| 2025 |
Masum, M. A., Pratama, D., Ramasamy, S., Liu, L., Habibullah, H., & Kowalczyk, R. (2025). PROL: Rehearsal Free Continual Learning in Streaming Data via Prompt Online Learning. In IEEE/CVF International Conference on Computer Visions (ICCV 2025) (pp. 1-11). US: IEEE/CVF. |
| 2025 |
Ma'sum, M. A., Pratama, M., Liu, L., Habibullah, H., & Kowalczyk, R. (2025). Federated few-shot class-incremental learning. In The Thirteenth International Conference on Learning Representations (ICLR 2025) (pp. 1-30). US: ICLR. |
| 2025 |
Ma'sum, M. A., Pratama, M., Ramasamy, S., Liu, L., Habibullah, H., & Kowalczyk, R. (2025). Vision and language synergy for rehearsal free continual learning. In The Thirteenth International Conference on Learning Representations (ICLR 2025) (pp. 1-31). US: ICLR. |
| 2025 |
Ma'sum, M. A., Pratama, M., Liu, L., Habibullah, H., & Kowalczyk, R. (2025). FEDERATED FEW-SHOT CLASS-INCREMENTAL LEARNING. In 13th International Conference on Learning Representations Iclr 2025 (pp. 101524-101553). Scopus1 |
| 2025 |
Ma'Sum, M. A., Pratama, M., Ramasamy, S., Liu, L., Habibullah, H., & Kowalczyk, R. (2025). VISION AND LANGUAGE SYNERGY FOR REHEARSAL FREE CONTINUAL LEARNING. In 13th International Conference on Learning Representations Iclr 2025 (pp. 15997-16027). |
| 2024 |
Rakaraddi, A., Siew Kei, L., Pratama, M., & de Carvalho, M. (2024). Graph mining under data scarcity. In IJCNN 2024 Conference Proceedings (pp. 7 pages). US: IEEE. DOI |
| 2024 |
Tan, C. S., Gupta, A., Ong, Y. S., Lam, S. K., Pratama, M., & Tan, P. S. (2024). Pareto set representation learning with application to multi-criteria order optimization. In 2024 IEEE International Conference on Industrial Engineering and Engineering Management (IEEM) (pp. 947-951). US: IEEE. DOI |
| 2024 |
Ma'sum, M. A., Pratama, M., Ramasamy, S., Liu, L., Habibullah, H., & Kowalczyk, R. (2024). PIP: prototypes-injected prompt for Federated Class Incremental Learning. In CIKM ’24 Proceedings of the 33rd ACM International Conference on Information and Knowledge Management (pp. 1670-1679). US: Association for Computing Machinery. DOI Scopus2 |
| 2024 |
de Carvalho, M., Pratama, M., Zhang, J., Haoyan, C., & Yapp, E. (2024). Towards cross-domain continual learning. In Proceedings: 2024 IEEE 40th International Conference on Data Engineering (ICDE) (pp. 1131-1142). US: IEEE. DOI Scopus1 |
| 2023 |
Sarkar, M. D. R., Anavatti, S., Dam, T., Pratama, M., & Kindhi, B. A. (2023). Enhancing wind power forecast precision via multi-head attention transformer: an investigation on single-step and multi-step forecasting. In Proceedings of the International Joint Conference on Neural Networks (IJCNN) Vol. 2023-June (pp. 1-8). US: IEEE. DOI Scopus12 WoS7 |
| 2023 |
De Carvalho, M., Pratama, M., Zhang, J., & Sun, Y. (2023). Class-incremental learning via knowledge amalgamatio. In European Conference on Machine Learning and Principles and Practice of Knowledge Discovery in Databases Vol. 13715 (pp. 36-50). Switzerland: Springer. DOI Scopus7 WoS4 |
| 2023 |
Dam, T., Pratama, M., Ferdaus, M. D. M., Anavatti, S., & Abbas, H. (2023). Scalable adversarial online continual learning. In European Conference on Machine Learning and Principles and Practice of Knowledge Discovery in Databases Vol. 13715 (pp. 373-389). Switzerland: Springer. DOI |
| 2022 |
