2023 |
Ngo, H. T. T., Cavagnaro, T. R., Jewell, N., Brien, C. J., Berger, B., & Watts-Williams, S. J. (2023). High-throughput shoot phenotyping reveals temporal growth responses to nitrogen and inorganic and organic phosphorus sources in tomato. AoB Plants, 15(2), plad011-1-plad011-11. DOI |
2023 |
Bicharanloo, B., Salomon, M. J., Cavagnaro, T. R., Keitel, C., Brien, C., Jewell, N., . . . Dijkstra, F. A. (2023). Arbuscular mycorrhizae are important for phosphorus uptake and root biomass, and exudation for nitrogen uptake in tomato plants grown under variable water conditions. Plant and Soil, 18 pages. DOI |
2022 |
Watts-Fawkes, S., Gill, A. R., Jewell, N., Brien, C. J., Berger, B., Tran, B. T. T., . . . Cavagnaro, T. R. (2022). Enhancement of sorghum grain yield and nutrition: A role for arbuscular mycorrhizal fungi regardless of soil phosphorus availability. Plants, People, Planet, 4(2), 143-156. DOI Scopus7 WoS7 |
2022 |
Dunlevy, J. D., Blackmore, D. H., Betts, A., Jewell, N., Brien, C., Berger, B., . . . Walker, A. R. (2022). Investigating the effects of elevated temperature on salinity tolerance traits in grapevine rootstocks using high‐throughput phenotyping. Australian Journal of Grape and Wine Research, 28(2), 276-291. DOI Scopus3 WoS2 |
2022 |
Tanner, F., Tonn, S., de Wit, J., Van den Ackerveken, G., Berger, B., & Plett, D. (2022). Sensor-based phenotyping of above-ground plant-pathogen interactions.. Plant methods, 18(1), 18 pages. DOI Scopus8 WoS7 Europe PMC3 |
2022 |
Asif, M. A., Garcia, M., Tilbrook, J., Brien, C., Dowling, K., Berger, B., . . . Pearson, A. S. (2022). Corrigendum to: Identification of salt tolerance QTL in a wheat RIL mapping population using destructive and non-destructive phenotyping. Functional Plant Biology, 49(7), 672. DOI Scopus2 Europe PMC1 |
2022 |
Ball, K. R., Liu, H., Brien, C., Berger, B., Power, S. A., & Pendall, E. (2022). Hyperspectral imaging predicts yield and nitrogen content in grass-legume polycultures. PRECISION AGRICULTURE, 23(6), 2270-2288. DOI Scopus2 WoS2 |
2022 |
Lethin, J., Byrt, C., Berger, B., Brien, C., Jewell, N., Roy, S., . . . Aronsson, H. (2022). Improved Salinity Tolerance-Associated Variables Observed in EMS Mutagenized Wheat Lines. International Journal of Molecular Sciences, 23(19), 1-20. DOI Scopus1 WoS1 Europe PMC1 |
2022 |
Langridge, P., Alaux, M., Almeida, N. F., Ammar, K., Baum, M., Bekkaoui, F., . . . Zhang, X. (2022). Meeting the Challenges Facing Wheat Production: The Strategic Research Agenda of the Global Wheat Initiative. Agronomy, 12(11), 2767. DOI Scopus3 WoS2 |
2021 |
Ball, K. R., Woodin, S. J., Power, S. A., Brien, C., Berger, B., Smith, P., & Pendall, E. (2021). Integrating Ecological Stoichiometry to Understand Nutrient Limitation and Potential for Competition in Mixed Pasture Assemblages. Journal of Soil Science and Plant Nutrition, 21(3), 2489-2500. DOI Scopus2 WoS2 |
2021 |
Borjigin, C., Schilling, R. K., Jewell, N., Brien, C., Sanchez-Ferrero, J. C., Eckermann, P., . . . Roy, S. (2021). Identifying the genetic control of salinity tolerance in the bread wheat landrace Mocho de Espiga Branca. Functional Plant Biology, 48(11), 1148-1160. DOI Scopus7 WoS5 Europe PMC4 |
2021 |
