Dr Anna Kalenkova
Lecturer
School of Computer and Mathematical Sciences
Faculty of Sciences, Engineering and Technology
Eligible to supervise Masters and PhD - email supervisor to discuss availability.
I have a background in theoretical computer science and applied mathematics. My interests lie in process mining, event data analysis, visual analytics, and information theory. I apply stochastic modelling in process mining to study how stochastic models can be discovered from event data.
-
Appointments
Date Position Institution name 2023 - ongoing Lecturer University of Adelaide 2022 - 2023 Postdoctoral Research Fellow University of Adelaide 2019 - 2021 Postdoctoral Research Fellow University of Melbourne
-
Journals
Year Citation 2024 Yavorskiy, R., Cavalli, A. R., & Kalenkova, A. (2024). Preface. Communications in Computer and Information Science, 1559, v. 2022 Kalenkova, A., Mitchell, L., & Roughan, M. (2022). Performance Analysis: Discovering Semi-Markov Models From Event Logs. 2022 Polyvyanyy, A., & Kalenkova, A. (2022). Conformance checking of partially matching processes: An entropy-based approach. Information Systems, 106, 1-15.
Scopus72021 Kalenkova, A., Carmona, J., Polyvyanyy, A., & La Rosa, M. (2021). Automated Repair of Process Models with Non-local Constraints Using State-Based Region Theory. Fundamenta Informaticae, 183(3-4), 293-317.
Scopus22021 Tour, A., Polyvyanyy, A., & Kalenkova, A. (2021). Agent system mining: Vision, benefits, and challenges. IEEE Access, 9, 99480-99494.
Scopus14 WoS42019 Kalenkova, A. A., & Kolesnikov, D. A. (2019). Application of a Genetic Algorithm for Finding Edit Distances between Process Models. Automatic Control and Computer Sciences, 53(7), 617-627.
Scopus22019 Kalenkova, A., Burattin, A., de Leoni, M., van der Aalst, W., & Sperduti, A. (2019). Discovering high-level BPMN process models from event data. Business Process Management Journal, 25(5), 995-1019.
Scopus16 WoS102017 Mitsyuk, A. A., Shugurov, I. S., Kalenkova, A. A., & van der Aalst, W. M. P. (2017). Generating event logs for high-level process models. Simulation Modelling Practice and Theory, 74, 1-16.
Scopus21 WoS142017 Kalenkova, A. A., van der Aalst, W. M. P., Lomazova, I. A., & Rubin, V. A. (2017). Process mining using BPMN: relating event logs and process models. Software and Systems Modeling, 16(4), 1019-1048.
Scopus67 WoS442012 Kalenkova, A. A. (2012). An algorithm of automatic workflow optimization. Programming and Computer Software, 38(1), 43-56.
Scopus1 WoS12010 Kalenkova, A. A. (2010). Application of if-conversion to verification and optimization of workflows. Programming and Computer Software, 36(5), 276-288.
Scopus3 WoS3- Kalenkova, A. A., & Kolesnikov, D. A. (n.d.). Application of Genetic Algorithms for Finding Edit Distance between Process Models. Modeling and Analysis of Information Systems, 25(6), 711-725.
-
Books
Year Citation 2021 van der Aalst, W. M. P., Batagelj, V., Buzmakov, A., Ignatov, D. I., Kalenkova, A., Khachay, M., . . . Tutubalina, E. (2021). Preface (Vol. 1357 CCIS). 2021 Kalenkova, A., Lozano, J., & Yavorskiy, R. (2021). Preface (Vol. 1288 CCIS). 2021 van der Aalst, W. M. P., Batagelj, V., Buzmakov, A., Ignatov, D., Kalenkova, A., Khachay, M., . . . Tutubalina, E. (2021). Preface (Vol. 12602 LNCS). W. van der Aalst, E. Best, & W. Penczek (Eds.), IOS Press.
DOI -
Book Chapters
Year Citation 2023 Tour, A., Polyvyanyy, A., Kalenkova, A., & Senderovich, A. (2023). Agent Miner: An Algorithm for Discovering Agent Systems from Event Data. In A. Burattin, C. Janiesch, S. Sadiq, & C. DiFrancescomarino (Eds.), Lecture Notes in Computer Science (Vol. 14159 LNCS, pp. 284-302). SPRINGER INTERNATIONAL PUBLISHING AG.
DOI2017 Shershakov, S. A., Kalenkova, A. A., & Lomazova, I. A. (2017). Transition systems reduction: Balancing between precision and simplicity. In M. Koutny, J. Kleijn, & W. Penczek (Eds.), Transactions on Petri Nets and Other Models of Concurrency XII (Vol. 10470, pp. 119-139). Berlin, Heidelbert: Springer.
DOI
-
Current Higher Degree by Research Supervision (University of Adelaide)
Date Role Research Topic Program Degree Type Student Load Student Name 2024 Co-Supervisor Developing explainable AI methods for the financial sector Doctor of Philosophy Doctorate Full Time Mr Wenrui Zhang 2023 Principal Supervisor Analysis of users' behaviours in social networks using process mining techniques Master of Philosophy Master Full Time Mr Ethan Michael Johnson -
Past Higher Degree by Research Supervision (University of Adelaide)
Date Role Research Topic Program Degree Type Student Load Student Name 2022 - 2023 Co-Supervisor Measuring and modelling information flows in real-world networks Master of Philosophy Master Full Time Miss Bridget Anna Smart 2022 - 2024 Co-Supervisor A multi-dimensional extension of the Elo rating system Doctor of Philosophy Doctorate Full Time Mr Adam Hugh Hamilton
Connect With Me
External Profiles