Andy Boes

Dr Andy Boes

Senior Lecturer

School of Electrical and Mechanical Engineering

Faculty of Sciences, Engineering and Technology

Eligible to supervise Masters and PhD - email supervisor to discuss availability.


Dr Andy (Andreas) Boes is a Senior Lecturer and Associate Head for Research at the School of Electrical and Mechanical Engineering and works at the Institute for Photonics and Advanced Sensing (IPAS) at the University of Adelaide. Andy obtained his PhD in Engineering in 2016 for which he was awarded the Prize for Research Excellence – HDR (Technology) from RMIT University. He was a Research Fellow at RMIT University from 2016 to 2022 and spent a sabbatical year at the University of California, Santa Barbara (UCSB), visiting Prof. John Bowers, one of the world leaders in photonic integrated circuits, in 2017/18. In total Andy attracted more than $4.7M in research funding and been award the RMIT Award for Research Excellence – Early Career Researcher – Technology award, the Victoria Fellowship and the Geoff Opat Early Career Researcher Prize in 2020. He was also awarded an ARC DECRA fellowship in 2023.

Andy has comprehensive understanding and experience in the simulation, design, fabrication and characterisation of photonic integrated circuit chips and using these chips for applications in communication, microwave photonics, defence, quantum optics and sensing. Andy focuses on the micro- and nano fabrication of photonic integrated circuit chips, which use waveguide materials with attractive optical properties such as lithium niobate, silicon, silicon nitride and GaAs. He uses the materials properties of the waveguides for demonstrating highly efficient nonlinear optical and electro optical interactions, which enables photonic chips with compact footprint that can manipulate light on demand.

Research areas:

  • Photonic integrated circuits
  • Nonlinear photonics
  • Optical frequency combs
  • Microwave photonics
  • Optoelectronics

 

Current PhD position openings:

  • Pumping up the volume on sound-light interactions -  This Australian Research Council funded project aims to create a new class of integrated microwave information processors on a single optical chip. Using electro-acoustic coupling in semiconductors, we expect to reduce optical power requirements, enabling the emergence of practically deployable processors using ordinary telecom lasers. The expected project outcomes are inexpensive, compact, stable and energy efficient microwave photonic processors, which have the potential to create a multitude of opportunities for commercial development in the fields of defence, information security, autonomous vehicles, sensing, and ultra-high bandwidth mobile communications.

    To support this project, we are looking for one highly motivated and passionate PhD student to become part of our team, working with designers, fabricators and system demonstrators using innovative photonic chip platforms. The PhD project will take in the positive, supportive, and exciting environment that exists within the Institute for Photonics and Advanced Sensing (IPAS) at The University of Adelaide.

    The successful applicant will learn important research skills in the field of integrated photonics, but also soft skills such as engaging with both industrial and academic end-users, writing of reports, giving presentations and promoting their work and working towards project milestones within timeframes. The knowledge and key skills that you will gain during your PhD studies will set you up for an inspiring career and would be particularly suitable if you have ambition to join the emerging and rapidly growing Integrated Photonics segment within the broader global high tech industry.

    Please contact Dr Andy Boes (andy.boes@adelaide.edu.au) for more information.
     

  • Nonlinear optical properties of wide bandgap semiconductor materials - High quality light sources in the visible and ultraviolet spectral region are highly desirable for applications such as exoplanet detection, atomic clocks, quantum computing and precision bioimaging.  However, the generation of light at these wavelengths can be challenging due to the relatively narrow spectral bandwidths of semiconductor material, resulting in a limited spectral coverage of light emitting semiconductor materials.  To overcome this limitation, nonlinear optical frequency-mixing strategies can be used, which shift the complexity from light sources to nonresonant-based material effects, which can be engineering so that light conversion is particularly efficient at desired wavelengths.

    This project aims to address this opportunity and explore the nonlinear optical properties of wide bandgap semiconductor materials, which are highly attractive for frequency-mixing strategies in visible and ultraviolet spectral region.  As part of this project, we will also investigate how these materials can be used for efficient nonlinear optical processes in photonic integrated circuits, which unlocks additional degrees of freedom to engineer and increase the efficiency of the nonlinear optical processes.

    To support this project, we are looking for one highly motivated and passionate PhD student to become part of our team, working with material scientists, semiconductor engineers and photonic chip technologists.  In this PhD project you will take in the positive, supportive, and exciting research environment that exists within the Schools of EME and CEAM as well as Institute for Photonics and Advanced Sensing (IPAS) at the University of Adelaide and be working with Silanna - Australia’s only semiconductor manufacturer.

    During your PhD studies, you will learn important research skills in the field of material science, nonlinear optics and integrated photonics, in addition to soft skills such as engaging with both industrial and academic end-users, writing of reports, giving presentations and promoting your work and working towards project milestones within timeframes.  The knowledge and key skills that you will gain during your PhD studies will set you up for an inspiring career and suitable if you have ambition to join the emerging and rapidly growing semiconductor and integrated photonics segment within the broader global high tech industry.

    Please contact Dr Andy Boes (andy.boes@adelaide.edu.au) for more information.

 

Relevant literature:

  • A. Boes, L. Chang, C. Langrock, M. Yu, M. Zhang, Q. Lin, M. Lončar, M. Fejer, J. Bowers, & A. Mitchell,  "Lithium niobate photonics: Unlocking the electromagnetic spectrum". Science379(6627), (2023). (Link)

 