Salomon, M. J., Watts-Williams, S. J., McLaughlin, M. J., Brien, C. J., Jewell, N., Berger, B., & Cavagnaro, T. R. (2021). Evaluation of commercial composts and potting mixes and their ability to support arbuscular mycorrhizal fungi with maize (Zea mays) as host plant.. Waste Manag, 134, 187-196. DOI Scopus5 WoS4 Europe PMC1 |
2021 |
Matros, A., Houston, K., Tucker, M. R., Schreiber, M., Berger, B., Aubert, M. K., . . . Burton, R. A. (2021). Genome-wide association study reveals the genetic complexity of fructan accumulation patterns in barley grain. Journal of Experimental Botany, 72(7), 2383-2402. DOI Scopus10 WoS8 Europe PMC7 |
2021 |
Tran, B. T. T., Cavagnaro, T. R., Jewell, N., Brien, C., Berger, B., & Watts‐Williams, S. J. (2021). High‐throughput phenotyping reveals growth of Medicago truncatula is positively affected by arbuscular mycorrhizal fungi even at high soil phosphorus availability. PLANTS, PEOPLE, PLANET, 3(5), 600-613. DOI Scopus7 WoS8 |
2021 |
Asif, M. A., Garcia, M., Tilbrook, J., Brien, C., Dowling, K., Berger, B., . . . Pearson, A. S. (2021). Identification of salt tolerance QTL in a wheat RIL mapping population using destructive and non-destructive phenotyping. Functional Plant Biology, 48(2), 131-140. DOI Scopus17 WoS13 Europe PMC9 |
2020 |
Konate, M., Wilkinson, M. J., Taylor, J., Scott, E. S., Berger, B., & Rodriguez Lopez, C. M. (2020). Greenhouse spatial effects detected in the barley (Hordeum vulgare L.) Epigenome underlie stochasticity of DNA methylation. Frontiers in Plant Science, 11, 553907-1-553907-15. DOI Scopus3 WoS3 Europe PMC2 |
2020 |
Ball, K. R., Power, S. A., Brien, C., Woodin, S., Jewell, N., Berger, B., & Pendall, E. (2020). High-throughput, image-based phenotyping reveals nutrient-dependent growth facilitation in a grass-legume mixture.. PLoS One, 15(10), 1-18. DOI Scopus5 WoS4 |
2020 |
Konate, M., Wilkinson, M., Taylor, J., Scott, E., Berger, B., & Rodriguez Lopez, C. M. (2020). Greenhouse spatial effects detected in the barley (<i>Hordeum vulgare</i>L.) epigenome underlie stochasticity of DNA methylation. DOI |
2020 |
Broad, R. C., Bonneau, J. P., Beasley, J. T., Roden, S., Sadowski, P., Jewell, N., . . . Johnson, A. A. T. (2020). Effect of Rice GDP-L-Galactose Phosphorylase Constitutive Overexpression on Ascorbate Concentration, Stress Tolerance, and Iron Bioavailability in Rice. Frontiers in Plant Science, 11, 1-13. DOI Scopus10 WoS11 Europe PMC8 |
2020 |
Brien, C., Jewell, N., Watts-Williams, S. J., Garnett, T., & Berger, B. (2020). Smoothing and extraction of traits in the growth analysis of noninvasive phenotypic data.. Plant Methods, 16(1), 1-21. DOI Scopus14 WoS15 Europe PMC6 |
2020 |
Matros, A., Houston, K., Tucker, M., Schreiber, M., Berger, B., Aubert, M., . . . Burton, R. (2020). GWAS reveals the genetic complexity of fructan accumulation patterns in barley grain. DOI Europe PMC1 |
2020 |
Borjigin, C., Schilling, R. K., Bose, J., Hrmova, M., Qiu, J., Wege, S., . . . Roy, S. J. (2020). A single nucleotide substitution in TaHKT1;5-D controls shoot Na⁺ accumulation in bread wheat. Plant, Cell and Environment, 43(9), 2158-2171. DOI Scopus11 WoS13 Europe PMC8 |
2020 |
Liu, H., Bruning, B., Garnett, T., & Berger, B. (2020). Hyperspectral imaging and 3D technologies for plant phenotyping: From satellite to close-range sensing. Computers and Electronics in Agriculture, 175, 13 pages. DOI Scopus43 WoS39 |
