Anna Kalenkova

Teaching Strengths

Data Science
Data modelling/analysis/architecture/integration
Modelling and simulation
Programming

Dr Anna Kalenkova

Lecturer

School of Computer Science and Information Technology

College of Engineering and Information Technology

Eligible to supervise Masters and PhD - email supervisor to discuss availability.

Available For Media Comment.


I have a background in theoretical computer science and applied mathematics. My interests lie in process mining, event data analysis, visual analytics, and information theory. I apply stochastic modelling in process mining to study how stochastic models can be discovered from event data.

Date Position Institution name
2023 - ongoing Lecturer University of Adelaide
2022 - 2023 Postdoctoral Research Fellow University of Adelaide
2019 - 2021 Postdoctoral Research Fellow University of Melbourne

Year Citation
2026 Tour, A., Polyvyanyy, A., & Kalenkova, A. (2026). SOLID-M: An ontology-aware quality framework for conceptual models discovered from event data. Information Systems, 137, 14 pages.
DOI
2025 Kalenkova, A., Mitchell, L., & Roughan, M. (2025). Performance Analysis: Discovering Semi-Markov Models From Event Logs. IEEE Access, 13, 38035-1-38053-19.
DOI Scopus1 WoS1
2024 Yavorskiy, R., Cavalli, A. R., & Kalenkova, A. (2024). Preface. Communications in Computer and Information Science, 1559, v.
2022 Polyvyanyy, A., & Kalenkova, A. (2022). Conformance checking of partially matching processes: An entropy-based approach. Information Systems, 106, 1-15.
DOI Scopus9 WoS6
2021 Tour, A., Polyvyanyy, A., & Kalenkova, A. (2021). Agent system mining: Vision, benefits, and challenges. IEEE Access, 9, 99480-99494.
DOI Scopus24 WoS17
2021 Kalenkova, A., Carmona, J., Polyvyanyy, A., & La Rosa, M. (2021). Automated Repair of Process Models with Non-local Constraints Using State-Based Region Theory. Fundamenta Informaticae, 183(3-4), 293-317.
DOI Scopus2 WoS1
2019 Kalenkova, A. A., & Kolesnikov, D. A. (2019). Application of a Genetic Algorithm for Finding Edit Distances between Process Models. Automatic Control and Computer Sciences, 53(7), 617-627.
DOI Scopus2
2019 Kalenkova, A., Burattin, A., de Leoni, M., van der Aalst, W., & Sperduti, A. (2019). Discovering high-level BPMN process models from event data. Business Process Management Journal, 25(5), 995-1019.
DOI Scopus17 WoS12
2017 Mitsyuk, A. A., Shugurov, I. S., Kalenkova, A. A., & van der Aalst, W. M. P. (2017). Generating event logs for high-level process models. Simulation Modelling Practice and Theory, 74, 1-16.
DOI Scopus26 WoS19
2017 Kalenkova, A. A., van der Aalst, W. M. P., Lomazova, I. A., & Rubin, V. A. (2017). Process mining using BPMN: relating event logs and process models. Software and Systems Modeling, 16(4), 1019-1048.
DOI Scopus75 WoS51
2014 Mitsyuk, A., Kalenkova, A., Shershakov, S., & van der Aalst, W. (2014). USING PROCESS MINING FOR THE ANALYSIS OF AN E-TRADE SYSTEM: A CASE STUDY. BIZNES INFORMATIKA-BUSINESS INFORMATICS, 29(3), 15-27.
WoS3
2012 Kalenkova, A. A. (2012). An algorithm of automatic workflow optimization. Programming and Computer Software, 38(1), 43-56.
DOI Scopus2 WoS1
2010 Kalenkova, A. A. (2010). Application of if-conversion to verification and optimization of workflows. Programming and Computer Software, 36(5), 276-288.
DOI Scopus3 WoS3
- Kalenkova, A. A., & Kolesnikov, D. A. (2018). Application of Genetic Algorithms for Finding Edit Distance between Process Models. Modeling and Analysis of Information Systems, 25(6), 711-725.
DOI

Year Citation
2021 van der Aalst, W. M. P., Batagelj, V., Buzmakov, A., Ignatov, D. I., Kalenkova, A., Khachay, M., . . . Tutubalina, E. (2021). Preface (Vol. 1357 CCIS).
2021 Kalenkova, A., Lozano, J., & Yavorskiy, R. (2021). Preface (Vol. 1288 CCIS).
2021 van der Aalst, W. M. P., Batagelj, V., Buzmakov, A., Ignatov, D., Kalenkova, A., Khachay, M., . . . Tutubalina, E. (2021). Preface (Vol. 12602 LNCS). W. van der Aalst, E. Best, & W. Penczek (Eds.), SAGE Publications.
DOI