  • Journals

    Year Citation
    2024 Pedram, P., Zavabeti, A., Syed, N., Slassi, A., Nguyen, C. K., Fornacciari, B., . . . Monat, C. (2024). Liquid-Metal Fabrication of Ultrathin Gallium Oxynitride Layers with Tunable Stoichiometry. ADVANCED PHOTONICS RESEARCH, 5(3), 12 pages.
    DOI
    2023 Armand, R., Perestjuk, M., Della Torre, A., Sinobad, M., Mitchell, A., Boes, A., . . . Grillet, C. (2023). Mid-infrared integrated silicon-germanium ring resonator with high Q-factor. APL Photonics, 8(7), 6 pages.
    DOI Scopus2
    2023 Boes, A., Chang, L., Langrock, C., Yu, M., Zhang, M., Lin, Q., . . . Mitchell, A. (2023). Lithium niobate photonics: Unlocking the electromagnetic spectrum. Science, 379(6627), eabj4396-1-eabj4396-12.
    DOI Scopus91 WoS55 Europe PMC10
    2023 Jiang, Y., Han, X., Li, Y., Xiao, H., Huang, H., Zhang, P., . . . Tian, Y. (2023). High-Speed Optical Mode Switch in Lithium Niobate on Insulator. ACS Photonics, 10(7), 2257-2263.
    DOI Scopus6 WoS2
    2023 Ma, M., Yuan, M., Zhou, X., Xiao, H., Cao, P., Cheng, L., . . . Tian, Y. (2023). Multimode Waveguide Bends in Lithium Niobate on Insulator. Laser and Photonics Reviews, 17(5), 2200862-1-2200862-7.
    DOI Scopus2
    2023 Yuan, M., Ma, M., Xiao, H., Nguyen, T. G., Boes, A., Ren, G., . . . Tian, Y. (2023). Integrated lithium niobate optical mode (de)interleaver based on an asymmetric Y-junction. Optics Letters, 48(17), 4713-4716.
    DOI
    2023 Chen, L., Han, X., Zhou, X., Yin, R., Yuan, M., Xiao, H., . . . Tian, Y. (2023). Demonstration of a High-Performance 3 dB Power Splitter in Silicon Nitride Loaded Lithium Niobate on Insulator. Laser and Photonics Reviews, 17(11), 8 pages.
    DOI Scopus1
    2023 Tang, P., Schoenhardt, S., Ren, G., Han, X., Boes, A., Tian, Y., . . . Mitchell, A. (2023). Ridge resonators with compact guided mode coupling. Optics Express, 31(21), 34189-34200.
    DOI
    2023 Liu, X., Ren, G., Xu, X., Dubey, A., Feleppa, T., Boes, A., . . . Lowery, A. (2023). Adaptive dispersion compensation using a photonic integrated circuit finite impulse response filter. Optics Express, 31(22), 35971-35981.
    DOI
    2023 Henry, A., Barral, D., Zaquine, I., Boes, A., Mitchell, A., Belabas, N., & Bencheikh, K. (2023). Correlated twin-photon generation in a silicon nitride loaded thin film PPLN waveguide. Optics Express, 31(5), 7277-1-7277-13.
    DOI Scopus2
    2023 Han, X., Yuan, M., Xiao, H., Ren, G., Nguyen, T. G., Boes, A., . . . Tian, Y. (2023). Integrated photonics on the dielectrically loaded lithium niobate on insulator platform. Journal of the Optical Society of America B, 40(5), D26.
    DOI Scopus2 WoS1
    2023 Abdalla, M., Zrounba, C., Cardoso, R., Jimenez, P., Ren, G., Boes, A., . . . Pavanello, F. (2023). Minimum complexity integrated photonic architecture for delay-based reservoir computing. Optics Express, 31(7), 11610-11623.
    DOI Scopus3 WoS1
    2023 Han, X., Jiang, Y., Xiao, H., Yuan, M., Nguyen, T. G., Boes, A., . . . Tian, Y. (2023). Subwavelength Grating-Assisted Contra-Directional Couplers in Lithium Niobate on Insulator. Laser and Photonics Reviews, 17(10), 2300203-1-2300203-8.
    DOI Scopus5
    2023 Schoenhardt, S., Boes, A., Nguyen, T. G., & Mitchell, A. (2023). Ridge waveguide couplers with leaky mode resonator-like wavelength responses. Optics Express, 31(1), 626-634.
    DOI Scopus2 WoS1
    2022 Yuan, M., Han, X., Xiao, H., Nguyen, T. G., Boes, A., Ren, G., . . . Tian, Y. (2022). Integrated lithium niobate polarization beam splitter based on a photonic-crystal-assisted multimode interference coupler. Optics Letters, 48(1), 171-174.
    DOI Scopus8
    2022 Liu, X., Ren, G., Xu, X., Dubey, A., Feleppa, T., Boes, A., . . . Lowery, A. (2022). ‘Dial up’ Photonic Integrated Circuit Filter. Journal of Lightwave Technology, 41(6), 1-9.
    DOI Scopus3 WoS1
    2022 Jiang, Y., Han, X., Huang, H., Zhang, P., Dubey, A., Xiao, H., . . . Tian, Y. (2022). Monolithic photonic integrated circuit based on silicon nitride and lithium niobate on insulator hybrid platform.
    DOI
    2022 Han, X., Chen, L., Jiang, Y., Frigg, A., Xiao, H., Nguyen, T. G., . . . Tian, Y. (2022). Integrated Subwavelength Gratings on a Lithium Niobate on Insulator Platform for Mode and Polarization Manipulation. Laser and Photonics Reviews, 16(7), 2200130-1-2200130-10.
    DOI Scopus19 WoS12
    2022 Xu, X., Ren, G., Feleppa, T., Liu, X., Boes, A., Mitchell, A., & Lowery, A. J. (2022). Self-calibrating programmable photonic integrated circuits. Nature Photonics, 16(8), 595-602.
    DOI Scopus53 WoS27
    2022 Tan, J., Xiao, H., Ma, M., Zhou, X., Yuan, M., Dubey, A., . . . Tian, Y. (2022). Arbitrary access to optical carriers in silicon photonic mode/wavelength hybrid division multiplexing circuits. Optics Letters, 47(14), 3531-3534.
    DOI Scopus1 WoS1
    2022 Peace, D., Zappacosta, A., Cernansky, R., Haylock, B., Boes, A., Mitchell, A., & Lobino, M. (2022). Picosecond pulsed squeezing in thin-film lithium niobate strip-loaded waveguides at telecommunication wavelengths. Journal of Physics: Photonics, 4(3), 1-7.
    DOI Scopus1
    2022 Palmer, S., Boes, A., Ren, G., Nguyen, T. G., Tempone-Wiltshire, S. J., Longhurst, N., . . . Scholten, R. (2022). High bandwidth frequency modulation of an external cavity diode laser using an intracavity lithium niobate electro-optic modulator as output coupler. APL Photonics, 7(8), 6 pages.
    DOI Scopus1 WoS1
    2022 Xu, X., Ren, G., Dubey, A., Feleppa, T., Liu, X., Boes, A., . . . Lowery, A. J. (2022). Phase retrieval of programmable photonic integrated circuits based on an on-chip fractional-delay reference path. Optica, 9(12), 1401-1407.
    DOI Scopus6 WoS1
    2022 Huang, H., Han, X., Balcytis, A., Dubey, A., Boes, A., Nguyen, T. G. G., . . . Mitchell, A. (2022). Non-resonant recirculating light phase modulator. APL Photonics, 7(10), 106102-1-106102-7.
    DOI Scopus9
    2022 Han, X., Jiang, Y., Frigg, A., Xiao, H., Zhang, P., Nguyen, T. G., . . . Tian, Y. (2022). Mode and Polarization-Division Multiplexing Based on Silicon Nitride Loaded Lithium Niobate on Insulator Platform. Laser and Photonics Reviews, 16(1), 2100529-1-2100529-10.
    DOI Scopus55 WoS28
    2022 Han, X., Chen, L., Jiang, Y., Frigg, A., Xiao, H., Nguyen, T., . . . Tian, Y. (2022). Integrated subwavelength gratings on a lithium niobate on insulator platform for mode and polarization manipulation.
    DOI
    2022 Jiang, Y., Han, X., Huang, H., Zhang, P., Dubey, A., Xiao, H., . . . Tian, Y. (2022). Monolithic Photonic Integrated Circuit Based on Silicon Nitride and Lithium Niobate on Insulator Hybrid Platform. Advanced Photonics Research, 3(10), 2200121-1-2200121-8.
    DOI WoS4
    2021 Chang, L., Boes, A., Shu, H., Xie, W., Huang, H., Qin, J., . . . Bowers, J. E. (2021). Second Order Nonlinear Photonic Integrated Platforms for Optical Signal Processing. IEEE Journal of Selected Topics in Quantum Electronics, 27(2), 1-11.
    DOI Scopus8 WoS7
    2021 Xu, X., Tan, M., Corcoran, B., Wu, J., Boes, A., Nguyen, T. G., . . . Moss, D. J. (2021). 11 TOPS photonic convolutional accelerator for optical neural networks. Nature, 589(7840), 44-51.