2020 |
Bruning, B., Berger, B., Lewis, M., Liu, H., & Garnett, T. (2020). Approaches, applications, and future directions for hyperspectral vegetation studies: An emphasis on yield‐limiting factors in wheat. The Plant Phenome Journal, 3(1), 22 pages. DOI Scopus21 |
2020 |
Saade, S., Brien, C., Pailles, Y., Berger, B., Shahid, M., Russell, J., . . . Tester, M. (2020). Dissecting new genetic components of salinity tolerance in two-row spring barley at the vegetative and reproductive stages. PloS one, 15(7), e0236037-1-e0236037-19. DOI Scopus17 WoS15 Europe PMC8 |
2020 |
Liu, H., Bruning, B., Garnett, T., & Berger, B. (2020). The performances of hyperspectral sensors for proximal sensing of nitrogen levels in wheat. Sensors (Switzerland), 20(16), 1-21. DOI Scopus11 WoS10 Europe PMC3 |
2019 |
Bruning, B., Liu, H., Brien, C., Berger, B., Lewis, M., & Garnett, T. (2019). The Development of Hyperspectral Distribution Maps to Predict the Content and Distribution of Nitrogen and Water in Wheat (Triticum aestivum).. Frontiers in plant science, 10, 1380. DOI Scopus42 WoS33 Europe PMC9 |
2019 |
Pham, A. T., Maurer, A., Pillen, K., Brien, C., Dowling, K., Berger, B., . . . March, T. J. (2019). Genome-wide association of barley plant growth under drought stress using a nested association mapping population. BMC Plant Biology, 19(1), 134-1-134-16. DOI Scopus45 WoS40 Europe PMC20 |
2019 |
Riley, R., Cavagnaro, T., Brien, C., Smith, F. A., Smith, S., Berger, B., . . . Powell, J. (2019). Resource allocation to growth or luxury consumption drives mycorrhizal responses. Ecology Letters, 22(11), 1757-1766. DOI Scopus22 WoS23 Europe PMC3 |
2019 |
Watts-Fawkes, S. J., Jewell, N., Brien, C., Berger, B., Garnett, T., & Cavagnaro, T. R. (2019). Using High-Throughput Phenotyping to Explore Growth Responses to Mycorrhizal Fungi and Zinc in Three Plant Species. Plant Phenomics, 2019, 5893953-1-5893953-12. DOI Scopus17 WoS16 Europe PMC1 |
2019 |
Ward, B., Brien, C., Oakey, H., Pearson, A., Negrão, S., Schilling, R. K., . . . Van Den Hengel, A. (2019). High‐throughput 3D modelling to dissect the genetic control of leaf elongation in barley (Hordeum vulgare). The Plant Journal, 98(3), 555-570. DOI Scopus11 WoS10 Europe PMC8 |
2018 |
Asif, M. A., Schilling, R. K., Tilbrook, J., Brien, C., Dowling, K., Rabie, H., . . . Pearson, A. S. (2018). Mapping of novel salt tolerance QTL in an Excalibur x Kukri doubled haploid wheat population. Theoretical and Applied Genetics, 131(10), 2179-2196. DOI Scopus52 WoS48 Europe PMC23 |
2018 |
Konate, M., Wilkinson, M., Mayne, B., Pederson, S., Scott, E., Berger, B., & Rodriguez Lopez, C. (2018). Salt Stress Induces Non-CG Methylation in Coding Regions of Barley Seedlings (Hordeum vulgare). Epigenomes, 2(2), 12. DOI Scopus17 |
2018 |
Yichie, Y., Brien, C., Berger, B., Roberts, T., & Atwell, B. (2018). Salinity tolerance in Australian wild Oryza species varies widely and matches that observed in O. sativa. Rice, 11(1), 14 pages. DOI Scopus31 WoS30 Europe PMC13 |
2018 |
Konaté, M., Wilkinson, M. J., Mayne, B. T., Pederson, S. M., Scott, E. S., Berger, B., & Rodriguez Lopez, C. M. (2018). Salt Stress Induces Non-CG Methylation in Coding Regions of Barley Seedlings (Hordeum vulgare). Epigenomes, 2(2), 12. DOI |