Aradya, A. M. S., Sharma, G., Pratama, M., & Sundaram, S. (2022). Adaptive Latent Transformation (ALT) for the classification of resting state - fMRI. In Proceedings of the 2022 IEEE Symposium Series on Computational Intelligence, SSCI 2022 (pp. 206-210). US: IEEE. DOI |
| 2022 |
Dam, T., Ferdaus, M. D. M., Pratama, M., Anavatti, S., Jayavelu, S., & Abbas, H. (2022). Latent preserving generative adversarial network for imbalance classification. In International Conference on Image Processing (pp. 3712-3716). US: IEEE. DOI Scopus8 WoS6 |
| 2022 |
Rakaraddi, A., Lam, S. K., Pratama, M., & De Carvalho, M. (2022). Reinforced continual learning for graphs. In CIKM '22: Proceedings of the 31st ACM International Conference on Information & Knowledge Management (pp. 1666-1674). US: Association for Computing Machinery. DOI Scopus24 WoS15 |
| 2022 |
Sakti, W. W., Anam, K., Pratama, M., Bukhori, S., Hanggara, F. S., & Liswanto, B. (2022). Brain-Computer Interface based on Neural Network with Dynamically Evolved for Hand Movement Classification. In 2022 Fortei International Conference on Electrical Engineering Fortei Icee 2022 Proceeding (pp. 72-75). IEEE. DOI Scopus1 |
| 2022 |
Hirzi, N. M., Ma'sum, M. A., Pratama, M., & Jatmiko, W. (2022). Large-scale 3D point cloud semantic segmentation with 3D U-Net ASPP sparse CNN. In IWBIS 2022 - 7th International Workshop on Big Data and Information Security, Proceedings (pp. 59-64). IEEE: IEEE. DOI Scopus1 |
| 2021 |
Kocer, B. B., Hady, M. A., Kandath, H., Pratama, M., & Kovac, M. (2021). Deep neuromorphic controller with dynamic topology for aerial robots. In Proceedings - IEEE International Conference on Robotics and Automation Vol. 2021-May (pp. 110-116). US: I E E E Computer Society. DOI Scopus11 WoS8 |
| 2021 |
Abka, A. F., Pratama, M., & Jatmiko, W. (2021). Cross-lingual summarization: English - Bahasa Indonesia. In Proceedings - IWBIS 2021: 6th International Workshop on Big Data and Information Security (pp. 53-58). US: Institute of Electrical and Electronics Engineers. DOI Scopus1 |
| 2021 |
Gates, W., Jati, G., Intan P, R. D., Pratama, M., & Jatmiko, W. (2021). A modest system of feature-based stereo visual odometry. In Proceedings - IWBIS 2021: 6th International Workshop on Big Data and Information Security (pp. 47-52). US: IEEE. DOI |
| 2021 |
Ashfahani, A., Pratama, M., Lughofer, E., & Yee, E. Y. K. (2021). Autonomous deep quality monitoring in streaming environments. In 2021 International Joint Conference on Neural Networks(IJCNN) Proceedings Vol. 2021-July (pp. 1-8). US: Institute of Electrical and Electronics Engineers. DOI Scopus3 WoS2 |
| 2021 |
Rakaraddi, A., & Pratama, M. (2021). Unsupervised learning for identifying high eigenvector centrality nodes: a graph neural network approach. In IEEE BigData 2021 Program Schedule (pp. 4945-4954). US: IEEE. DOI Scopus10 WoS8 |
| 2020 |
Aradhya, A. M. S., Sundaram, S., & Pratama, M. (2020). Metaheuristic Spatial Transformation (MST) for accurate detection of Attention Deficit Hyperactivity Disorder (ADHD) using rs-fMRI. In R. Barbieri (Ed.), Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS Vol. 2020-July (pp. 2829-2832). US: Institute of Electrical and Electronics Engineers. DOI Scopus19 WoS12 |
| 2020 |
Anam, K., Bukhori, S., Hanggara, F. S., & Pratama, M. (2020). Subject-independent classification on brain-computer interface using autonomous deep learning for finger movement recognition. In R. Barbieri (Ed.), Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS Vol. 2020-July (pp. 447-450). US: Institute of Electrical and Electronics Engineers. DOI Scopus9 WoS9 |