    DOI Scopus505 WoS317 Europe PMC73
    2021 Tan, M., Xu, X., Wu, J., Corcoran, B., Boes, A., Nguyen, T. G., . . . Moss, D. J. (2021). Integral order photonic RF signal processors based on a soliton crystal micro-comb source. Journal of Optics (United Kingdom), 23(12), 125701-1-125701-12.
    DOI Scopus4 WoS2
    2021 Kaur, P., Boes, A., Ren, G., Nguyen, T. G., Roelkens, G., & Mitchell, A. (2021). Hybrid and heterogeneous photonic integration. APL Photonics, 6(6), 061102-1-061102-24.
    DOI Scopus59 WoS38
    2021 Tan, M., Xu, X., Boes, A., Corcoran, B., Wu, J., Nguyen, T. G., . . . Moss, D. J. (2021). Highly versatile broadband RF photonic fractional Hilbert transformer based on a Kerr soliton crystal microcombs. Journal of Lightwave Technology, 39(24), 7581-7587.
    DOI Scopus6 WoS4
    2021 Schoenhardt, S., Boes, A., Nguyen, T. G., & Mitchell, A. (2021). Ridge resonators: Impact of excitation beam and resonator losses. Optics Express, 29(17), 27092-27103.
    DOI Scopus7 WoS6
    2021 Boes, A., Chang, L., Nguyen, T., Ren, G., Bowers, J., & Mitchell, A. (2021). Efficient second harmonic generation in lithium niobate on insulator waveguides and its pitfalls. JPhys Photonics, 3(1), 012008-1-012008-10.
    DOI Scopus14 WoS8
    2021 Zhang, P., Huang, H., Jiang, Y., Han, X., Xiao, H., Frigg, A., . . . Mitchell, A. (2021). High-speed electro-optic modulator based on silicon nitride loaded lithium niobate on an insulator platform. Optics Letters, 46(23), 5986-5989.
    DOI Scopus32 WoS22 Europe PMC1
    2021 Han, X., Jiang, Y., Frigg, A., Xiao, H., Zhang, P., Boes, A., . . . Tian, Y. (2021). Single-step etched grating couplers for silicon nitride loaded lithium niobate on insulator platform. APL Photonics, 6(8), 086108-1-086108-11.
    DOI Scopus27 WoS18
    2021 Boes, A., Nguyen, T. G., Chang, L., Bowers, J. E., Ren, G., & Mitchell, A. (2021). Integrated photonic high extinction short and long pass filters based on lateral leakage. Optics Express, 29(12), 18905-18914.
    DOI Scopus2 WoS2
    2021 Fan, R., Lin, Y. Y., Chang, L., Boes, A., Bowers, J., Liu, J. W., . . . Lee, C. K. (2021). Higher order mode supercontinuum generation in tantalum pentoxide (Ta₂O₅) channel waveguide. Scientific Reports, 11(1), 7978-1-7978-11.
    DOI Scopus6 WoS3
    2021 Prayoonyong, C., Boes, A., Xu, X., Tan, M., Chu, S. T., Little, B. E., . . . Corcoran, B. (2021). Frequency Comb Distillation for Optical Superchannel Transmission. Journal of Lightwave Technology, 39(23), 7383-7392.
    DOI Scopus17 WoS10
    2021 Chang, L., Xie, W., Shu, H., Yang, Q. F., Shen, B., Boes, A., . . . Bowers, J. E. (2021). Author Correction: Ultra-efficient frequency comb generation in AlGaAs-on-insulator microresonators (Nature Communications, (2020), 11, 1, (1331), 10.1038/s41467-020-15005-5). Nature Communications, 12(1), 1803.
    DOI
    2020 Xu, X., Tan, M., Corcoran, B., Wu, J., Nguyen, T. G., Boes, A., . . . Moss, D. J. (2020). Photonic Perceptron Based on a Kerr Microcomb for High-Speed, Scalable, Optical Neural Networks. Laser and Photonics Reviews, 14(10), 2000070-1-2000070-10.
    DOI Scopus84 WoS46
    2020 Krishnamurthi, V., Khan, H., Ahmed, T., Zavabeti, A., Tawfik, S. A., Jain, S. K., . . . Walia, S. (2020). Liquid-Metal Synthesized Ultrathin SnS Layers for High-Performance Broadband Photodetectors. Advanced Materials, 32(45), e2004247.
    DOI Scopus83 WoS65 Europe PMC6
    2020 Frigg, A., Boes, A., Ren, G., Nguyen, T. G., Choi, D. Y., Gees, S., . . . Mitchell, A. (2020). Optical frequency comb generation with low temperature reactive sputtered silicon nitride waveguides. APL Photonics, 5(1), 011302.
    DOI Scopus14 WoS10
    2020 Nguyen, T. G., Boes, A., & Mitchell, A. (2020). Lateral Leakage in Silicon Photonics: Theory, Applications, and Future Directions. IEEE Journal of Selected Topics in Quantum Electronics, 26(2), 1-13.
    DOI Scopus18 WoS13
    2020 Tan, M., Xu, X., Corcoran, B., Wu, J., Boes, A., Nguyen, T. G., . . . Moss, D. J. (2020). RF and Microwave Fractional Differentiator Based on Photonics. IEEE Transactions on Circuits and Systems II: Express Briefs, 67(11), 2767-2771.
    DOI Scopus31 WoS22
    2020 Corcoran, B., Tan, M., Xu, X., Boes, A., Wu, J., Nguyen, T. G., . . . Moss, D. J. (2020). Ultra-dense optical data transmission over standard fibre with a single chip source. Nature Communications, 11(1), 2568-1-2568-7.
    DOI Scopus191 WoS129 Europe PMC18
    2020 Chang, L., Xie, W., Shu, H., Yang, Q. F., Shen, B., Boes, A., . . . Bowers, J. E. (2020). Ultra-efficient frequency comb generation in AlGaAs-on-insulator microresonators. Nature Communications, 11(1), 1331-1-1331-8.
    DOI Scopus180 WoS125 Europe PMC23
    2020 Xu, X., Tan, M., Wu, J., Boes, A., Nguyen, T. G., Chu, S. T., . . . Moss, D. J. (2020). Broadband Photonic RF Channelizer with 92 Channels Based on a Soliton Crystal Microcomb. Journal of Lightwave Technology, 38(18), 5116-5121.
    DOI Scopus38 WoS29
    2020 Xu, X., Tan, M., Wu, J., Boes, A., Corcoran, B., Nguyen, T. G., . . . Moss, D. (2020). Photonic RF Phase-Encoded Signal Generation with a Microcomb Source. Journal of Lightwave Technology, 38(7), 1722-1727.
    DOI Scopus32 WoS28
    2020 Xu, X., Tan, M., Wu, J., Boes, A., Corcoran, B., Nguyen, T. G., . . . Moss, D. J. (2020). Photonic RF and Microwave Integrator Based on a Transversal Filter with Soliton Crystal Microcombs. IEEE Transactions on Circuits and Systems II: Express Briefs, 67(12), 3582-3586.
    DOI Scopus29 WoS19
    2020 Tan, M., Xu, X., Boes, A., Corcoran, B., Wu, J., Nguyen, T. G., . . . Moss, D. J. (2020). Photonic RF Arbitrary Waveform Generator Based on a Soliton Crystal Micro-Comb Source. Journal of Lightwave Technology, 38(22), 6221-6226.
    DOI Scopus45 WoS33
    2019 Wen, B., Zhu, Y., Yudistira, D., Boes, A., Zhang, L., Yidirim, T., . . . Lu, Y. (2019). Ferroelectric-Driven Exciton and Trion Modulation in Monolayer Molybdenum and Tungsten Diselenides. ACS Nano, 13(5), 5335-5343.
    DOI Scopus61 WoS54 Europe PMC7
    2019 White, D., Branny, A., Chapman, R. J., Picard, R., Brotons-Gisbert, M., Boes, A., . . . Gerardot, B. D. (2019). Atomically-thin quantum dots integrated with lithium niobate photonic chips. Optical Materials Express, 9(2), 441-448.
    DOI Scopus28 WoS21
    2019 Boes, A., Chang, L., Knoerzer, M., Nguyen, T. G., Peters, J. D., Bowers, J. E., & Mitchell, A. (2019). Improved second harmonic performance in periodically poled LNOI waveguides through engineering of lateral leakage. Optics Express, 27(17), 23919-23928.
    DOI Scopus43 WoS34 Europe PMC1
    2019 Chang, L., Boes, A., Pintus, P., Xie, W., Peters, J. D., Kennedy, M. J., . . . Bowers, J. E. (2019). Low loss (Al)GaAs on an insulator waveguide platform. Optics Letters, 44(16), 4075-4078.
    DOI Scopus17 WoS12 Europe PMC4
    2019 Knoerzer, M., Szydzik, C., Ren, G., Huertas, C. S., Palmer, S., Tang, P., . . . Mitchell, A. (2019). Optical frequency comb based system for photonic refractive index sensor interrogation. Optics Express, 27(15), 21532-21545.
    DOI Scopus19 WoS16 Europe PMC5
