Witold Bloch

Witold Bloch

School of Physics, Chemistry and Earth Sciences

Faculty of Sciences, Engineering and Technology


Dr Witold Bloch is an ARC DECRA fellow at the University of Adelaide, School of Physical Sciences. Dr Bloch is the past recipient of an Alexander von Humboldt post-doctoral fellowship which he carried out in the University of Goettingen and TU Dortmund (Germany). One of his research interests involves the utilisation of metal-organic cages for the development of novel porous nanomaterials. The applications that this research aims to address include gas storage and separation as well as heterogeneous catalysis.

Research interests

Research in my group focuses on developing the synthesis and studying the properties of porous solids composed of molecular cages. Some of the ongoing projects are listed below:

Novel porous materials formed by linking metal-organic cages. The development of new approaches to synthesise porous metal–organic materials is both academically attractive and industrially relevant. Recently, new approaches to prepare hybrid metal–organic materials have begun to emerge. These deviate from traditional one-pot syntheses involving simple metal ion and ligand mixtures; instead focusing on materials formed by linking complex, supramolecular structures. One of these approaches, which aims to generate porosity from the building blocks, rather than their relative arrangement, is based on polymerising porous metal–organic cages (MOCs).

Polymerising metal-organic cages by a covalent deprotection approach

Crystal engineering and self-sorting of metal-organic cage solids. Molecular solids based on cage compounds have recently emerged as an attractive class of porous materials, owing to their solution processability, synthetic versatility and intrinsic porosity. Our recent work has examined the role that solvent plays in determining the crystal-packing and the overall porosity of several solvatomorphic metal-organic cage solids. We have found that these materials possess varying degrees of structural non-rigidity; some solvatomorphs are stable to solvent exchange while others undergo rapid transformations.

Solvent determines crystal packing of Cu4L4 cages and their propensity to undergo transformations

Crystallisation-driven self-sorting of cages from a dynamic combinaotorial library

Aggregation and assembly of PdnL2n coordination cages. Supramoecular self-assembly is widely utilised in biological systems to assemble increasingly advanced multi-functional architectures from smaller subunits. This model is prevalent in multi-enzyme complexes, which are capable of highly-efficient sequential catalytic transformations. My research aims to channel this approach in artificial materials synthesis.

Hierarchical assembly of a Pd8L16 catenane

Cover art

Back cover of ACIE, 2017, 56, 8285Feature article in Chem. Commun. 2017, 53, 8506

  • Appointments

    Date Position Institution name
    2019 - ongoing ARC DECRA fellow University of Adelaide
    2017 - 2019 Ramsay Research Fellow in Applied Science University of Adelaide
    2016 - 2017 Humboldt Post-doctoral Research Fellow Technical University of Dortmund
    2015 - 2015 Humboldt Post-doctoral Research Fellow University of Goettingen
    2014 - 2015 Post-doctoral research associate University of Adelaide
    2014 - 2014 Lecturer Level A University of Adelaide
    2013 - 2014 Research associate University of Adelaide
  • Awards and Achievements

    Date Type Title Institution Name Country Amount
    2019 Award ARC Discovery Early Career Researcher Award 2019 University of Adelaide Australia 405 K
    2018 Award 2018 Early Career Researcher award: Order Of Merit University of Adelaide Australia -
    2017 Fellowship Ramsay Fellowship University of Adelaide Australia -
    2015 Fellowship Alexander von Humboldt Post-doctoral Fellowship Georg-August-Universität Göttingen and TU Dortmund Germany -
    2014 Recognition Prize for best paper (IPAS) University of Adelaide Australia -
    2012 Award Disciplinary seminar award (IPAS) University of Adelaide Australia -
    2012 Award Seminar award University of Adelaide Australia -
    2010 Award Poster Prize University of Adelaide Australia -
  • Language Competencies

    Language Competency
    English Can read, write, speak, understand spoken and peer review
    German Can speak and understand spoken
    Polish Can read, speak and understand spoken
  • Education

    Date Institution name Country Title
    2010 - 2014 University of Adelaide Australia PhD (Chemistry)
    2009 University of Adelaide Australia Honours (Chemistry)
    2008 University of Adelaide Australia Bachelor of Science (Nanoscience and materials)
  • Research Interests

Research funding

2015 - 2017 Alexander von Humboldt Fellowship for post-doctoral researchers (University of Goettingen and TU Dortmund, Germany)