| 2020 |
Za'in, C., Ashfahani, A., Pratama, M., Lughofer, E., & Pardede, E. (2020). Scalable teacher-forcing networks under spark environments for large-scale streaming problems. In G. Castellano, C. Castiello, & C. Mencar (Eds.), IEEE Conference on Evolving and Adaptive Intelligent Systems Vol. 2020-May (pp. 1-8). US: Institute of Electrical and Electronics Engineers. DOI Scopus3 WoS3 |
| 2020 |
Wei, S., Shen, H., Li, Q., Pratama, M., Shunmei, M., Long, H., & Xia, Y. (2020). PSVM: quantitative analysis method of intelligent system risk in independent host environment. In Lecture Notes of the Institute for Computer Sciences, Social-Informatics and Telecommunications Engineering, LNICST Vol. 322 LNICST (pp. 544-552). Germany: Institute for Computer Sciences Social Informatics and Telecommunications Engineering. DOI Scopus1 |
| 2020 |
Lughofer, E., & Pratama, M. (2020). Online sequential ensembling of fuzzy systems. In G. Castellano, C. Castiello, & C. Mencar (Eds.), IEEE Conference on Evolving and Adaptive Intelligent Systems Vol. 2020-May (pp. 1-10). US: Institute of Electrical and Electronics Engineers. DOI Scopus2 |
| 2020 |
Das, M., Pratama, M., & Tjahjowidodo, T. (2020). A self-evolving mutually-operative recurrent network-based model for online tool condition monitoring in delay scenario. In R. Gupta, Y. Liu, J. Tang, & B. Prakash (Eds.), Proceedings of the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (pp. 2775-2783). US: Association for Computing Machinery. DOI Scopus9 WoS8 |
| 2020 |
Das, M., Pratama, M., Zhang, J., & Ong, Y. S. (2020). A skip-connected evolving recurrent neural network for data stream classification under label latency scenario. In AAAI 2020 - 34th AAAI Conference on Artificial Intelligence Vol. 34 (pp. 3717-3724). US: AAAI Press. DOI Scopus15 WoS12 |
| 2020 |
Samanta, S., Pratama, M., Sundaram, S., & Srikanth, N. (2020). A dual network solution (DNS) for lag-free time series forecasting. In Proceedings of the International Joint Conference on Neural Networks (pp. 1-8). US: Institute of Electrical and Electronics Engineers. DOI Scopus8 WoS5 |
| 2019 |
Pratama, M., Za'in, C., Ashfahani, A., Ong, Y. S., & Ding, W. (2019). Automatic construction of multi-layer perceptron network from streaming examples. In International Conference on Information and Knowledge Management Proceedings (pp. 1171-1180). PEOPLES R CHINA, Beijing: ASSOC COMPUTING MACHINERY. DOI Scopus52 WoS44 |
| 2019 |
Das, M., Pratama, M., Ashfahani, A., & Samanta, S. (2019). FERNN: a fast and evolving recurrent neural network model for streaming data classification. In D. Wang, & K. Doya (Eds.), Proceedings of the International Joint Conference on Neural Networks Vol. 2019-July (pp. 2-8). US: Institute of Electrical and Electronics Engineers. DOI Scopus11 WoS8 |
| 2019 |
Kocer, B. B., Tiryaki, M. E., Pratama, M., Tjahjowidodo, T., & Seet, G. G. L. (2019). Aerial robot control in close proximity to ceiling: a force estimation-based nonlinear MPC. In IEEE International Conference on Intelligent Robots and Systems (pp. 2813-2819). US: Institute of Electrical and Electronics Engineers. DOI Scopus21 WoS17 |
| 2019 |
Pratama, M., De Carvalho, M., Xie, R., Lughofer, E., & Lu, J. (2019). ATL: autonomous knowledge transfer from many streaming processes. In CIKM '19: Proceedings of the 28th ACM International Conference on Information and Knowledge Management (pp. 269-278). US: Association for Computing Machinery. DOI Scopus17 WoS23 |