    2019 Frigg, A., Boes, A., Ren, G., Abdo, I., Choi, D. Y., Gees, S., & Mitchell, A. (2019). Low loss CMOS-compatible silicon nitride photonics utilizing reactive sputtered thin films. Optics Express, 27(26), 37795-37805.
    DOI Scopus45 WoS35 Europe PMC1
    2019 Tan, M., Mitchell, A., Moss, D. J., Xu, X., Corcoran, B., Wu, J., . . . Morandotti, R. (2019). Microwave and RF Photonic Fractional Hilbert Transformer Based on a 50 GHz Kerr Micro-Comb. Journal of Lightwave Technology, 37(24), 6097-6104.
    DOI Scopus41 WoS32
    2019 Nguyen, T. G., Yego, K., Ren, G., Boes, A., & Mitchell, A. (2019). Microwave engineering filter synthesis technique for coupled ridge resonator filters. Optics Express, 27(23), 34370-34381.
    DOI Scopus13 WoS12 Europe PMC1
    2019 Nguyen, T. G., Ren, G., Schoenhardt, S., Knoerzer, M., Boes, A., & Mitchell, A. (2019). Ridge Resonance in Silicon Photonics Harnessing Bound States in the Continuum. Laser and Photonics Reviews, 13(10), 1900035-1-1900035-9.
    DOI Scopus40 WoS34
    2019 Chang, L., Boes, A., Pintus, P., Peters, J. D., Kennedy, M. J., Guo, X. W., . . . Bowers, J. E. (2019). Strong frequency conversion in heterogeneously integrated GaAs resonators. APL Photonics, 4(3), 036103.
    DOI Scopus63 WoS52
    2018 Lenzini, F., Poddubny, A. N., Titchener, J., Fisher, P., Boes, A., Kasture, S., . . . Lobino, M. (2018). Direct characterization of a nonlinear photonic circuit's wave function with laser light. Light: Science and Applications, 7(1), 17143.
    DOI Scopus33 WoS26 Europe PMC2
    2018 Boes, A., Corcoran, B., Chang, L., Bowers, J., & Mitchell, A. (2018). Status and Potential of Lithium Niobate on Insulator (LNOI) for Photonic Integrated Circuits. Laser and Photonics Reviews, 12(4), 1700256.
    DOI Scopus474 WoS363
    2018 Chang, L., Boes, A., Guo, X., Spencer, D. T., Kennedy, M. J., Peters, J. D., . . . Bowers, J. E. (2018). Heterogeneously Integrated GaAs Waveguides on Insulator for Efficient Frequency Conversion. Laser and Photonics Reviews, 12(10), 1800149.
    DOI Scopus94 WoS71
    2017 Solntsev, A. S., Liu, T., Boes, A., Nguyen, T. G., Wu, C. W., Setzpfandt, F., . . . Sukhorukov, A. A. (2017). Towards on-chip photon-pair bell tests: Spatial pump filtering in a LiNbO<inf>3</inf> adiabatic coupler. Applied Physics Letters, 111(26), 261108.
    DOI Scopus6 WoS6
    2017 Soffe, R., Baratchi, S., Nasabi, M., Tang, S. Y., Boes, A., McIntyre, P., . . . Khoshmanesh, K. (2017). Lateral trapezoid microfluidic platform for investigating mechanotransduction of cells to spatial shear stress gradients. Sensors and Actuators, B: Chemical, 251, 963-975.
    DOI Scopus15 WoS13
    2016 Liu, T., Solntsev, A. S., Boes, A., Nguyen, T., Will, C., Mitchell, A., . . . Sukhorukov, A. A. (2016). Experimental demonstration of bidirectional light transfer in adiabatic waveguide structures. Optics Letters, 41(22), 5278-5281.
    DOI Scopus10 WoS10 Europe PMC1
    2016 Tambasco, J. L., Boes, A., Helt, L. G., Steel, M. J., & Mitchell, A. (2016). Domain engineering algorithm for practical and effective photon sources. Optics Express, 24(17), 19616-19626.
    DOI Scopus33 WoS28 Europe PMC1
    2016 Kasture, S., Lenzini, F., Haylock, B., Boes, A., Mitchell, A., Streed, E. W., & Lobino, M. (2016). Frequency conversion between UV and telecom wavelengths in a lithium niobate waveguide for quantum communication with Yb<sup>+</sup> trapped ions. Journal of Optics (United Kingdom), 18(10), 104007.
    DOI Scopus21 WoS18
    2016 Berean, K. J., Sivan, V., Khodasevych, I., Boes, A., Della Gaspera, E., Field, M. R., . . . Rosengarten, G. (2016). Laser-Induced Dewetting for Precise Local Generation of Au Nanostructures for Tunable Solar Absorption. Advanced Optical Materials, 4(8), 1247-1254.
    DOI Scopus27 WoS24
    2016 Yudistira, D., Boes, A., Graczykowski, B., Alzina, F., Yeo, L. Y., Sotomayor Torres, C. M., & Mitchell, A. (2016). Nanoscale pillar hypersonic surface phononic crystals. Physical Review B, 94(9), 6 pages.
    DOI Scopus42 WoS37
    2016 Chen, X., Karpinski, P., Shvedov, V., Wang, B., Trull, J., Cojocaru, C., . . . Sheng, Y. (2016). Two-dimensional domain structures in lithium niobate via domain inversion with ultrafast light. Photonics Letters of Poland, 8(2), 33-35.
    DOI Scopus3 WoS3
    2016 Chen, X., Karpinski, P., Shvedov, V., Boes, A., Mitchell, A., Krolikowski, W., & Sheng, Y. (2016). Quasi-phase matching via femtosecond laser-induced domain inversion in lithium niobate waveguides. Optics Letters, 41(11), 2410-2413.
    DOI Scopus50 WoS50 Europe PMC4
    2016 Yudistira, D., Boes, A., Dumas, B., Rezk, A. R., Yousefi, M., Djafari-Rouhani, B., . . . Mitchell, A. (2016). Phonon-polariton entrapment in homogenous surface phonon cavities. Annalen der Physik, 528(5), 365-372.
    DOI Scopus5 WoS4
    2015 Boes, A., Sivan, V., Ren, G., Yudistira, D., Mailis, S., Soergel, E., & Mitchell, A. (2015). Precise, reproducible nano-domain engineering in lithium niobate crystals. Applied Physics Letters, 107(2), 4 pages.
    DOI Scopus18 WoS18
    2014 Boes, A., Steigerwald, H., Crasto, T., Wade, S. A., Limboeck, T., Soergel, E., & Mitchell, A. (2014). Tailor-made domain structures on the x- and y-face of lithium niobate crystals. Applied Physics B: Lasers and Optics, 115(4), 577-581.
    DOI Scopus11 WoS11
    2014 Yudistira, D., Boes, A., Djafari-Rouhani, B., Pennec, Y., Yeo, L. Y., Mitchell, A., & Friend, J. R. (2014). Monolithic phononic crystals with a surface acoustic band gap from surface phonon-polariton coupling. Physical Review Letters, 113(21), 5 pages.
    DOI Scopus42 WoS40 Europe PMC8
    2014 Boes, A., Steigerwald, H., Yudistira, D., Sivan, V., Wade, S., Mailis, S., . . . Mitchell, A. (2014). Ultraviolet laser-induced poling inhibition produces bulk domains in MgO-doped lithium niobate crystals. Applied Physics Letters, 105(9), 4 pages.
    DOI Scopus11 WoS9
    2014 Boes, A., Yudistira, D., Crasto, T., Steigerwald, H., Sivan, V., Limboeck, T., . . . Mitchell, A. (2014). Ultraviolet laser induced domain inversion on chromium coated lithium niobate crystals. Optical Materials Express, 4(2), 241-254.
    DOI Scopus9 WoS8
    2014 Yudistira, D., Boes, A., Rezk, A. R., Yeo, L. Y., Friend, J. R., & Mitchell, A. (2014). UV Direct Write Metal Enhanced Redox (MER) Domain Engineering for Realization of Surface Acoustic Devices on Lithium Niobate. Advanced Materials Interfaces, 1(4), 7 pages.
    DOI Scopus7 WoS8
    2013 Boes, A., Crasto, T., Steigerwald, H., Wade, S., Frohnhaus, J., Soergel, E., & Mitchell, A. (2013). Direct writing of ferroelectric domains on strontium barium niobate crystals using focused ultraviolet laser light. Applied Physics Letters, 103(14), 4 pages.
    DOI Scopus33 WoS31
    2013 Yudistira, D., Boes, A., Janner, D., Pruneri, V., Friend, J., & Mitchell, A. (2013). Polariton-based band gap and generation of surface acoustic waves in acoustic superlattice lithium niobate. Journal of Applied Physics, 114(5), 6 pages.
    DOI Scopus14 WoS13
    - Tan, M., Xu, X., Boes, A., Corcoran, B., Nguyen, T. G., Chu, S. T., . . . Moss, D. J. (n.d.). Photonic signal processor based on a Kerr microcomb for real-time video image processing. Communications Engineering, 2(1).
    DOI
  • Conference Papers