Project summary: Many functional macromolecules in nature (e.g. enzymes) are multi-component assemblies with an intricate and defined active site. This work focused on increasing the structural complexity of artificial nano-cage receptors, which are commonly simple and symmetrical structures with limited functionality.  A new methodology was developed which facilitated the assembly of advanced nano-cage compounds composed of two different but complementary ligands. This approach made it possible, for the first time, to ‘stitch’ together two different functionalities in a single self-assembled cage, without the need of a guest template. This approach was utilised to prepare a variety of mixed-ligand cages including one example in which the cage’s uniquely-shaped cavity facilitated shape recognition of stereoisomeric guests. These findings provide significant insights into the synthesis and structure of discrete metal-organic cages and serve as a platform for the design of more complex and sophisticated artificial receptors.

2017 - 2021 Ramsay Research Fellowship (University of Adelaide) 

Project summary: Many pharmaceutical compounds are currently synthesised through multi-step processes that use multiple homogeneous catalysts, resulting in a high level of waste production. This project aims to develop novel porous materials for heterogeneous tandem catalysis by linking nano-cage units into an ordered framework material. The ability of such a material to catalyse chemical reactions in tandem is expected to significantly reduce both the cost and waste associated with industrial chemical syntheses.

Discovery Early Career Researcher Award 2019: Linking Supramolecular Nanocages into Multi-functional Materials (University of Adelaide) 

This project aims to advance the complexity of metal-organic materials by ordering discrete nano-cage structures called "metal-organic polyhedra" in a multi-functional porous solid. The project expects to generate critical knowledge in the synthesis of high-performance materials by combining the advantages of metal-organic and dynamic covalent chemistry. The expected outcomes of the project include the development of materials that are able to sequentially catalyse chemical reactions in a single-batch process. This project should deliver benefits for Australia’s emerging chemical manufacturing industry, such as a reduction in the cost, wastage and environmental impact of the chemical manufacturing industry.

Semester 1: Foundation of Chemistry IA (FoC): Module 3: Equilibrium

Semester 2: Synthesis of Materials III (SoM): Module 3: Supramolecular Chemistry  

  • Current Higher Degree by Research Supervision (University of Adelaide)

    Date Role Research Topic Program Degree Type Student Load Student Name
    2022 Co-Supervisor Crystal Engineering of Novel Pyrazole Functionalised Porous Crystalline Materials Doctor of Philosophy Doctorate Full Time Miss Mei Tieng Yong
  • Past Higher Degree by Research Supervision (University of Adelaide)

    Date Role Research Topic Program Degree Type Student Load Student Name
    2021 - 2023 Co-Supervisor METAL-ORGANIC FRAMEWORKS AS SUPPORTS FOR METAL COMPLEXES Master of Philosophy Master Full Time Miss Josephine Frances Smernik
  • Other Supervision Activities

    Date Role Research Topic Location Program Supervision Type Student Load Student Name
    2018 - 2018 Principal Supervisor Towards the Sequential Self-assembly of Amine Functionalised Metal-organic Polyhedra University of Adelaide - Honours Full Time Matthew Schneider
  • Mentoring

    Date Topic Location Name
    2018 - 2018 Hierarchical assembly of coordination structures (PPR2) University of Adelaide Steven Tsoukatos
  • Memberships

    Date Role Membership Country
    2018 - ongoing Member Society of Crystallographers in Australia and New Zealand (SCANZ) Australia
    2018 - ongoing Member Australian Association of von Humboldt Fellows (AAVHF) Australia
    2017 - ongoing Member MRACI CChem Australia
    2017 - ongoing Member Royal Society of Chemistry Australia
  • Presentation

    Date Topic Presented at Institution Country
    2018 - ongoing Design and serendipity in the assembly of coordination cages - University of South Australia (Mawson Lakes campus) Australia
    2018 - ongoing Controlling the assembly of heteroleptic coordination cages and higher-order aggregates - Sendai International Centre Japan
    2018 - ongoing Controlling self-sorting phenomena in metallosupramolecular cage structures - The University of Queensland -
    2018 - ongoing Coordination cages based on Pd(II): controlling catenation, aggregation and heteroleptic self-assembly - The University of Melbourne -
    2018 - ongoing Self-sorting phenomena in heteroleptic coordination cages - Monash University Australia

Connect With Me
External Profiles