |
De Carvalho, M., Pratama, M., Zhang, J., & Yapp Kien Yee, E. (2022). ACDC: online unsupervised cross-domain adaptation. Knowledge-Based Systems, 253(253, article no.109486), 1-15. DOI WoS8 |
| 2022 |
Renchunzi, X., & Pratama, M. (2022). Automatic online multi-source domain adaptation. Information Sciences, 582, 480-494. DOI |
| 2022 |
Pratama, M., Lughofer, E., & Angelov, P. (2022). Editorial: Special issue on recent progress in autonomous machine learning. Information Sciences, 595, 195-196. DOI |
| 2021 |
Weiwei, W., Pratama, M., Ashfahani, A., & Yapp Kien Yee, E. (2021). Online semisupervised learning approach for quality monitoring of complex manufacturing process. Complexity, 2021(3005276), 1-16. DOI |
| 2021 |
Al Mahasneh, A. J., Anavatti, S. G., Garratt, M. A., & Pratama, M. (2021). Stable adaptive controller based on generalized regression neural networks and sliding mode control for a class of nonlinear time-varying systems. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 51(4, article no. 8721510), 2525-2535. DOI |
| 2021 |
AL Sharuee, M. T., Liu, F., & Pratama, M. (2021). Sentiment analysis: dynamic and temporal clustering of product reviews. Applied Intelligence, 51(1), 51-70. DOI |
| 2021 |
Pratama, M., Za'in, C., Lughofer, E., Pardede, E., & Rahayu, D. A. P. (2021). Scalable teacher forcing network for semi-supervised large scale data streams. Information Sciences, 576, 407-431. DOI |
| 2021 |
Cai, Q., Alam, S., Pratama, M., & Liu, J. (2021). Robustness evaluation of multipartite complex networks based on percolation theory. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 51(10), 6244-6257. DOI |
| 2021 |
Fubing, M., Weiwei, W., Pratama, M., & Yee, E. Y. K. (2021). Continual learning via inter-task synaptic mapping. Knowledge-Based Systems, 222, 1-11. DOI |
| 2021 |
Samanta, S., Pratama, M., & Sundaram, S. (2021). Bayesian neuro-fuzzy inference system for temporal dependence estimation. IEEE Transactions on Fuzzy Systems, 29(9, article no. 9115257), 2479-2490. DOI |
| 2021 |
Lughofer, E., Pratama, M., & Skrjanc, I. (2021). Online bagging of evolving fuzzy systems. Information Sciences, 570, 16-33. DOI |
| 2020 |
Pratama, M., Dimla, E., Tjahjowidodo, T., Pedrycz, W., & Lughofer, E. (2020). Online tool condition monitoring based on parsimonious ensemble+. IEEE Transactions on Cybernetics, 50(2), 664-677. DOI |
| 2020 |
Samanta, S., Pratama, M., Sundaram, S., & Srikanth, N. (2020). Learning elastic memory online for fast time series forecasting. Neurocomputing, 390, 315-326. DOI |
| 2020 |
Cai, Q., Pratama, M., Alam, S., Ma, C., & Liu, J. (2020). Breakup of directed multipartite networks. IEEE Transactions on Network Science and Engineering, 7(3, article no. 8620361), 947-960. DOI |
| 2020 |
Kurnianingsih., Nugroho, L. E., Widyawan., Lazuardi, L., Prabuwono, A. S., & Pratama, M. (2020). Anomaly detection for elderly home care. International Journal of Business Intelligence and Data Mining, 16(4), 418-444. DOI |
| 2020 |
Pratama, M., Pedrycz, W., & Webb, G. I. (2020). An incremental construction of deep neuro fuzzy system for continual learning of nonstationary data streams. IEEE Transactions on Fuzzy Systems, 28(7, article no. 8826232), 1315-1328. DOI |
| 2020 |
Ferdaus, M. M., Anavatti, S. G., Pratama, M., & Garratt, M. A. (2020). Towards the use of fuzzy logic systems in rotary wing unmanned aerial vehicle: a review. Artificial Intelligence Review, 53(1), 257-290. DOI |
| 2020 |
Ferdaus, M. M., Pratama, M., Anavatti, S. G., Garratt, M. A., & Lughofer, E. (2020). PAC: a novel self-adaptive neuro-fuzzy controller for micro aerial vehicles. Information Sciences, 512, 481-505. DOI |
| 2020 |
Das, M., Pratama, M., & Ghosh, S. K. (2020). SARDINE: a self-adaptive recurrent deep incremental network model for spatio-temporal prediction of remote sensing data. ACM Transactions on Spatial Algorithms and Systems, 6(3, article no. 16), 1-26. DOI |
| 2020 |
Cai, Q., Alam, S., Pratama, M., & Wang, Z. (2020). Percolation theories for multipartite networked systems under random failures. Complexity, 2020(article no. 3974503), 1-12. DOI |
| 2020 |