| 2019 |
Za'in, C., Pratama, M., Ashfahani, A., Pardede, E., & Sheng, H. (2019). Big data analytic based on scalable PANFIS for RFID localization. In L. O'Conner (Ed.), Proceedings - 2018 IEEE International Conference on Systems, Man, and Cybernetics, SMC 2018 (pp. 1687-1692). US: Institute of Electrical and Electronics Engineers. DOI Scopus2 WoS1 |
| 2019 |
Ashfahani, A., & Pratama, M. (2019). Autonomous deep learning: continual learning approach for dynamic environments. In 19th SIAM International Conference on Data Mining, SDM 2019 (pp. 666-674). US: Society for Industrial and Applied Mathematics. DOI Scopus84 WoS59 |
| 2019 |
Pratama, M., Za'in, C., Ashfahani, A., Ong, Y. S., & Ding, W. (2019). Automatic construction of multi-layer perceptron network from streaming examples. In CIKM ’19 Proceedings of the 28th ACM International Conference on Information & Knowledge Management (pp. 1171-1180). US: Association for Computing Machinery. DOI |
| 2019 |
Das, M., Pratama, M., Savitri, S., & Zhang, J. (2019). MUSE-RNN: a multilayer self-evolving recurrent neural network for data stream classification. In J. Wang, K. Shim, & X. Wu (Eds.), Proceedings - IEEE International Conference on Data Mining, ICDM Vol. 2019-November (pp. 110-119). US: IEEE. DOI Scopus28 WoS22 |
| 2019 |
Carvalho, M., & Pratama, M. (2019). Improving shallow neural network by compressing deep neural network. In S. S (Ed.), Proceedings of the 2018 IEEE Symposium Series on Computational Intelligence, SSCI 2018 (pp. 1382-1387). US: Institute of Electrical and Electronics Engineers. DOI Scopus1 |
| 2019 |
Al Mahasneh, A. J., Anavatti, S. G., Garratt, M. A., & Pratama, M. (2019). Evolving general regression neural networks using limited incremental evolution for data-driven modeling of non-linear dynamic systems. In S. Sundaram (Ed.), Proceedings of the 2018 IEEE Symposium Series on Computational Intelligence, SSCI 2018 (pp. 335-341). US: Institute of Electrical and Electronics Engineers. DOI Scopus8 WoS7 |
| 2019 |
Lughofer, E., Pratama, M., Eitzinger, C., & Radauer, T. (2019). Dynamic anomaly detection based on recursive independent component analysis of multi-variate residual signals. In P. Fuster-Parra, & O. V. Sierra (Eds.), 33rd Annual European Simulation and Modelling Conference 2019, ESM 2019 (pp. 105-113). Belgium: EUROSIS. |
| 2019 |
Ferdaus, M. M., Anavatti, S. G., Al Mahasneh, A. J., Pratama, M., & Garratt, M. A. (2019). Development of hyperplane-based adaptive T-S fuzzy controller for micro aerial robots. In Proceedings - 2019 IEEE International Conference on Industry 4.0, Artificial Intelligence, and Communications Technology, IAICT 2019 (pp. 50-56). US: Institute of Electrical and Electronics Engineers. DOI Scopus2 WoS2 |
| 2019 |
Huang, S., Ashfahani, A., & Pratama, M. (2019). Wireless indoor positioning using online machine learning. In M. Wani (Ed.), Proceedings - 18th IEEE International Conference on Machine Learning and Applications, ICMLA 2019 (pp. 1885-1890). US: Institute of Electrical and Electronics Engineers. DOI Scopus1 |
| 2019 |
Pratama, M., Ashfahani, A., & Hady, A. (2019). Weakly supervised deep learning approach in streaming environments. In C. Baru (Ed.), Proceedings 2019 IEEE International Conference on Big Data, Big Data 2019 (pp. 1195-1202). US: Institute of Electrical and Electronics Engineers. DOI Scopus20 WoS18 |