    Year Citation
    2024 Chakkoria, J. J., Boes, A., Selvaraja, S. K., & Mitchell, A. (2024). Poling Free Second-Order Nonlinear Waveguides in LNOI using Bound State in the Continuum. In 2022 Conference on Lasers and Electro-Optics Pacific Rim, CLEO-PR 2022 - Proceedings. Sapporo, Japan: IEEE.
    DOI
    2024 Palmer, S., Boes, A., Nguyen, T., Mitchell, A., & Scholten, R. E. (2024). Intracavity Lithium Niobate Electro-Optic Modulator for External Cavity Laser Fast-Servo Feedback. In 2022 Conference on Lasers and Electro-Optics Pacific Rim, CLEO-PR 2022 - Proceedings. Sapporo, Japan: IEEE.
    DOI
    2024 Huang, H., Han, X., Balčytis, A., Dubey, A., Boes, A., Nguyen, T., . . . Mitchell, A. (2024). Efficient Lithium Niobate on Insulator Phase Modulator Using Light Recirculation. In 2022 Conference on Lasers and Electro-Optics Pacific Rim, CLEO-PR 2022 - Proceedings. Sapporo, Japan: IEEE.
    DOI
    2024 Russell, R., Tan, M., Boes, A., Dubey, A., Ren, G., Huang, H., . . . Mitchell, A. (2024). Integrated spatiotemporal circulator on thin-film lithium niobate platform. In 2022 Conference on Lasers and Electro-Optics Pacific Rim, CLEO-PR 2022 - Proceedings. Sapporo, Japan: IEEE.
    DOI
    2024 Dubey, A., Boes, A., Frigg, A., Ren, G., Nguyen, T. G., Walia, S., & Mitchell, A. (2024). Experimental Demonstration of High Extinction TE-Pass Polarizers in Thin Film Lithium Niobate on Insulator. In 2022 Conference on Lasers and Electro-Optics Pacific Rim, CLEO-PR 2022 - Proceedings. Sapporo, Japan: IEEE.
    DOI
    2023 Pedram, P., Zavabeti, A., Syed, N., Slassi, A., Nguyen, C. K., Fornacciari, B., . . . Monat, C. (2023). Liquid metal fabrication of ultrathin Ga<inf>2</inf>O<inf>3</inf> and GaN layers for integrated optics. In Proceedings of SPIE - The International Society for Optical Engineering Vol. 12423 (pp. 7 pages). Online: SPIE.
    DOI
    2023 Broadley, L. H., Boes, A., Smithard, J., Rosalie, C., Turk, S., Rajic, N., . . . Mitchell, A. (2023). Pound-Drever-Hall Frequency Locking as a Photonic Integrated Circuit Compatible Fibre Bragg Grating Strain Sensing Interrogation Method. In 2023 IEEE Research and Applications of Photonics in Defense Conference, RAPID 2023 - Proceedings. Online: IEEE.
    DOI
    2023 Armand, R., Perestjuk, M., Della Torre, A., Sinobad, M., Mitchell, A., Boes, A., . . . Grillet, C. (2023). Integrated Germanium-on-Silicon Ring Resonator with High Q-factor in the Mid-Infrared. In 2023 Conference on Lasers and Electro-Optics Europe and European Quantum Electronics Conference, CLEO/Europe-EQEC 2023. IEEE.
    DOI
    2022 Tan, M., Xu, X., Wu, J., Boes, A., Corcoran, B., Nguyen, T. G., . . . Moss, D. J. (2022). Optical Neuromorphic Processor at 11 TeraOPs/s based on Kerr Soliton Crystal Micro-combs. In 2022 Optical Fiber Communications Conference and Exhibition, OFC 2022 - Proceedings (pp. 3 pages). Online: IEEE.
    2022 Li, Y., Tan, M., Wu, J., Xu, X., Sun, Y., Boes, A., . . . Moss, D. J. (2022). Versatile, high bandwidth, RF and microwave photonic Hilbert transformers based on Kerr micro-combs. In Proceedings of the Integrated Optics: Devices, Materials, and Technologies XXVI, as published in Proceedings of SPIE Vol. 12004 (pp. 120040H-1-120040H-12). Online: SPIE.
    DOI
    2022 Perestjuk, M., Armand, R., Della Torre, A., Sinobad, M., Mitchell, A., Boes, A., . . . Grillet, C. (2022). High-Q Silicon-Germanium Ring Resonator for On-Chip Sensing Applications in the Mid-Infrared. In Optics InfoBase Conference Papers.
    2022 Armand, R., Perestjuk, M., Della Torre, A., Sinobad, M., Mitchell, A., Boes, A., . . . Grillet, C. (2022). High-Q Silicon-Germanium On-Chip Ring Resonator in the Mid-Infrared. In 2022 Conference on Lasers and Electro-Optics, CLEO 2022 - Proceedings (pp. 2 pages). Online: IEEE.
    Scopus1
    2022 Han, X., Chen, L., Jiang, Y., Frigg, A., Xiao, H., Nguyen, T. G., . . . Tian, Y. (2022). Compact optical mode and polarization filtering devices based on subwavelength gratings on a lithium niobate on insulator platform. In Proceedings of SPIE - The International Society for Optical Engineering Vol. 12478. Online: SPIE.
    DOI
    2022 Perestjuk, M., Armand, R., Torre, A. D., Sinobad, M., Mitchell, A., Boes, A., . . . Grillet, C. (2022). Silicon-Germanium Integrated Ring Resonator with High Q-factor in the Mid-Infrared. In Optics InfoBase Conference Papers. Online: Optica Publishing Group (formerly OSA).
    2022 Palmer, S., Boes, A., Nguyen, T., Mitchell, A., & Scholten, R. E. (2022). Intracavity Lithium Niobate Electro-Optic Modulator for External Cavity Laser Fast-Servo Feedback. In Optics InfoBase Conference Papers. Online: Optica Publishing Group.
    DOI
    2022 Dubey, A., Boes, A., Frigg, A., Ren, G., Nguyen, T. G., Walia, S., & Mitchell, A. (2022). Experimental Demonstration of High Extinction TE-Pass Polarizers in Thin Film Lithium Niobate on Insulator. In Optics InfoBase Conference Papers. Online: Optica Publishing Group.
    DOI
    2022 Huang, H., Han, X., Balčytis, A., Dubey, A., Boes, A., Nguyen, T., . . . Mitchell, A. (2022). Efficient Lithium Niobate on Insulator Phase Modulator Using Light Recirculation. In Optics InfoBase Conference Papers (pp. 2 pages). Online: Optica Publishing Group.
    DOI
    2022 Chakkoria, J. J., Boes, A., Selvaraja, S. K., & Mitchell, A. (2022). Poling Free Second-Order Nonlinear Waveguides in LNOI using Bound State in the Continuum. In Optics InfoBase Conference Papers. Online: Optica Publishing Group.
    DOI
    2022 Russell, R., Tan, M., Boes, A., Dubey, A., Ren, G., Huang, H., . . . Mitchell, A. (2022). Integrated spatiotemporal circulator on thin-film lithium niobate platform. In Optics InfoBase Conference Papers. Online: Optica Publishing Group.
    DOI
    2021 Tan, M., Xu, X., Wu, J., Boes, A., Corcoran, B., Nguyen, T., . . . Moss, D. J. (2021). Neuromorphic processing at 11 Tera-OPs with soliton crystal Kerr microcombs. In 2021 IEEE Photonics Society Summer Topicals Meeting Series (SUM) Vol. 2021-July (pp. 1-2). online: IEEE.
    DOI
    2021 Tan, M., Corcoran, B., Xu, X., Wu, J., Boes, A., Nguyen, T., . . . Moss, D. J. (2021). Optical data transmissionwith high spectral efficiency at44Terabits/s with a soliton crystal micro-comb. In Proceedings OSA Advanced Photonics Congress 2021 (pp. 17 pages). Washington, DC, USA: Optica Publishing Groupd.
    DOI
    2021 Tan, M., Xu, X., Wu, J., Boes, A., Corcoran, B., Nguyen, T., . . . Moss, D. J. (2021). Photonic convolutional accelerator and neural network in the Tera-OPs regime based on soliton crystal Kerr microcombs. In Proceedings OSA Advanced Photonics Congress 2021. Washington, DC, USA: Optica Publishing Group.
    DOI
    2021 Tan, M., Xu, X., Wu, J., Boes, A., Corcoran, B., Nguyen, T., . . . Moss, D. J. (2021). Tera-OP/s Neuromorphic Processing with Kerr Microcombs. In Proceedings Photonics in Switching and Computing 2021. Washington, DC, USA: Optica Publishing Group.
    2021 Xu, X., Tan, M., Wu, J., Boes, A., Corcoran, B., Nguyen, T., . . . Moss, D. J. (2021). Optical neuromorphic processing based on Kerr microcombs. In 2021 Conference on Lasers and Electro-Optics, CLEO 2021 - Proceedings (pp. 2 pages). Manhattan, NY, USA: IEEE.
    2021 Tan, M., Xu, X., Corcoran, B., Wu, J., Boes, A., Nguyen, T., . . . Moss, D. J. (2021). Microcombs for ultrahigh bandwidth optical data transmission and neural networks. In Proceedings of SPIE - Integrated Optics: Design, Devices, Systems and Applications VI Vol. 11775 (pp. 27 pages). Bellingham, Washington, USA: SPIE.
    DOI
    2021 Xu, X., Tan, M., Corcoran, B., Wu, J., Boes, A., Nguyen, T. G., . . . Moss, D. J. (2021). Photonic convolutional accelerator and neural network in the Tera-OPs regime based on Kerr microcombs. In Proceedings of SPIE - Integrated Optics: Devices, Materials, and Technologies XXV Vol. 11689 (pp. 21 pages). Bellingham, Washington, USA: SPIE.
    DOI
    2021 Tan, M., Xu, X., Wu, J., Boes, A., Corcoran, B., Nguyen, T. G., . . . Moss, D. J. (2021). Single perceptron at 12 GigaOPs based on a microcomb for versatile, high-speed scalable, optical neural networks. In Proceedings of SPIE - Smart Photonic andOptoelectronic Integrated Circuits XXIII Vol. 11690 (pp. 15 pages). Bellingham, Washington, USA: SPIE.
    DOI
    2021 Tan, M., Xu, X., Wu, J., Boes, A., Corcoran, B., Nguyen, T. G., . . . Moss, D. J. (2021). Broadband photonic RF channelizer based on a Kerr soliton crystal microcomb. In 2020 International Topical Meeting on Microwave Photonics, MWP 2020 - Proceedings (pp. 9-13). online: IEEE.
    DOI
