David Shorten
School of Biomedicine
Faculty of Health and Medical Sciences
I am a post-doctoral researcher in Data Science. My interests mostly lie in time series analysis, with a focus on applications in healthcare and satellite orbit data.
-
Appointments
Date Position Institution name 2022 - ongoing Grant-Funded Researcher The University of Adelaide -
Education
Date Institution name Country Title 2018 - 2022 University of Sydney Australia Ph.D -
Research Interests
-
Journals
Year Citation 2023 Shorten, D. P., Yang, Y., Maclean, J., & Roughan, M. (2023). Wide-Scale Monitoring of Satellite Lifetimes: Pitfalls and a Benchmark Dataset. Journal of Spacecraft and Rockets, 60(6), 2003-2007.
Scopus32022 Shorten, D. P., Priesemann, V., Wibral, M., & Lizier, J. T. (2022). Early lock-in of structured and specialised information flows during neural development. eLife, 11, 1-42.
Scopus3 Europe PMC32021 Shorten, D. P., Spinney, R. E., & Lizier, J. T. (2021). Estimating transfer entropy in continuous time between neural spike trains or other event-based data. PLoS Computational Biology, 17(4), 45 pages.
Scopus34 Europe PMC15 -
Conference Papers
Year Citation 2024 Shorten, D. P., Karunarathne, W., & Roughan, M. (2024). How Is Starlink Manoeuvring? An Analysis of Patterns in the Manoeuvres of Starlink Satellites. In Proceedings of the 9th International Conference on Internet of Things, Big Data and Security (IoTBDS 2024) (pp. 174-184). Online: SCITEPRESS.
DOI2020 Shorten, D., & Nitschke, G. (2020). Exploring exploration catastrophes in various network models. In ALIFE 2018 - 2018 Conference on Artificial Life: Beyond AI (pp. 374-381). Online: MIT Press Direct.
DOI2018 Shorten, D., Williamson, A., Srivastava, S., & Murray, J. C. (2018). Localisation of drone controllers from RF signals using a deep learning approach. In Proceedings of 2018 the International Conference on Pattern Recognition and Artificial Intelligence (pp. 89-97). Union, NJ, USA: ACM Press.
DOI Scopus202017 Shorten, D., & Nitschke, G. (2017). The two regimes of neutral evolution: Localization on hubs and delocalized diffusion. In G. Squillero, & K. Sim (Eds.), Applications of Evolutionary Computation Vol. 10199 (pp. 310-325). Amsterdam, The Netherlands: Springer International Publishing.
DOI2017 Shorten, D., & Nitschke, G. (2017). Neutral network assortativity shapes whether selective pressure promotes or hinders robustness. In 2016 IEEE Symposium Series on Computational Intelligence, SSCI 2016 (pp. 1-6). Online: IEEE.
DOI2016 Shorten, D., & Nitschke, G. (2016). The evolution of evolvability in evolutionary robotics. In Proceedings of the Artificial Life Conference 2016, ALIFE 2016.
Scopus12016 Shorten, D., & Nitschke, G. (2016). The relationship between evolvability and robustness in the evolution of boolean networks. In C. Gershenson, T. Froese, J. M. Siqueiros, W. Aguilar, E. J. Izquierdo, & H. Sayama (Eds.), Proceedings of the Artificial Life Conference 2016: ALIFE (pp. 276-283). Cancun, Mexico: MIT Press.
Scopus22015 Huang, C. L., Nitschke, G., & Shorten, D. (2015). Searching for novelty in pole balancing. In 2015 IEEE Congress on Evolutionary Computation, CEC 2015 - Proceedings (pp. 1792-1798). IEEE.
DOI Scopus22015 Shorten, D., & Nitschke, G. (2015). Evolving generalised maze solvers. In Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) Vol. 9028 (pp. 783-794). Springer International Publishing.
DOI Scopus42014 Shorten, D., & Nitschke, G. (2014). Generational neuro-evolution: Restart and retry for improvement. In GECCO 2014 - Proceedings of the 2014 Genetic and Evolutionary Computation Conference (pp. 225-232). ACM.
DOI Scopus12014 Shorten, D., & Nitschke, G. (2014). How evolvable is novelty search?. In IEEE SSCI 2014 - 2014 IEEE Symposium Series on Computational Intelligence - IEEE ICES: 2014 IEEE International Conference on Evolvable Systems, Proceedings (pp. 125-132). IEEE.
DOI Scopus7
Connect With Me
External Profiles