Mr Henry Li

Research Fellow

School of Computer Science and Information Technology

College of Engineering and Information Technology

Eligible to supervise Masters and PhD (as Co-Supervisor) - email supervisor to discuss availability.


I am a Postdoctoral Research Fellow at the Australian Institute for Machine Learning (AIML), The University of Adelaide, collaborating with Prof. Javen Shi. My research lies at the intersection of machine learning and computational chemistry, with a particular focus on materials discovery, drug discovery, and agentic science. The long-term aim of my work is to contribute to solutions for critical societal challenges, such as climate change and incurable diseases.

I have published over 10 peer-reviewed papers in prestigious journals, including Nano Letters, Nano Energy, JCTC, JPCL, and JMCA. My work has also been recognised in international machine learning competitions, including winning the 2023 Open Catalyst Challenge and securing 2nd prize in the Tencent Alchemy Contest. Additionally, I have gained industry experience as an algorithm intern at Galixir Technology.

I am actively seeking passionate PhD students interested in AI4Science, including the areas mentioned above and related topics. I welcome applicants from diverse non-CS backgrounds, such as physics, chemistry, biology, and materials science.

Date Institution name Country Title
University of Newcastle Australia Australia PhD
Huazhong University of Science and Technology China Master of Engineering
Mines ParisTech France Master of Science