    2021 Tan, M., Xu, X., Wu, J., Boes, A., Nguyen, T. G., Chu, S. T., . . . Moss, D. J. (2021). Photonic microwave and RF channelizers based on Kerr micro-combs. In Proceedings of SPIE - The International Society for Optical Engineering Vol. 11685 (pp. 21 pages). Bellingham, WA, USA: SPIE.
    DOI Scopus1
    2021 Tan, M., Corcoran, B., Xu, X., Wu, J., Boes, A., Nguyen, T. G., . . . Moss, D. J. (2021). Ultra-high bandwidth optical data transmission with a microcomb. In 2020 International Topical Meeting on Microwave Photonics, MWP 2020 - Proceedings (pp. 78-82). online: IEEE.
    DOI Scopus1
    2020 Xu, X., Tan, M., Wu, J., Boes, A., Corcoran, B., Nguyen, T. G., . . . Moss, D. J. (2020). Photonic perceptron based on a Kerr microcomb for high-speed, scalable, optical neural networks. In 2020 International Topical Meeting on Microwave Photonics, MWP 2020 - Proceedings (pp. 220-224). ELECTR NETWORK: IEEE.
    Scopus1 WoS33
    2020 Chang, L., Xie, W., Shu, H., Yang, Q. F., Shen, B., Boes, A., . . . Bowers, J. E. (2020). Ultra-efficient frequency comb generation in AlGaAs-on-insulator microresonators. In Proceedings Conference on Lasers and Electro-Optics Vol. Part F183-CLEO-SI 2020 (pp. 1-2). Washington, DC, United States: OSA.
    DOI
    2020 Frigg, A., Boes, A., Ren, G., Nguyen, T. G., Choi, D. Y., Gees, S., . . . Mitchell, A. (2020). Optical frequency comb generation using low stress reactive sputtered silicon nitride waveguides. In Proceedings Conference on Lasers and Electro-Optics Vol. Part F181-CLEO-AT 2020 (pp. 1-2). Washington, DC, United States: OSA.
    DOI
    2020 Corcoran, B., Prayoonyong, C., Boes, A., Xu, X., Tan, M., Chu, S. T., . . . Moss, D. J. (2020). Overcoming low-power limitations on optical frequency combs using a micro-ring resonator. In Proceedings of the Optical Fiber Communication Conference (OFC 2020) Vol. Part F174-OFC 2020 (pp. 1-3). Washington, DC, United States: OSA.
    DOI Scopus9 WoS4
    2020 Huang, H., Zhou, H., Boes, A., Nguyen, T., Corcoran, B., Chang, L., . . . Mitchell, A. (2020). Electro-optical tuning of phase matching wavelength in Lithium Niobate on Insulator (LNOI). In 2020 Conference on Lasers and Electro-Optics Pacific Rim, CLEO-PR 2020 - Proceedings (pp. 1-3). Washington, DC, United States: OSA.
    DOI
    2020 Xu, X., Tan, M., Wu, J., Boes, A., Nguyen, T. G., Chu, S. T., . . . Moss, D. J. (2020). Broadband RF channelization using microcombs. In 2020 Conference on Lasers and Electro-Optics Pacific Rim, CLEO-PR 2020 - Proceedings (pp. 1-3). Washington, DC, United States: OSA.
    DOI
    2020 Boes, A., Nguyen, T., Chang, L., Bowers, J. E., & Mitchell, A. (2020). High extinction on-chip long pass filters in LNOI towards quantum optical applications. In 2020 Conference on Lasers and Electro-Optics Pacific Rim, CLEO-PR 2020 - Proceedings (pp. 1-2). Washington, DC, United States: OSA.
    DOI
    2020 Frigg, A., Boes, A., Ren, G., Nguyen, T. G., Choi, D. Y., Gees, S., . . . Mitchell, A. (2020). Optical frequency comb generation using low stress reactive sputtered silicon nitride waveguides. In 2020 Conference on Lasers and Electro-Optics Pacific Rim, CLEO-PR 2020 - Proceedings (pp. 1-2). Washington, DC, United States: OSA.
    DOI
    2020 Palmer, S., Boes, A., Ren, G., Nguyen, T., & Mitchell, A. (2020). Silicon nitride integrated photonic platform at 780 nm wavelength. In 2020 Conference on Lasers and Electro-Optics Pacific Rim, CLEO-PR 2020 - Proceedings (pp. 1-3). Washington, DC, United States: OSA.
    DOI
    2020 Knoerzer, M., Szydzik, C., Ren, G., Huertas, C. S., Nguyen, T. G., Bui, L., . . . Mitchell, A. (2020). Interrogation of photonic biosensors using dual optical frequency combs. In 2020 Conference on Lasers and Electro-Optics Pacific Rim, CLEO-PR 2020 - Proceedings (pp. 1-2). Washington, DC, United States: OSA.
    DOI
    2020 Prayoonyong, C., Tan, M., Xu, X., Boes, A., Nguyen, T., Chu, S. T., . . . Corcoran, B. (2020). On the efficacy of soliton crystal micro-combs as highly-parallel local oscillators for high-bandwidth systems. In 2020 Conference on Lasers and Electro-Optics Pacific Rim, CLEO-PR 2020 - Proceedings (pp. 1-3). Washington, DC, United States: OSA.
    DOI Scopus1
    2020 Nguyen, T. G., Yego, K., Ren, G., Boes, A., & Mitchell, A. (2020). Coupled Ridge Resonator Filter Design using Microwave Engineering Filter Synthesis. In 2020 Conference on Lasers and Electro-Optics Pacific Rim, CLEO-PR 2020 - Proceedings (pp. 1-2). Washington, DC, United States: OSA.
    DOI
    2020 Frigg, A., Boes, A., Ren, G., Nguyen, T. G., Choi, D. Y., Gees, S., . . . Mitchell, A. (2020). Optical frequency comb generation using low stress CMOS compatible reactive sputtered silicon nitride waveguides. In Proceedings of SPIE - The International Society for Optical Engineering Vol. 11364 (pp. 113640N-1-113640N-8). Bellingham, Washington, United States: SPIE.
    DOI
    2020 Corcoran, B., Tan, M., Xu, X., Wu, J., Nguyen, T. G., Chu, S. T., . . . Moss, D. J. (2020). First field-trial of a high capacity micro-comb based optical communications system. In 45th European Conference on Optical Communication (ECOC 2019) Vol. 2019. Piscataway, New Jersey, USA: IEEE.
    2019 Frigg, A., Boes, A., Ren, G., Choi, D. Y., Gees, S., & Mitchell, A. (2019). Low loss, plasma beam assisted reactive magnetron sputtered silicon nitride films for optical applications. In Proceedings Optical Interference Coatings Conference (OIC) 2019 Vol. Part F162-OIC 2019. Washington, DC, USA: Optica Publishing Group.
    DOI
    2019 Knoerzer, M., Szydzik, C., Ren, G., Huertas, C. S., Palmer, S., Tang, P., . . . Mitchell, A. (2019). Interrogation of photonic biosensors using optical frequency combs. In Proceedings of SPIE - Biophotonics Australasia 2019 Vol. 11202B (pp. 2 pages). Bellingham, Washington, USA: SPIE.
    DOI
    2019 Frigg, A., Boes, A., Ren, G., Choi, D. Y., Gees, S., & Mitchell, A. (2019). CMOS-compatible, plasma beam assisted reactive magnetron sputtered silicon nitride films for photonic integrated circuits. In Proceedings of SPIE - AOS Australian Conference on Optical Fibre Technology (ACOFT) and Australian Conference on Optics, Lasers, and Spectroscopy (ACOLS) 2019 Vol. 11200 (pp. 2 pages). Bellingham, Washington, USA: SPIE.
    DOI
    2019 Abdo, I., Boes, A., Nguyen, T., Ren, G., & Mitchell, A. (2019). Design algorithm for compact low-reflection adiabatic photonic mode converters based on constant coupling. In Proceedings of SPIE - AOS Australian Conference on Optical Fibre Technology (ACOFT) and Australian Conference on Optics, Lasers, and Spectroscopy (ACOLS) 2019 Vol. 11200 (pp. 2 pages). Bellingham, Washington, USA: SPIE.
    DOI
    2019 Tan, M., Xu, X., Wu, J., Boes, A., Corcoran, B., Nguyen, T. G., . . . Moss, D. J. (2019). Reconfigurable microwave signal processor for fractional and regular Hilbert transform based on a microcomb. In Proceedings of SPIE - The International Society for Optical Engineering Vol. 11200. Bellingham, Washington, USA: SPIE.
    DOI
    2019 Frigg, A., Boes, A., Ren, G., Choi, D. Y., Gees, S., & Mitchell, A. (2019). Low stress, anomalous dispersive silicon nitride waveguides fabricated by reactive sputtering. In 2019 Conference on Lasers and Electro-Optics Europe and European Quantum Electronics Conference, CLEO/Europe-EQEC 2019 Vol. Part F140-CLEO_Europe 2019 (pp. 1). online: IEEE.
    DOI
    2019 Abdo, I., Boes, A., Nguyen, T., Ren, G., & Mitchell, A. (2019). Design algorithm for adiabatic photonic components using a constant coupling approach. In 2019 Conference on Lasers and Electro-Optics Europe and European Quantum Electronics Conference, CLEO/Europe-EQEC Vol. Part F140-CLEO_Europe 2019 (pp. 1 page). Piscataway, New Jersey, USA: IEEE.
    DOI
    2019 Boes, A., Chang, L., Nguyen, T., Knoerzer, M., Peters, J. D., Bowers, I. J. E., & Mitchell, A. (2019). Enhanced Nonlinearity in Lithium Niobate on Insulator (LNOI) Waveguides Through Engineering of Lateral Leakage. In 2019 Conference on Lasers and Electro-Optics (CLEO) Vol. Part F128-CLEO_QELS 2019 (pp. 2 pages). Piscataway, New Jersey, USA: IEEE.
    DOI
    2019 Nguyen, T. G., Ren, G., Schoenhardt, S., Knoerzer, M., Boes, A., & Mitchell, A. (2019). New resonance behavior based on bound states in the continuum in a silicon photonic waveguide platform. In 2019 Conference on Lasers and Electro-Optics (CLEO) Vol. Part F129-CLEO_SI 2019 (pp. 2 pages). Piscataway, New Jersey, USA: IEEE.
    DOI
    2019 Chang, L., Boes, A., Pintus, P., Peters, J. D., Kennedy, M. J., Jin, W., . . . Bowers, J. E. (2019). High Q resonators in the GaAs and AlGaAs on insulator platform. In 2019 Conference on Lasers and Electro-Optics (CLEO) Vol. Part F129-CLEO_SI 2019 (pp. 2 pages). Piscataway, New Jersey, USA: IEEE.