| 2019 |
Kocer, B. B., Kumtepeli, V., Tjahjowidodo, T., Pratama, M., Tripathi, A., Seet Gim Lee, G., & Wang, Y. (2019). UAV control in close proximities - ceiling effect on battery lifetime. In R. Bilof (Ed.), Proceedings - 2019 2nd International Conference on Intelligent Autonomous Systems, ICoIAS 2019 (pp. 193-197). US: Institute of Electrical and Electronics Engineers. DOI Scopus13 WoS12 |
| 2019 |
Kandath, H., Hady, M. A., Pratama, M., & Feng, N. B. (2019). Robust evolving neuro-fuzzy control of a novel tilt-rotor vertical takeoff and landing aircraft. In IEEE International Conference on Fuzzy Systems Vol. 2019-June (pp. 1-6). US: Institute of Electrical and Electronics Engineers. DOI Scopus4 WoS2 |
| 2019 |
Ferdaus, M. M., Hady, M. A., Pratama, M., Kandath, H., & Anavatti, S. G. (2019). RedPAC: a simple evolving neuro-fuzzy-based intelligent control framework for quadcopter. In IEEE International Conference on Fuzzy Systems Vol. 2019-June (pp. 1-7). US: Institute of Electrical and Electronics Engineers. DOI Scopus4 WoS2 |
| 2019 |
Ferdaus, M. M., Anavatti, S. G., Garratt, M. A., & Pratama, M. (2019). Red-FLC: an adaptive fuzzy logic controller with reduced learning parameters. In 2019 IEEE Symposium Series on Computational Intelligence, SSCI 2019 (pp. 513-518). US: Institute of Electrical and Electronics Engineers. DOI |
| 2019 |
Samanta, S., Hartanto, A., Pratama, M., Sundaram, S., & Srikanth, N. (2019). RIT2FIS: a recurrent interval type 2 fuzzy inference system and its rule base estimation. In D. Wang, & K. Doya (Eds.), Proceedings of the International Joint Conference on Neural Networks Vol. 2019-July (pp. 1-8). US: Institute of Electrical and Electronics Engineers. DOI Scopus3 WoS1 |
| 2019 |
Ferdaus, M. M., Anavatti, S. G., Pratama, M., & Garratt, M. A. (2019). A novel self-organizing neuro-fuzzy based intelligent control system for a AR.Drone quadcopter. In S. Sundaram (Ed.), Proceedings of the 2018 IEEE Symposium Series on Computational Intelligence, SSCI 2018 (pp. 2026-2032). US: Institute of Electrical and Electronics Engineers. DOI Scopus5 WoS4 |
| 2019 |
Ferdaus, M. M., Pratama, M., Anavatti, S. G., & Garratt, M. A. (2019). A generic self-evolving neuro-fuzzy controller based high-performance hexacopter altitude control system. In L. O'Conner (Ed.), Proceedings - 2018 IEEE International Conference on Systems, Man, and Cybernetics, SMC 2018 (pp. 2784-2791). US: Institute of Electrical and Electronics Engineers. DOI Scopus12 WoS13 |
| 2019 |
Aradhya, A. M. S., Joglekar, A., Suresh, S., & Pratama, M. (2019). Deep transformation method for discriminant analysis of multi-channel resting state fMRI. In 33rd AAAI Conference on Artificial Intelligence, AAAI 2019, 31st Innovative Applications of Artificial Intelligence Conference, IAAI 2019 and the 9th AAAI Symposium on Educational Advances in Artificial Intelligence, EAAI 2019 Vol. 33 (pp. 2556-2563). US: IEEE Computer Society. DOI Scopus14 WoS12 |
| 2018 |
Ferdaus, M. M., Anavatti, S. G., Garratt, M. A., & Pratama, M. (2018). Fuzzy clustering based modelling and adaptive controlling of a flapping wing micro air vehicle. In 2017 IEEE Symposium Series on Computational Intelligence, SSCI 2017 - Proceedings Vol. 2018-January (pp. 1-6). US: Institute of Electrical and Electronics Engineers. DOI |
| 2018 |