2017 |
Meng, R., Saade, S., Kurtek, S., Berger, B., Brien, C., Pillen, K., . . . Sun, Y. (2017). Growth curve registration for evaluating salinity tolerance in barley. Plant Methods, 13(1), 18-1-18-9. DOI Scopus25 WoS23 Europe PMC10 |
2017 |
Atieno, J., Li, Y., Langridge, P., Dowling, K., Brien, C., Berger, B., . . . Sutton, T. (2017). Exploring genetic variation for salinity tolerance in chickpea using image-based phenotyping. Scientific Reports, 7(1), 11 pages. DOI Scopus73 WoS61 Europe PMC27 |
2017 |
Campbell, M., Du, Q., Liu, K., Brien, C., Berger, B., Zhang, C., & Walia, H. (2017). A comprehensive image-based phenomic analysis reveals the complex genetic architecture of shoot growth dynamics in rice (Oryza sativa). Plant Genome, 10(2), 1-14. DOI Scopus32 WoS27 Europe PMC20 |
2017 |
Tilbrook, J., Schilling, R., Berger, B., Garcia, A., Trittermann, C., Coventry, S., . . . Roy, S. (2017). Variation in shoot tolerance mechanisms not related to ion toxicity in barley. Functional Plant Biology, 44(12), 1194-1206. DOI Scopus20 WoS21 Europe PMC2 |
2017 |
Qiongyan, L., Cai, J., Berger, B., Okamoto, M., & Miklavcic, S. (2017). Detecting spikes of wheat plants using neural networks with Laws texture energy. Plant Methods, 13(1), 83-1-83-13. DOI Scopus53 WoS30 Europe PMC17 |
2016 |
Al-Tamimi, N., Brien, C., Oakey, H., Berger, B., Saade, S., Ho, Y., . . . Negrão, S. (2016). Salinity tolerance loci revealed in rice using high-throughput non-invasive phenotyping. Nature Communications, 7(1), 13342-1-13342-11. DOI Scopus152 WoS137 Europe PMC82 |
2015 |
Neilson, E., Edwards, A., Blomstedt, C., Berger, B., Møller, B., & Gleadow, R. (2015). Utilization of a high-throughput shoot imaging system to examine the dynamic phenotypic responses of a C₄ cereal crop plant to nitrogen and water deficiency over time. Journal of Experimental Botany, 66(7), 1817-1832. DOI Scopus138 WoS121 Europe PMC72 |
2015 |
Schmöckel, S., Garcia, A., Berger, B., Tester, M., Webb, A., & Roy, S. (2015). Different NaCl-induced calcium signatures in the arabidopsis thaliana ecotypes Col-0 and C24. PLoS One, 10(2), e0117564-1-e0117564-9. DOI Scopus14 WoS9 Europe PMC7 |
2015 |
Campbell, M., Knecht, A., Berger, B., Brien, C., Wang, D., & Walia, H. (2015). Integrating image-based phenomics and association analysis to dissect the genetic architecture of temporal salinity responses in rice. Plant Physiology, 168(4), 1476-1489. DOI Scopus118 WoS101 Europe PMC67 |
2015 |
Parent, B., Shahinnia, F., Maphosa, L., Berger, B., Rabie, H., Chalmers, K., . . . Fleury, D. (2015). Combining field performance with controlled environment plant imaging to identify the genetic control of growth and transpiration underlying yield response to water-deficit stress in wheat. Journal of Experimental Botany, 66(18), 5481-5492. DOI Scopus61 WoS49 Europe PMC25 |
2015 |
Takahashi, F., Tilbrook, J., Trittermann, C., Berger, B., Roy, S., Seki, M., . . . Tester, M. (2015). Comparison of leaf sheath transcriptome profiles with physiological traits of bread wheat cultivars under salinity stress. PLoS One, 10(8), e0133322-1-e0133322-23. DOI Scopus33 WoS31 Europe PMC13 |
2014 |
Hairmansis, A., Berger, B., Tester, M., & Roy, S. (2014). Image-based phenotyping for non-destructive screening of different salinity tolerance traits in rice. Rice, 7(1), 16-1-16-10. DOI Scopus124 WoS101 Europe PMC57 |