    DOI
    2018 Chang, L., Guo, X., Spencer, D. T., Chiles, J., Kowligy, A., Nader, N., . . . Bowers, J. E. (2018). A gallium arsenide nonlinear platform on silicon. In 2018 Conference on Lasers and Electro-Optics (CLEO) Vol. Part F94-CLEO_SI 2018 (pp. 2 pages). Piscataway, New Jersey, USA: IEEE.
    DOI
    2018 Chang, L., Boes, A., Pintus, P., Peters, J. D., Kennedy, M. J., Guo, X., . . . Bowers, J. E. (2018). High Efficiency SHG in Heterogenous Integrated GaAs Ring Resonators. In 31st Annual Conference of the IEEE Photonics Society, IPC 2018 (pp. 2 pages). Piscataway, New Jersey, USA: IEEE.
    DOI Scopus3 WoS3
    2017 Lenzini, F., Poddubny, A. N., Titchener, J., Fisher, P., Boes, A., Kasture, S., . . . Lobino, M. (2017). Quantum tomography of a nonlinear photonic circuit by classical sum-frequency generation measurements. In 2017 Conference on Lasers and Electro-Optics Pacific Rim (CLEO-PR) Vol. Part F122-CLEOPR 2017 (pp. 1-2). Piscataway, New Jersey, USA: IEEE.
    DOI
    2017 Geng, Z., Corcoran, B., Boes, A., Mitchell, A., Zhuang, L., Xie, Y., & Lowery, A. J. (2017). Mitigation of electrical bandwidth limitations using optical pre-sampling. In 2017 Optical Fiber Communications Conference, OFC 2017 - Proceedings Vol. Part F40-OFC 2017 (pp. 3 pages). Washington, DC, USA: Optica Publishing Group.
    DOI Scopus3
    2016 Lenzini, F., Titchener, J., Kasture, S., Boes, A., Poddubny, A. N., Fisher, P., . . . Lobino, M. (2016). A nonlinear waveguide array with inhomogeneous poling pattern for the generation of photon pairs and its characterization in the quantum and classical regimes. In Proceedings Photonics and Fiber Technology 2016 (ACOFT, BGPP, NP). Washington, DC, USA: Optica Publishing Group.
    DOI
    2016 Lenzini, F., Titchener, J., Kasture, S., Poddubny, A. N., Boes, A., Haylock, B., . . . Lobino, M. (2016). A nonlinear waveguide array with inhomogeneous poling pattern for the generation of photon pairs. In 2016 Conference on Lasers and Electro-Optics, CLEO 2016 (pp. 2 pages). Piscataway, New Jersey, USA: IEEE.
    DOI Scopus1
    2016 Chen, X., Karpinski, P., Shvedov, V., Hnatovsky, C., Boes, A., Mitchell, A., . . . Sheng, Y. (2016). Direct writing of inverted domain patterns in lithium niobate waveguides using femtosecond infrared pulses. In 2016 Conference on Lasers and Electro-Optics, CLEO 2016 (pp. 2 pages). Washington, DC, USA: Optica Publishing Group.
    DOI
    2016 Chen, X., Karpinski, P., Shvedov, V., Hnatovsky, C., Boes, A., Mitchell, A., . . . Sheng, Y. (2016). Ferroelectric domain engineering using infrared femtosecond laser and its application to optical frequency conversion. In Photonics and Fiber Technology 2016 (ACOFT, BGPP, NP), OSA Technical Digest (online). Washington, DC 20036 USA: Optica Publishing Group.
    DOI
    2016 Lenzini, F., Titchener, J., Fisher, P., Boes, A., Poddubny, A. N., Kasture, S., . . . Lobino, M. (2016). Measurement of photon-pair generation in waveguide arrays with specialized poling. In Optics InfoBase Conference Papers. OSA.
    DOI
    2016 Geng, Z., Corcoran, B., Zhu, C., Boes, A., Mitchell, A., Hart, J. M., & Lowery, A. J. (2016). WDM wavelength quantizer. In Asia Communications and Photonics Conference, ACP Vol. 2016-November (pp. 3 pages). Wuhan, China: IEEE.
    DOI WoS1
    2015 Boes, A., Steigerwald, H., Yudistira, D., Sivan, V., Wade, S., Mailis, S., . . . Mitchell, A. (2015). UV laser-induced poling inhibition produces bulk domains in MgO-doped lithium niobate crystals. In Proceedings 2015 European Conference on Lasers and Electro-Optics - European Quantum Electronics Conference, CLEO/Europe-EQEC 2015.
    2015 Boes, A., Sivan, V., Ren, G., Yudistira, D., Mitchell, A., Mailis, S., & Soergel, E. (2015). Sub-micron domain engineering in lithium niobate by laser light irradiation of patterned chromium. In 2015 Joint IEEE International Symposium on the Applications of Ferroelectric, International Symposium on Integrated Functionalities and Piezoelectric Force Microscopy Workshop, ISAF/ISIF/PFM 2015 (pp. 197-199). Singapore, SINGAPORE: IEEE.
    DOI
    2015 Boes, A., Steigerwald, H., Yudistira, D., Sivan, V., Wade, S., Mailis, S., . . . Mitchell, A. (2015). UV laser-induced poling inhibition produces bulk domains in MgO-doped lithium niobate crystals. In Optics InfoBase Conference Papers.
    2015 Ng, V., Boes, A., Warrier, A. M., Lin, J., Spence, D., Mitchell, A., . . . Dawes, J. M. (2015). Second harmonic generation in plasmonic lithium niobate waveguides. In Optics InfoBase Conference Papers.
    2014 Ng, V., Boes, A., Warrier, A. M., Lin, J., Spence, D., Mitchell, A., . . . Dawes, J. M. (2014). Second harmonic generation in plasmonic lithium niobate waveguides. In Optics InfoBase Conference Papers.
    2014 Boes, A., Steigerwald, H., Yudistira, D., Sivan, V., Wade, S., Mailis, S., . . . Mitchell, A. (2014). UV laser-induced poling inhibition produces bulk domains in MgO-doped lithium niobate crystals. In Optics InfoBase Conference Papers.
    2013 Crasto, T., Steigerwald, H., Sivan, V., Boes, A., & Mitchell, A. (2013). Domain engineered EDIT waveguides on z-cut LiNbO<inf>3</inf>. In 2013 Conference on Lasers and Electro-Optics, CLEO 2013 (pp. 2 pages). San Jose, CA: IEEE.
    DOI
    2013 Crasto, T., Steigerwald, H., Sivan, V., Boes, A., & Mitchell, A. (2013). Domain engineered EDIT waveguides on z-cut LiNbO<inf>3</inf>. In CLEO: Science and Innovations, CLEO_SI 2013.
    2013 Boes, A., Crasto, T., Steigerwald, H., Sivan, V., Soergel, E., & Mitchell, A. (2013). Surface damage reduction on UV direct-write domains engineered LiNbO <inf>3</inf>. In 2013 Conference on Lasers and Electro-Optics, CLEO 2013 (pp. 2 pages). San Jose, CA: IEEE.
    DOI Scopus1
    2013 Crasto, T., Steigerwald, H., Sivan, V., Boes, A., & Mitchell, A. (2013). Domain engineered EDIT waveguides on z-cut LiNbO<inf>3</inf>. In CLEO: QELS_Fundamental Science, CLEO:QELS FS 2013.
    2013 Boes, A., Crasto, T., Steigerwald, H., Sivan, V., Soergel, E., & Mitchell, A. (2013). Surface damage reduction on UV direct-write domains engineered LiNbO<inf>3</inf>. In CLEO: QELS_Fundamental Science, CLEO:QELS FS 2013.
    2013 Boes, A., Crasto, T., Steigerwald, H., Sivan, V., Soergel, E., & Mitchell, A. (2013). Surface damage reduction on uv direct-write domains engineered linbo<inf>3</inf>. In CLEO: Science and Innovations, CLEO_SI 2013.
    2013 Boes, A., Yudistira, D., Rezk, A., Crasto, T., Steigerwald, H., Soergel, E., . . . Mitchell, A. (2013). Ultraviolet direct domain writing on 128° YX-cut LiNbO<inf>3</inf>: For SAW applications. In 2013 Joint IEEE International Symposium on Applications of Ferroelectric and Workshop on Piezoresponse Force Microscopy, ISAF/PFM 2013 (pp. 272-274). IEEE.
    DOI
    2013 Yudistira, D., Boes, A., Rezk, A., Crasto, T., Steigerwald, H., Soergel, E., . . . Mitchell, A. (2013). Impact of domain depth on SAW generation by acoustic superlattice transducer in 128° YX-cut lithium niobate. In 2013 Joint IEEE International Symposium on Applications of Ferroelectric and Workshop on Piezoresponse Force Microscopy, ISAF/PFM 2013 (pp. 344-346). Prague, CZECH REPUBLIC: IEEE.
    DOI Scopus1
    2013 Boes, A., Yudistira, D., Rezk, A., Crasto, T., Steigerwald, H., Soergel, E., . . . Mitchell, A. (2013). Ultraviolet direct domain writing on 1280° YX-cut LiNbO<sub>3</sub>: for SAW applications. In 2013 IEEE INTERNATIONAL SYMPOSIUM ON THE APPLICATIONS OF FERROELECTRIC AND WORKSHOP ON THE PIEZORESPONSE FORCE MICROSCOPY (ISAF/PFM) (pp. 272-274). Prague, CZECH REPUBLIC: IEEE.
    2012 Boes, A., Steigerwald, H., Crasto, T., Sivan, V., Wade, S., & Mitchell, A. (2012). Tailor-made domain structures on the x-face and y-face of LiNbO<inf>3</inf> crystals. In Conference on Optoelectronic and Microelectronic Materials and Devices, Proceedings, COMMAD (pp. 71-72). Univ Melbourne, Sch Phys, Melbourne, AUSTRALIA: IEEE.
    DOI
    2012 Boes, A., Crasto, T., Sivan, V., Soergel, E., Steigerwald, H., & Mitchell, A. (2012). Tailor-made domain structures on the x-face and y-face of LiNbO <inf>3</inf> crystals. In Proceedings of 2012 21st IEEE Int. Symp. on Applications of Ferroelectrics held jointly with 11th IEEE European Conference on the Applications of Polar Dielectrics and IEEE PFM, ISAF/ECAPD/PFM 2012. IEEE.
    DOI
    2011 Tan, M., Corcoran, B., Xu, X., Wu, J., Boes, A., Nguyen, T. G., . . . Moss, D. J. (2011). Optical data transmission at 44 terabits/s with a Kerr soliton crystal microcomb. In G. Li, & K. Nakajima (Eds.), Proceedings of SPIE - The International Society for Optical Engineering Vol. 11713. SPIE.
    DOI Scopus2