Lughofer, E., Zavoianu, A. C., Pollak, R., Pratama, M., Meyer Heye, P., Zörrer, H., . . . Radauer, T. (2020). On-line anomaly detection with advanced independent component analysis of multi-variate residual signals from causal relation networks. Information Sciences, 537, 425-451. DOI |
| 2020 |
Yang, D., Luan, W., Qiao, L., & Pratama, M. (2020). Modeling and spatio-temporal analysis of city-level carbon emissions based on nighttime light satellite imagery. Applied Energy, 268(114696), 1-14. DOI |
| 2020 |
Ferdaus, M. M., Pratama, M., Anavatti, S. G., Garratt, M. A., & Pan, Y. (2020). Generic evolving self-organizing neuro-fuzzy control of bio-inspired unmanned aerial vehicles. IEEE Transactions on Fuzzy Systems, 28(8, article no. 8718263), 1542-1556. DOI |
| 2020 |
Ashfahani, A., Pratama, M., Lughofer, E., & Ong, Y. S. (2020). DEVDAN: deep evolving denoising autoencoder. Neurocomputing, 390, 297-314. DOI |
| 2019 |
Pan, Y., Yang, C., Pratama, M., & Yu, H. (2019). Composite learning adaptive backstepping control using neural networks with compact supports. International Journal of Adaptive Control and Signal Processing, 33(12), 1726-1738. DOI |
| 2019 |
Za'in, C., Pratama, M., & Pardede, E. (2019). Evolving large-scale data stream analytics based on scalable PANFIS. Knowledge-Based Systems, 166, 186-197. DOI |
| 2019 |
Ferdaus, M. M., Pratama, M., Anavatti, S. G., & Garratt, M. A. (2019). PALM: an incremental construction of hyperplanes for data stream regression. IEEE Transactions on Fuzzy Systems, 27(11, article no. 8613834), 2115-2129. DOI |
| 2019 |
Cai, Q., Pratama, M., & Alam, S. (2019). Interdependency and vulnerability of multipartite networks under target node attacks. Complexity, 2019(2680972), 1-16. DOI |
| 2019 |
Kocer, B. B., Tjahjowidodo, T., Pratama, M., & Seet, G. G. L. (2019). Inspection-while-flying: an autonomous contact-based nondestructive test using UAV-tools. Automation in Construction, 106(102895), 1-15. DOI |
| 2019 |
Ferdaus, M. M., Anavatti, S. G., Garratt, M. A., & Pratama, M. (2019). Development of C-means clustering based adaptive fuzzy controller for a flapping wing micro air vehicle. Journal of Artificial Intelligence and Soft Computing Research, 9(2), 99-109. DOI |
| 2019 |
Ferdaus, M. M., Pratama, M., Anavatti, S. G., & Garratt, M. A. (2019). Online identification of a rotary wing unmanned aerial vehicle from data streams. Applied Soft Computing Journal, 76, 313-325. DOI |
| 2019 |
Pratama, M., Dimla, E., Lai, C. Y., & Lughofer, E. (2019). Metacognitive learning approach for online tool condition monitoring. Journal of Intelligent Manufacturing, 30(4), 1717-1737. DOI |
| 2019 |
Pratama, M., & Wang, D. (2019). Deep stacked stochastic configuration networks for lifelong learning of non-stationary data streams. Information Sciences, 495, 150-174. DOI |
| 2019 |
Gupta, D., Pratama, M., Ma, Z., Li, J., & Prasad, M. (2019). Financial time series forecasting using twin support vector regression. PLoS ONE, 14(3, article no. e0211402), 1-27. DOI |
| 2019 |
Anh, N., Suresh, S., Pratama, M., & Srikanth, N. (2019). Interval prediction of wave energy characteristics using meta-cognitive interval type-2 fuzzy inference system. Knowledge-Based Systems, 169, 28-38. DOI |
| 2019 |
Lughofer, E., Zavoianu, A. C., Pollak, R., Pratama, M., Meyer Heye, P., Zörrer, H., . . . Radauer, T. (2019). Autonomous supervision and optimization of product quality in a multi-stage manufacturing process based on self-adaptive prediction models. Journal of Process Control, 76, 27-45. DOI |
| 2019 |
Samanta, S., Pratama, M., & Sundaram, S. (2019). A novel Spatio-Temporal Fuzzy Inference System (SPATFIS) and its stability analysis. Information Sciences, 505, 84-99. DOI |
| 2018 |
Lughofer, E., Pratama, M., & Skrjanc, I. (2018). Incremental rule splitting in generalized evolving fuzzy systems for autonomous drift compensation. IEEE Transactions on Fuzzy Systems, 26(4, article no. 8039219), 1854-1865. DOI |
| 2018 |
Pratama, M., Pedrycz, W., & Lughofer, E. (2018). Evolving ensemble fuzzy classifier. IEEE Transactions on Fuzzy Systems, 26(5, article no. 8265083), 2552-2567. DOI |
| 2018 |