Year Citation
2017 Shershakov, S. A., Kalenkova, A. A., & Lomazova, I. A. (2017). Transition systems reduction: Balancing between precision and simplicity. In M. Koutny, J. Kleijn, & W. Penczek (Eds.), Transactions on Petri Nets and Other Models of Concurrency XII (Vol. 10470, pp. 119-139). Berlin, Heidelbert: Springer.
DOI

Year Citation
2024 Montali, M., Kalenkova, A., & Senderovich, A. (2024). Stochastic Modeling for Business Process Management. In A. Marrella, M. Resinas, M. Jans, & M. Rosemann (Eds.), BUSINESS PROCESS MANAGEMENT, BPM 2024 Vol. 14940 (pp. 541-543). POLAND, AGH Univ Krakow, Krakow: SPRINGER INTERNATIONAL PUBLISHING AG.
2023 Tour, A., Polyvyanyy, A., Kalenkova, A., & Senderovich, A. (2023). Agent Miner: An Algorithm for Discovering Agent Systems from Event Data. In G. Goos (Ed.), Proceedings of the 21st International Conference on Business Process Management (BPM 2023), as published in Lecture Notes in Computer Science Vol. 14159 (pp. 284-302). Cham, Switzerland: Springer Nature.
DOI Scopus10 WoS6
2021 Jans, M., Janssenswillen, G., Kalenkova, A., & Maggi, F. M. (2021). Preface to the ICPM 2021 Doctoral Consortium and Tool Demonstration Track. In CEUR Workshop Proceedings Vol. 3098.
2021 Kalenkova, A., Polyvyanyy, A., & Rosa, M. L. (2021). Structural and Behavioral Biases in Process Comparison Using Models and Logs. In Proceedings of the International Conference on Conceptual Modeling (CCM 2021), as published in Lecture Notes in Computer Science Vol. 13011 (pp. 62-73). Cham, Switzerland: Springer International Publishing.
DOI Scopus2 WoS1
2020 Polyvyanyy, A., Alkhammash, H., Di Ciccio, C., García-Bañuelos, L., Kalenkova, A., Leemans, S. J. J., . . . Weidlich, M. (2020). Entropia: A family of entropy-based conformance checking measures for process mining. In CEUR Workshop Proceedings Vol. 2703 (pp. 39-42). RWTH Aachen University: CEUR-WS.
Scopus9
2020 Kalenkova, A., & Polyvyanyy, A. (2020). A spectrum of entropy-based precision and recall measurements between partially matching designed and observed processes. In Service-Oriented Computing: 18th International Conference, ICSOC 2020, Dubai, United Arab Emirates, December 14–17, 2020, Proceedings Vol. 12571 LNCS (pp. 337-354). Switzerland: Springer International Publishing.
DOI Scopus7 WoS5
2020 Kalenkova, A., Polyvyanyy, A., & La Rosa, M. (2020). A framework for estimating simplicity of automatically discovered process models based on structural and behavioral characteristics. In Proceedings of the 18th International Conference, Business Process Management (BPM 2020) as published in Lecture Notes in Computer Science Vol. 12168 LNCS (pp. 129-146). New York, NY, USA: Springer International Publishing.
DOI Scopus5 WoS5
2020 Kalenkova, A., Carmona, J., Polyvyanyy, A., & La Rosa, M. (2020). Automated Repair of Process Models Using Non-local Constraints. In Proceedings of the 41st International Conference on Applications and Theory of Petri Nets and Concurrency (PETRI NETS 2020), as published in Lecture Notes in Computer Science Vol. 12152 LNCS (pp. 280-300). Manhattan, New York City, USA: Springer International Publishing.
DOI Scopus8 WoS9
2019 Skobtsov, A., & Kalenkova, A. (2019). Efficient algorithms for finding differences between process models. In 2019 Ivannikov Ispras Open Conference, (ISPRAS) (pp. 60-66). Piscataway, New Jersey, USA: IEEE.
DOI Scopus5
2019 Skobtsov, A. V., & Kalenkova, A. A. (2019). Using heuristic algorithms for fast alignment between business processes and goals. In Proceedings 2019 IEEE 23rd International Enterprise Distributed Object Computing Workshop (EDOCW) Vol. 2019-October (pp. 85-91). Piscataway, NJ, USA: IEEE.
DOI Scopus1