2014 |
Schilling, R., Marschner, P., Shavrukov, Y., Berger, B., Tester, M., Roy, S., & Plett, D. (2014). Expression of the Arabidopsis vacuolar H⁺-pyrophosphatase gene (AVP1) improves the shoot biomass of transgenic barley and increases grain yield in a saline field. Plant Biotechnology Journal, 12(3), 378-386. DOI Scopus121 WoS105 Europe PMC61 |
2014 |
Honsdorf, N., March, T., Berger, B., Tester, M., & Pillen, K. (2014). High-throughput phenotyping to detect drought tolerance QTL in wild barley introgression lines. PLoS One, 9(5), e97047-1-e97047-13. DOI Scopus187 WoS154 Europe PMC91 |
2014 |
Frerigmann, H., Berger, B., & Gigolashvili, T. (2014). bHLH05 is an interaction partner of MYB51 and a novel regulator of glucosinolate biosynthesis in arabidopsis. Plant Physiology, 166(1), 349-369. DOI Scopus77 WoS74 Europe PMC49 |
2013 |
Hayes, J., Pallotta, M., Baumann, U., Berger, B., Langridge, P., & Sutton, T. (2013). Germanium as a tool to dissect boron toxicity effects in barley and wheat. Functional Plant Biology, 40(6), 618-627. DOI Scopus20 WoS15 Europe PMC2 |
2013 |
Brien, C., Berger, B., Rabie, H., & Tester, M. (2013). Accounting for variation in designing greenhouse experiments with special reference to greenhouses containing plants on conveyor systems. Plant Methods, 9(1), 1-22. DOI Scopus39 WoS37 Europe PMC18 |
2011 |
golzarian, M., Frick, R., Rajendran, K., Berger, B., Roy, S., Tester, M., & Lun, D. (2011). Accurate inference of shoot biomass from high-throughput images of cereal plants. Plant Methods, 7(2), 1-11. DOI Scopus235 WoS203 Europe PMC98 |
2010 |
Berger, B., Parent, B., & Tester, M. (2010). High-throughput shoot imaging to study drought responses. Journal of Experimental Botany, 61(13), 3519-3528. DOI Scopus257 WoS203 Europe PMC97 |
2009 |
Gigolashvili, T., Berger, B., & Flugge, U. (2009). Specific and coordinated control of indolic and aliphatic glucosinolate biosynthesis by R2R3-MYB transcription factors in Arabidopsis thaliana. Phytochemistry Reviews: fundamentals and perspectives of natural products research, 8(1), 3-13. DOI Scopus109 WoS102 |
2008 |
Roy, S., Gilliham, M., Berger, B., Essah, P., Cheffings, C., Miller, A., . . . Tester, M. (2008). Investigating glutamate receptor-like gene co-expression in Arabidopsis thaliana. Plant Cell and Environment, 31(6), 861-871. DOI Scopus98 WoS86 Europe PMC60 |
2007 |
Gigolashvili, T., Yatusevich, R., Berger, B., Muller, C., & Flugge, U. (2007). The R2R3-MYB transcription factor HAG1/MYB28 is a regulator of methionine-derived glucosinolate biosynthesis in Arabidopsis thaliana. Plant Journal, 51(2), 247-261. DOI Scopus320 WoS322 Europe PMC218 |
2007 |
Gigolashvili, T., Berger, B., Mock, H., Muller, C., Weisshaar, B., & Flugge, U. (2007). The transcription factor HIG1/MYB51 regulates indolic glucosinolate biosynthesis in Arabidopsis thaliana. Plant Journal, 50(5), 886-901. DOI Scopus316 WoS309 Europe PMC218 |
2007 |
Berger, B., Stracke, R., Yatusevich, R., Weisshaar, B., Flugge, U., & Gigolashvili, T. (2007). A simplified method for the analysis of transcription factor-promoter interactions that allows high-throughput data generation. Plant Journal, 50(5), 911-916. DOI Scopus40 WoS40 Europe PMC32 |