Prasad, M., Chang, L. C., Gupta, D., Pratama, M., Sundaram, S., & Lin, C. T. (2018). Online video streaming for human tracking based on weighted resampling particle filter. In S. Ozawa, M. Pratama, A. Roy, A. W. Tan, & P. P. Angelov (Eds.), Procedia Computer Science Vol. 144 (pp. 2-12). Netherlands: Elsevier BV. DOI Scopus2 WoS1 |
| 2018 |
Singh, J., Prasad, M., Daraghmi, Y. A., Tiwari, P., Yadav, P., Bharill, N., . . . Saxena, A. (2018). Fuzzy logic hybrid model with semantic filtering approach for pseudo relevance feedback-based query expansion. In 2017 IEEE Symposium Series on Computational Intelligence, SSCI 2017 - Proceedings Vol. 2018-January (pp. 1-7). US: Institute of Electrical and Electronics Engineers. DOI Scopus36 |
| 2018 |
Lughofer, E., Pollak, R., Zavoianu, A. C., Meyer Heye, P., Zorrer, H., Eitzinger, C., . . . Pratama, M. (2018). Evolving time-series based prediction models for quality criteria in a multi-stage production process. In Y. Manolopoulos, L. Iliadis, P. Angelov, & E. Lughofer (Eds.), 2018 IEEE International Conference on Evolving and Adaptive Intelligent Systems, EAIS 2018 (pp. 1-10). US: Institute of Electrical and Electronics Engineers. DOI Scopus5 |
| 2018 |
Ferdaus, M. M., Pratama, M., Anavatti, S. G., & Garratt, M. A. (2018). Evolving neuro-fuzzy system based online identification of a bio-inspired flapping wing micro aerial vehicle. In 2017 IEEE Symposium Series on Computational Intelligence, SSCI 2017 - Proceedings Vol. 2018-January (pp. 1-8). US: Institute of Electrical and Electronics Engineers. DOI |
| 2018 |
Ferdaus, M. M., Anavatti, S. G., Garratt, M. A., & Pratama, M. (2018). Evolving fuzzy inference system based online identification and control of a quadcopter unmanned aerial vehicle. In Proceeding - ICAMIMIA 2017: International Conference on Advanced Mechatronics, Intelligent Manufacture, and Industrial Automation (pp. 223-228). US: Institute of Electrical and Electronics Engineers. DOI Scopus24 WoS4 |
| 2018 |
Huang, S., Mohanty, S., Ashfahani, A., & Pratama, M. (2018). The study on indoor localization for manufacturing execution system. In 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018 (pp. 1863-1867). US: Institute of Electrical and Electronics Engineers. DOI Scopus4 WoS3 |
| 2018 |
Huang, S., Shoaib, S., Ashfahani, A., & Pratama, M. (2018). Similarity measures in development of an indoor localization system. In 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018 (pp. 1420-1425). US: Institute of Electrical and Electronics Engineers. DOI Scopus3 |
| 2018 |
Za'in, C., Pratama, M., Lughofer, E., Ferdaus, M., Cai, Q., & Prasad, M. (2018). Big data analytics based on PANFIS MapReduce. In S. Ozawa, M. Pratama, A. Roy, A. W. Tan, & P. P. Angelov (Eds.), Procedia Computer Science Vol. 144 (pp. 140-152). Netherlands: Elsevier BV. DOI Scopus3 WoS3 |
| 2017 |
Lughofer, E., Pratama, M., & Skrjanc, I. (2017). Incremental rule splitting in generalized evolving fuzzy regression models. In I. Skrjanc, & S. Blazic (Eds.), IEEE Conference on Evolving and Adaptive Intelligent Systems Vol. 2017-May (pp. 1-8). US: Institute of Electrical and Electronics Engineers. DOI Scopus3 WoS2 |
| 2017 |
Ferdaus, M. M., Anavatti, S. G., Garratt, M. A., & Pratama, M. (2017). Fuzzy clustering based nonlinear system identification and controller development of Pixhawk based quadcopter. In 9th International Conference on Advanced Computational Intelligence, ICACI 2017 (pp. 223-230). US: Institute of Electrical and Electronics Engineers. DOI Scopus10 WoS25 |