2019 Skobtsov, A. V., & Kalenkova, A. A. (2019). Efficient comparison of process models using Tabu search algorithm. In I. Lomazova, A. Kalenkova, & R. Yavorsky (Eds.), Proceedings of the MACSPro Workshop 2019 (MACSPro 2019) Vol. 2478 (pp. 51-61). Aachen, Germany: CEUR.
Scopus1
2019 Polyvyanyy, A., & Kalenkova, A. (2019). Monotone conformance checking for partially matching designed and observed processes. In Proceedings - 2019 International Conference on Process Mining, ICPM 2019 (pp. 81-88). Piscataway, New Jersey, NJ, USA: IEEE.
DOI Scopus19 WoS16
2018 Tarantsova, P. D., & Kalenkova, A. A. (2018). Constructing regular expressions from real-life event logs. In W. M. P. van der Aalst, V. Batagelj, G. Glavas, D. I. Ignatov, M. Khachay, & S. O. Kuznetsov (Eds.), Conference proceedings Analysis of Images, Social Networks and Texts Vol. 11179 LNCS (pp. 274-280). Switzerland: Springer International Publishing.
DOI
2018 Kalenkova, A. A., Ageev, A. A., Lomazova, I. A., & van der Aalst, W. M. P. (2018). E-government services: Comparing real and expected user behavior. In E. Teniente, & M. Weidlich (Eds.), Business Process Management Workshops Vol. 308 (pp. 484-496). New York City, USA: Springer International Publishing.
DOI Scopus12 WoS5
2018 Konchagin, A. M., & Kalenkova, A. A. (2018). On the efficient application of aho-corasick algorithm in process mining. In Conference proceedings Analysis of Images, Social Networks and Texts Vol. 10716 LNCS (pp. 371-377). Switzerland: Springer International Publishing.
DOI
2017 Shershakov, S. A., Kalenkova, A. A., & Lomazova, I. A. (2017). Transition systems reduction: Balancing between precision and simplicity. In Transactions on Petri Nets and Other Models of Concurrency XII Vol. 10470 LNCS (pp. 119-139). Berlin Heidelberg: Springer.
DOI Scopus3 WoS1
2016 Kalenkova, A. A., van der Aalst, W. M. P., Lomazova, I. A., & Rubin, V. A. (2016). Process Mining Using BPMN: Relating Event Logs and Process Models. In 19TH ACM/IEEE INTERNATIONAL CONFERENCE ON MODEL DRIVEN ENGINEERING LANGUAGES AND SYSTEMS (MODELS'16) (pp. 123). FRANCE, Saint Malo: ASSOC COMPUTING MACHINERY.
DOI WoS4
2015 Ivanov, S. Y., Kalenkova, A. A., & Van Der Aalst, W. M. P. (2015). BPMNDiffViz: A tool for BPMN Models comparison?. In Ceur Workshop Proceedings Vol. 1418 (pp. 35-39).
Scopus26
2015 Van Der Aalst, W. M. P., Kalenkova, A., Rubin, V., & Verbeek, E. (2015). Process discovery using localized events. In R. Devillers, & A. Valmari (Eds.), Lecture Notes in Computer Science Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics Vol. 9115 (pp. 287-308). Brussels, BELGIUM: SPRINGER-VERLAG BERLIN.
DOI Scopus24 WoS19
2014 Kalenkova, A. A., De Leoni, M., & Van Der Aalst, W. M. P. (2014). Discovering, analyzing and enhancing BPMN models using ProM. In Ceur Workshop Proceedings Vol. 1295 (pp. 36-40).
Scopus20
2014 Kalenkova, A. A., & Lomazova, I. A. (2014). Discovery of cancellation regions within process mining techniques. In Fundamenta Informaticae Vol. 133 (pp. 197-209). IOS PRESS.
DOI Scopus14 WoS9
2014 Kalenkova, A. A., Lomazova, I. A., & Van Der Aalst, W. M. P. (2014). Process model discovery: A method based on transition system decomposition. In Lecture Notes in Computer Science Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics Vol. 8489 LNCS (pp. 71-90). Springer International Publishing.
DOI Scopus19
2013 Kalenkova, A. A., & Lomazova, I. A. (2013). Discovery of cancellation regions within process mining techniques. In CEUR Workshop Proceedings Vol. 1032 (pp. 232-244).
Scopus4
2011 Ataeva, O. M., Kalenkova, A. A., & Serebriakov, V. A. (2011). MultiMeta - A system of spatial and digital library resources integration. In CEUR Workshop Proceedings Vol. 803 (pp. 26-29).