AL Sharuee, M. T., Liu, F., & Pratama, M. (2018). Sentiment analysis: an automatic contextual analysis and ensemble clustering approach and comparison. Data and Knowledge Engineering, 115, 194-213. DOI |
| 2018 |
Lughofer, E., Pollak, R., Zavoianu, A. C., Pratama, M., Meyer Heye, P., Zörrer, H., . . . Radauer, T. (2018). Self-adaptive evolving forecast models with incremental PLS space updating for on-line prediction of micro-fluidic chip quality. Engineering Applications of Artificial Intelligence, 68, 131-151. DOI |
| 2018 |
Pratama, M., Angelov, P. P., Lughofer, E., & Joo Er, M. (2018). Parsimonious random vector functional link network for data streams. Information Sciences, 430-431, 519-537. DOI |
| 2018 |
Caesarendra, W., Pratama, M., Kosasih, B., Tjahjowidodo, T., & Glowacz, A. (2018). Parsimonious network based on a fuzzy inference system (PANFIS) for time series feature prediction of low speed slew bearing prognosis. Applied Sciences (Switzerland), 8(12, article no. 2656), 1-21. DOI |
| 2018 |
Lughofer, E., & Pratama, M. (2018). Online active learning in data stream regression using uncertainty sampling based on evolving generalized fuzzy models. IEEE Transactions on Fuzzy Systems, 26(1, article no. 7820039), 292-309. DOI |
| 2017 |
Pratama, M., Lughofer, E., Lim, C. P., Rahayu, W., Dillon, T., & Budiyono, A. (2017). pClass+: a novel evolving semi-supervised classifier. International Journal of Fuzzy Systems, 19(3), 863-880. DOI |
| 2017 |
Za'in, C., Pratama, M., Lughofer, E., & Anavatti, S. G. (2017). Evolving type-2 web news mining. Applied Soft Computing Journal, 54, 200-220. DOI |
| 2017 |
Pratama, M., Lughofer, E., Er, M. J., Anavatti, S., & Lim, C. P. (2017). Data driven modelling based on recurrent interval-valued metacognitive scaffolding fuzzy neural network. Neurocomputing, 262, 4-27. DOI |
| 2017 |
Pratama, M., Zhang, G., Er, M. J., & Anavatti, S. (2017). An incremental type-2 meta-cognitive extreme learning machine. IEEE Transactions on Cybernetics, 47(2, article no. 7390064), 339-353. DOI |
| 2017 |
Pratama, M., Lu, J., Lughofer, E., Zhang, G., & Er, M. J. (2017). An incremental learning of concept drifts using evolving type-2 recurrent fuzzy neural networks. IEEE Transactions on Fuzzy Systems, 25(5, article no. 7542529), 1175-1192. DOI |
| 2017 |
Lughofer, E., Kindermann, S., Pratama, M., & Rubio, J. D. J. (2017). Top-down sparse fuzzy regression modeling from data with improved coverage. International Journal of Fuzzy Systems, 19(5), 1645-1658. DOI |
| 2017 |
Zhang, Y., Er, M. J., Zhao, R., & Pratama, M. (2017). Multiview convolutional neural networks for multidocument extractive summarization. IEEE Transactions on Cybernetics, 47(10, article no. 7756666), 3230-3242. DOI |
| 2017 |
Venkatesan, R., Er, M. J., Dave, M., Pratama, M., & Wu, S. (2017). A novel online multi-label classifier for high-speed streaming data applications. Evolving Systems, 8(4), 303-315. DOI |
| 2016 |
Er, M. J., Zhang, Y., Wang, N., & Pratama, M. (2016). Attention pooling-based convolutional neural network for sentence modelling. Information Sciences, 373, 388-403. DOI |
| 2016 |
Pratama, M., Lu, J., Anavatti, S., Lughofer, E., & Lim, C. P. (2016). An incremental meta-cognitive-based scaffolding fuzzy neural network. Neurocomputing, 171, 89-105. DOI |
| 2016 |
Pratama, M., Lu, J., & Zhang, G. (2016). Evolving type-2 fuzzy classifier. IEEE Transactions on Fuzzy Systems, 24(3, article no. 7175005), 574-589. DOI |
| 2016 |
Pratama, M., Lu, J., Lughofer, E., Zhang, G., & Anavatti, S. (2016). Scaffolding type-2 classifier for incremental learning under concept drifts. Neurocomputing, 191, 304-329. DOI |
| 2015 |
Pratama, M., Anavatti, S. G., & Lu, J. (2015). Recurrent classifier based on an incremental metacognitive-based scaffolding algorithm. IEEE Transactions on Fuzzy Systems, 23(6, article no. 7039239), 2048-2066. DOI |
| 2015 |
Lughofer, E., Cernuda, C., Kindermann, S., & Pratama, M. (2015). Generalized smart evolving fuzzy systems. Evolving Systems, 6(4), 269-292. DOI |
| 2015 |
Pratama, M., Anavatti, S. G., Er, M. J., & Lughofer, E. D. (2015). pClass: an effective classifier for streaming examples. IEEE Transactions on Fuzzy Systems, 23(2, article no. 6776566), 369-386. DOI |
Available For Media Comment.