Competitive Funding

Over my career, I have attracted more than $4.7M in research grants that supported projects from fundamental research all the way to applied and industrial projects. 

Date Project /No. Investigators Funding Body Amount
2023 Dual-comb Hyperspectral Imaging Facility (LE230100005) A. Mitchell, B. Brant, B. Jia, P. Reineck, B. Rabes, K. Dholakoa, A. Luiten, A. Boes, W. Weng, D. Lancaster, A. Lowery, W. Corcoran ARC, 

Linkage Infrastructure, Equipment and Facilities

$853k
2023-2025 Precision Rulers for the Visible - Chip Scale Optical Frequency Combs (DE230100964) A. Boes ARC, DECRA $456k
2022-2025

Pumping up the volume on sound-light interactions (DP220100488)

A. Boes, M. Steel, D. Marpaung ARC, Discovery Projects $510k
2021-2024

Photonic chip inertial movement sensors (LP200100029)

A. Mitchell, A. Boes, C. Shaw ARC, 

Linkage Projects

$647k
2020-2023 Digital Interferometry Optical Gyroscope for autonomous navigation (CRC-P round 9) C. Shaw, A. Mitchell, A. Boes, J. Chow Cooperative Research Centres (CRC) $1.62M
2020

Photonic Chip Integration Facility (LE200100071)

A. Mitchell, L. Wang, S. Walia, A. Boes, A. Lowery, W. Corcoran, B. Eggleton, D. Moss, M. Lobino, A. Sukhorukov,  J. Chow ARC, 

Linkage Infrastructure, Equipment and Facilities

$535k
2019-2022

Automotive Engineering Graduate Program (AEGP000007)

R. Hoseinnezhad, A. Mitchell, A. Boes Department of Industry, Innovation and Science 202k
2019-2022

Low-Energy Electro-Photonics: Novel Materials, Devices and Systems (DP190101576)

A. Lowery, A. Boes, J. Bowers ARC, Discovery Projects $440k
2019 Innovations Connection Grant (ICG000872) A. Mitchell, A. Boes Department of Industry, Innovation and Science $110k

 

Currently, I do not teach any lectures (full time research), however I am always looking for exciting student projects.

  • Position: Senior Lecturer
  • Email: andy.boes@adelaide.edu.au
  • Campus: North Terrace
  • Building: Ingkarni Wardli, floor Level Three
  • Room: 3.58
  • Org Unit: School of Electrical and Mechanical Engineering

Connect With Me
External Profiles