Year Citation
2025 Kalenkova, A., Mitchell, L., & Johnson, E. (2025). Discovering Coordinated Processes From Social Online Networks.
2022 Kalenkova, A., Mitchell, L., & Roughan, M. (2022). Performance Analysis: Discovering Semi-Markov Models From Event Logs.

2025 Freiburg - Adelaide Partnership Fund grant.

Semester 2 2025

Algorithms and Data Structure Analysis (COMP SCI 2201/7201)

Event Driven Computing (COMP SCI 7611/7411/4811/4411)

Advanced Mathematical Perspectives III (MATH 3020)

Semester 1 2025

Algorithms and Data Structure Analysis (COMP SCI 2201/7201)

Semester 2 2024

Algorithm Design and Data Structures (COMP SCI 2103)

Algorithms and Data Structure Analysis (COMP SCI 2201/7201)

Event Driven Computing (COMP SCI 7411/4811/4411)

Advanced Mathematical Perspectives III (MATH 3020)

Semester 1 2024

Algorithm Design and Data Structures (COMP SCI 2103)

Semester 2 2023

Algorithm Design and Data Structures (COMP SCI 2103)

Event Driven Computing (COMP SCI 7411/4811/4411)

Advanced Mathematical Perspectives III (MATH 3020)

Semester 1 2023

Algorithm Design and Data Structures (COMP SCI 2103)

Event Driven Computing (COMP SCI 7411/4811/4411)

Advanced Mathematical Perspectives III (MATH 3020)
 
 

Date Role Research Topic Program Degree Type Student Load Student Name
2024 Co-Supervisor Developing explainable AI methods for the financial sector Doctor of Philosophy Doctorate Full Time Mr Wenrui Zhang
2024 Co-Supervisor Developing explainable AI methods for the financial sector Doctor of Philosophy Doctorate Full Time Mr Wenrui Zhang

Date Role Research Topic Program Degree Type Student Load Student Name
2023 - 2025 Principal Supervisor Process Discovery and Classification of User Behaviours in Online Social Networks Master of Philosophy Master Full Time Mr Ethan Michael Johnson
2022 - 2023 Co-Supervisor Measuring and modelling information flows in real-world networks Master of Philosophy Master Full Time Miss Bridget Anna Smart
2022 - 2024 Co-Supervisor A multi-dimensional extension of the Elo rating system Doctor of Philosophy Doctorate Full Time Mr Adam Hugh Hamilton

Date Role Committee Institution Country
2026 - 2026 Chair International Conference on Application and Theory of Petri Nets and Concurrency (ATPN) International Conference on Application and Theory of Petri Nets and Concurrency (ATPN) Germany
2025 - 2026 Member International Conference on Business Process Modeling, Development, and Support (BPMDS) International Conference on Business Process Modeling, Development, and Support (BPMDS) Australia
2025 - 2025 Member Workshop: Generative AI for Process Mining (co-located with ICPM) Workshop: Generative AI for Process Mining (co-located with ICPM) Australia
2022 - 2024 Member International Workshop on Data-Driven Business Process Optimization (BPO) International Workshop on Data-Driven Business Process Optimization (BPO) Australia
2022 - 2022 Member International Workshop on Computational Intelligence for Process Mining International Workshop on Computational Intelligence for Process Mining Australia
2022 - 2022 Member International Conference on Application and Theory of Petri Nets and Concurrency (ATPN), Tool Session International Conference on Application and Theory of Petri Nets and Concurrency (ATPN), Tool Session Australia
2020 - 2025 Member Workshop on Process Querying, Manipulation and Intelligence (PQMI) Workshop on Process Querying, Manipulation and Intelligence (PQMI) Australia
2020 - 2025 Member International Conference on Process Mining (ICPM) International Conference on Process Mining (ICPM) Australia
2020 - 2025 Member International Conference on Business Process Management (BPM) International Conference on Business Process Management (BPM) Australia
2015 - 2025 Member Workshop on Algorithms and Theories for the Analysis of Event Data (ATAED) Workshop on Algorithms and Theories for the Analysis of Event Data (ATAED) Australia
2015 - 2024 Member Business Process Intelligence Workshop (BPI) Business Process Intelligence Workshop (BPI) Australia

Date Role Editorial Board Name Institution Country
2022 - 2024 Associate Editor CEUR Workshop Proceedings (CEUR-WS.org) CEUR Workshop Proceedings (CEUR-WS.org) Germany

Connect With Me

External Profiles

Other Links