| 2017 |
Biswas, S., Anavatti, S. G., Garratt, M. A., & Pratama, M. (2017). Simultaneous replanning with vectorized particle swarm optimization algorithm. In 2016 14th International Conference on Control, Automation, Robotics and Vision, ICARCV 2016 (pp. 1-6). US: Institute of Electrical and Electronics Engineers. DOI Scopus8 |
| 2017 |
Pratama, M., Angelov, P. P., Lu, J., Lughofer, E., Seera, M., & Lim, C. P. (2017). A randomized neural network for data streams. In Proceedings of the International Joint Conference on Neural Networks Vol. 2017-May (pp. 3423-3430). US: Institute of Electrical and Electronics Engineers. DOI Scopus9 WoS6 |
| 2017 |
Chou, K. P., Li, D. L., Prasad, M., Pratama, M., Su, S. Y., Lu, H., . . . Lin, W. C. (2017). Robust facial alignment for face recognition. In J. E. Moody, S. J. Hanson, & R. P. Lippmann (Eds.), Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) Vol. 10636 LNCS (pp. 497-504). Germany: Springer. DOI Scopus5 WoS4 |
| 2017 |
Ferdaus, M. M., Anavatti, S. G., Garratt, M. A., & Pratama, M. (2017). Fuzzy Clustering based Modelling and Adaptive Controlling of a Flapping Wing Micro Air Vehicle. In 2017 IEEE SYMPOSIUM SERIES ON COMPUTATIONAL INTELLIGENCE (SSCI) (pp. 1914-1919). HI, Honolulu: IEEE. WoS5 |
| 2017 |
Singh, J., Prasad, M., Daraghmi, Y. A., Tiwari, P., Yadav, P., Bharill, N., . . . Saxena, A. (2017). Fuzzy LogicHybrid Model with Semantic Filtering Approach for Pseudo Relevance Feedback-based Query Expansion. In 2017 IEEE SYMPOSIUM SERIES ON COMPUTATIONAL INTELLIGENCE (SSCI) (pp. 1907-1913). HI, Honolulu: IEEE. WoS3 |
| 2016 |
Er, M. J., Liu, F., Wang, N., Zhang, Y., & Pratama, M. (2016). User-level twitter sentiment analysis with a hybrid approach. In L. Cheng, Q. Liu, & A. Ronzhin (Eds.), Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) Vol. 9719 (pp. 426-433). Germany: Springer. DOI Scopus12 WoS6 |
| 2016 |
Pratama, M., Lughofer, E., Er, M. J., Rahayu, W., & Dillon, T. (2016). Evolving type-2 recurrent fuzzy neural network. In Proceedings of the International Joint Conference on Neural Networks Vol. 2016-October (pp. 1841-1848). US: Institute of Electrical and Electronics Engineers. DOI Scopus11 WoS9 |
| 2016 |
Venkatesan, R., Er, M. J., Wu, S., & Pratama, M. (2016). A novel online real-time classifier for multi-label data streams. In Proceedings of the International Joint Conference on Neural Networks Vol. 2016-October (pp. 1833-1840). US: Institute of Electrical and Electronics Engineers. DOI Scopus15 WoS11 |
| 2016 |
Zhang, Y., Er, M. J., Venkatesan, R., Wang, N., & Pratama, M. (2016). Sentiment classification using comprehensive attention recurrent models. In Proceedings of the International Joint Conference on Neural Networks Vol. 2016-October (pp. 1562-1569). US: Institute of Electrical and Electronics Engineers. DOI Scopus49 WoS22 |
| 2016 |
Zhang, Y., Er, M. J., & Pratama, M. (2016). Extractive document summarization based on convolutional neural networks. In IECON Proceedings (Industrial Electronics Conference) (pp. 918-922). US: Institute of Electrical and Electronics Engineers. DOI Scopus33 WoS19 |
| 2016 |
Anavatti, S. G., Biswas, S., Colvin, J. T., & Pratama, M. (2016). A hybrid algorithm for efficient path planning of autonomous ground vehicles. In 2016 14th International Conference on Control, Automation, Robotics and Vision, ICARCV 2016 (pp. 1-6). US: Institute of Electrical and Electronics Engineers. DOI Scopus5 |
