Anthony Mays

Dr Anthony Mays

Lecturer

School of Computer and Mathematical Sciences

Faculty of Sciences, Engineering and Technology


My research is in various directions, but broadly in the area of statistical physics.

  • Random matrix theory
  • Combinatorics
  • Juggling mathematics
  • Microfossil counting statistics
  • Appointments

    Date Position Institution name
    2023 - ongoing Lecturer University of Adelaide
    2022 - 2023 Tutor University of Adelaide
    2021 - 2022 Research Fellow University of Melbourne
    2018 - 2020 Outreach Fellow University of Melbourne
    2016 - 2017 Melbourne Early Career Academic Fellow University of Melbourne
    2014 - 2015 Postdoctoral Researcher Australian Research Council Centre of Excellence for Mathematical and Statistical Frontiers
    2012 - 2014 Postdoctoral Researcher Supélec
  • Research Interests

  • Journals

    Year Citation
    2023 Forrester, P. J., & Mays, A. (2023). Finite size corrections relating to distributions of the length of longest increasing subsequences. Advances in Applied Mathematics, 145, 33 pages.
    DOI Scopus4
    2021 Mays, A., Ponsaing, A., & Schehr, G. (2021). Tracy-Widom Distributions for the Gaussian Orthogonal and Symplectic Ensembles Revisited: A Skew-Orthogonal Polynomials Approach. Journal of Statistical Physics, 182(2), 55 pages.
    DOI Scopus2
    2018 Mays, A., Ponsaing, A. K., & Paganin, D. M. (2018). Determinantal polynomial wave functions induced by random matrices. Physical Review A, 98(6), 24 pages.
    DOI Scopus2
    2017 Bornemann, F., Forrester, P. J., & Mays, A. (2017). Finite Size Effects for Spacing Distributions in Random Matrix Theory: Circular Ensembles and Riemann Zeros. Studies in Applied Mathematics, 138(4), 401-437.
    DOI Scopus19
    2017 Mays, A., & Ponsaing, A. (2017). An induced real quaternion spherical ensemble of random matrices. Random Matrices: Theory and Application, 6(1), 29 pages.
    DOI Scopus3
    2015 Forrester, P. J., & Mays, A. (2015). Finite-size corrections in random matrix theory and Odlyzko's dataset for the Riemann zeros. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 471(2182), 21 pages.
    DOI Scopus17
    2013 Mays, A. (2013). A Real Quaternion Spherical Ensemble of Random Matrices. Journal of Statistical Physics, 153(1), 48-69.
    DOI Scopus10
    2012 Forrester, P. J., & Mays, A. (2012). Pfaffian point process for the Gaussian real generalised eigenvalue problem. Probability Theory and Related Fields, 154(1-2), 1-47.
    DOI Scopus23
    2009 Forrester, P. J., & Mays, A. (2009). A method to calculate correlation functions for β=1 random matrices of odd size. Journal of Statistical Physics, 134(3), 443-462.
    DOI Scopus26
  • Preprint

    Year Citation
    2024 Mays, C., Amores, M., & Mays, A. (2024). Improved absolute abundance estimates from spatial count data with
    simulation and microfossil case studies.
    2022 Forrester, P. J., & Mays, A. (2022). Finite size corrections relating to distributions of the length of
    longest increasing subsequences.
    2020 Mays, A., Ponsaing, A., & Schehr, G. (2020). Tracy-Widom distributions for the Gaussian orthogonal and symplectic
    ensembles revisited: a skew-orthogonal polynomials approach.
    2018 Mays, A., Ponsaing, A. K., & Paganin, D. M. (2018). Determinantal polynomial wave functions induced by random matrices.
    2016 Bornemann, F., Forrester, P. J., & Mays, A. (2016). Finite size effects for spacing distributions in random matrix theory:
    circular ensembles and Riemann zeros.
    2016 Mays, A., & Ponsaing, A. (2016). An induced real quaternion spherical ensemble of random matrices.
    2015 Forrester, P. J., & Mays, A. (2015). Finite size corrections in random matrix theory and Odlyzko's data set
    for the Riemann zeros.
    2012 Mays, A. (2012). A real quaternion spherical ensemble of random matrices.
    2012 Mays, A. (2012). A geometrical triumvirate of real random matrices.
    2009 Forrester, P. J., & Mays, A. (2009). Pfaffian point process for the Gaussian real generalised eigenvalue
    problem.
    2008 Forrester, P. J., & Mays, A. (2008). A method to calculate correlation functions for $β=1$ random
    matrices of odd size.

Currently I am teaching Masters' level probability and data science courses.

  • Position: Lecturer
  • Phone: 83133989
  • Email: anthony.mays@adelaide.edu.au
  • Campus: North Terrace
  • Building: Ingkarni Wardli, floor Level Six
  • Room: 6.60
  • Org Unit: School of Computer and Mathematical Sciences

Connect With Me
External Profiles