| 2016 |
Pratama, M., Lu, J., & Zhang, G. (2016). A novel meta-cognitive extreme learning machine to learning from data streams. In L. O'Conner (Ed.), Proceedings - 2015 IEEE International Conference on Systems, Man, and Cybernetics, SMC 2015 (pp. 2792-2797). US: Institute of Electrical and Electronics Engineers. DOI Scopus5 WoS3 |
| 2015 |
Pratama, M., Lu, J., & Zhang, G. (2015). An incremental interval type-2 neural fuzzy classifier. In A. Yazici (Ed.), IEEE International Conference on Fuzzy Systems Vol. 2015-November (pp. 1-8). US: Institute of Electrical and Electronics Engineers. DOI Scopus5 WoS10 |
| 2014 |
Pratama, M., Anavatti, S. G., & Lughofer, E. (2014). An incremental classifier from data streams. In A. Likas, K. Blekas, & D. Kalles (Eds.), Lecture Notes in Computer Science Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics Vol. 8445 LNCS (pp. 15-28). GREECE, Ioannina: SPRINGER INTERNATIONAL PUBLISHING AG. DOI Scopus6 WoS5 |
| 2014 |
Pratama, M., Er, M. J., Anavatti, S. G., Lughofer, E., Wang, N., & Arifin, I. (2014). A novel meta-cognitive-based scaffolding classifier to sequential non-stationary classification problems. In IEEE International Conference on Fuzzy Systems (pp. 369-376). PEOPLES R CHINA, Beijing: IEEE. DOI Scopus30 WoS10 |
| 2014 |
Pratama, M., Lu, J., Anavatti, S. G., & Iglesias, J. A. (2014). A recurrent meta-cognitive-based Scaffolding classifier from data streams. In IEEE Ssci 2014 2014 IEEE Symposium Series on Computational Intelligence Eals 2014 2014 IEEE Symposium on Evolving and Autonomous Learning Systems Proceedings (pp. 132-139). FL, Orlando: IEEE. DOI Scopus1 |
| 2013 |
Pratama, M., Anavatti, S. G., Garratt, M., & Lughofer, E. (2013). Online identification of complex multi-input-multi-output system based on generic evolving neuro-fuzzy inference system. In Proceedings of the 2013 IEEE Conference on Evolving and Adaptive Intelligent Systems Eais 2013 2013 IEEE Symposium Series on Computational Intelligence Ssci 2013 (pp. 106-113). SINGAPORE, Singapore: IEEE. DOI Scopus7 WoS4 |
| 2013 |
Pratama, M., Anavatti, S. G., & Lughofer, E. (2013). Evolving fuzzy rule-based classifier based on GENEFIS. In IEEE International Conference on Fuzzy Systems (pp. 8 pages). INDIA, Hyderabad: IEEE. DOI Scopus23 WoS8 |
| 2013 |
Lughofer, E., Cernuda, C., & Pratama, M. (2013). Generalized flexible fuzzy inference systems. In M. A. Wani, G. Tecuci, M. Boicu, M. Kubat, T. M. Khoshgoftaar, & N. Seliya (Eds.), Proceedings 2013 12th International Conference on Machine Learning and Applications Icmla 2013 Vol. 2 (pp. 1-7). FL, Miami: IEEE. DOI Scopus5 WoS3 |
| 2011 |
Pratama, M., Er, M. J., Li, X., San, L., Richard, J. O., Zhai, L. Y., . . . Arifin, I. (2011). Genetic Dynamic Fuzzy Neural Network (GDFNN) for nonlinear system identification. In D. Liu, H. Zhang, M. Polycarpou, C. Alippi, & H. He (Eds.), Lecture Notes in Computer Science Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics Vol. 6676 LNCS (pp. 525-534). PEOPLES R CHINA, Guilin: SPRINGER-VERLAG BERLIN. DOI Scopus3 WoS4 |
| 2011 |
Pratama, M., Er, M. J., Li, X., Gan, O. P., Oentaryo, R. J., Linn, S., . . . Arifin, I. (2011). Tool wear prediction using evolutionary Dynamic Fuzzy Neural (EDFNN) Network. In IECON Proceedings Industrial Electronics Conference (pp. 4739-4744). AUSTRALIA, Melbourne: IEEE. DOI Scopus6 WoS3 |
Available For Media Comment.