Year Citation
2025 Wang, H., Cheng, J., Chen, H., Li, X., Liu, D., Li, X., . . . Zhang, J. (2025). Applications of perovskite oxides for oxygen evolution and oxygen reduction reactions in alkaline media. Energy Reviews, 4(2), 21 pages.
DOI Scopus9 WoS4
2025 Jin, S., Li, X., Yang, G., Zhang, Z., Shi, J. Q., Liu, Y., & Zhao, C. -X. (2025). Active Learning-Based Prediction of Drug Combination Efficacy. ACS Nano, 19(18), 17929-17940.
DOI Scopus1 WoS2
2025 Tan, Z., Li, X., Bai, R., Guo, C., Han, X., Shi, J. Q., . . . Li, H. (2025). AI for Complex Catalytic Systems: High-Entropy Alloys in Electrocatalytic Acetylene Semihydrogenation. ACS Catalysis, 15(15), 13097-13106.
DOI Scopus1 WoS2
2024 Jin, S., Lan, Z., Yang, G., Li, X., Shi, J. Q., Liu, Y., & Zhao, C. (2024). Computationally guided design and synthesis of dual‐drug loaded polymeric nanoparticles for combination therapy. Aggregate, 5(5), e606-1-e606-10.
DOI Scopus10 WoS10
2024 Li, H., Li, X., Wang, P., Zhang, Z., Davey, K., Shi, J. Q., & Qiao, S. -Z. (2024). Machine Learning Big Data Set Analysis Reveals C-C Electro-Coupling Mechanism. Journal of the American Chemical Society, 146(32), 22850-22858.
DOI Scopus41 WoS43 Europe PMC10
2024 Tan, Z., Li, X., Zhao, Y., Zhang, Z., Shi, J. Q., & Li, H. (2024). Machine Learning‐Driven Selection of Two‐Dimensional Carbon‐Based Supports for Dual‐Atom Catalysts in CO2 Electroreduction. ChemCatChem, 16(22), e202400470-1-e202400470-8.
DOI Scopus9 WoS9
2024 Lin, L., Jones, T. W., Yang, T. C. J., Li, X., Wu, C., Xiao, Z., . . . Wang, X. (2024). Hydrogen bonding in perovskite solar cells. Matter, 7(1), 38-58.
DOI Scopus68 WoS66
2023 Zhao, Y., Li, H., Shan, J., Zhang, Z., Li, X., Shi, J. Q., . . . Li, H. (2023). Machine Learning Confirms the Formation Mechanism of a Single-Atom Catalyst via Infrared Spectroscopic Analysis. Journal of Physical Chemistry Letters, 14(49), 11058-11062.
DOI Scopus7 WoS8 Europe PMC1
2023 Li, X., Chiong, R., Hu, Z., & Page, A. J. (2023). A graph neural network model with local environment pooling for predicting adsorption energies. Computational and Theoretical Chemistry, 1226, 1-8.
DOI Scopus15 WoS17
2023 Li, H., Jiang, Y., Li, X., Davey, K., Zheng, Y., Jiao, Y., & Qiao, S. -Z. (2023). C₂₊ Selectivity for CO₂ Electroreduction on Oxidized Cu-Based Catalysts. Journal of the American Chemical Society, 145(26), 14335-14344.
DOI Scopus139 WoS134 Europe PMC56
2023 Li, X., Li, H., Zhang, Z., Shi, J. Q., Jiao, Y., & Qiao, S. -Z. (2023). Active-learning accelerated computational screening of A₂B@NG catalysts for CO₂ electrochemical reduction. Nano Energy, 115, 108695-1-108695-9.
DOI Scopus10 WoS9
2023 Li, X., Shi, J. Q., & Page, A. J. (2023). Discovery of Graphene Growth Alloy Catalysts Using High-Throughput Machine Learning. Nano Letters, 23(21), 9796-9802.
DOI Scopus7 WoS7 Europe PMC2
2023 Yuwono, J. A., Li, X., Doležal, T. D., Samin, A. J., Shi, J. Q., Li, Z., & Birbilis, N. (2023). A computational approach for mapping electrochemical activity of multi-principal element alloys. npj Materials Degradation, 7(1), 87-1-87-11.
DOI Scopus5 WoS4
2021 Li, X., Chiong, R., & Page, A. J. (2021). Group and Period-Based Representations for Improved Machine Learning Prediction of Heterogeneous Alloy Catalysts. The journal of physical chemistry letters, 12(21), 5156-5162.
DOI Scopus26 WoS26 Europe PMC10
2021 Li, X., Chiong, R., Hu, Z., & Page, A. J. (2021). Low-Cost Pt Alloys for Heterogeneous Catalysis Predicted by Density Functional Theory and Active Learning. The journal of physical chemistry letters, 12(30), 7305-7311.
DOI Scopus24 WoS25 Europe PMC6
2019 Li, X., Chiong, R., Hu, Z., Cornforth, D., & Page, A. J. (2019). Improved Representations of Heterogeneous Carbon Reforming Catalysis Using Machine Learning. Journal of Chemical Theory and Computation, 15(12), 6882-1-6894-13.
DOI Scopus25 WoS25 Europe PMC7
2017 Li, X., Li, Z., Yang, X., Jia, L., Fu, Y. Q., Chi, B., . . . Li, J. (2017). First-principles study of the initial oxygen reduction reaction on stoichiometric and reduced CeO<sub>2</sub> (111) surfaces as a cathode catalyst for lithium–oxygen batteries. Journal of Materials Chemistry A, 5(7), 3320-3329.
DOI Scopus38 WoS35
2017 Jiang, Y., Cheng, J., Zou, L., Li, X., Huang, Y., Jia, L., . . . Li, J. (2017). Graphene Foam Decorated with Ceria Microspheres as a Flexible Cathode for Foldable Lithium-Air Batteries. ChemCatChem, 9(22), 4231-4237.
DOI Scopus28 WoS24
2017 Yang, X., Li, Z., Li, X., Wang, A., Jia, L., Chi, B., . . . Li, J. (2017). Oxygen reduction on zirconium-stabilized-PdO surfaces: a first-principles study. RSC Advances, 7(65), 41057-41062.
DOI Scopus4 WoS4
2016 Jiang, Y., Cheng, J., Zou, L., Li, X., Gong, Y., Chi, B., . . . Li, J. (2016). In-Situ Growth of CeO2 Nanoparticles on N-doped Reduced Graphene Oxide for Anchoring Li2O2 Formation in Lithium-Oxygen Batteries. Electrochimica Acta, 210, 712-719.
DOI Scopus47 WoS43

Year Citation
2024 Qiao, S., Li, H., Li, X., wang, P., zhang, Z., Davey, K., & Shi, J. (2024). Establishing C-C electro-coupling mechanism via big data analyses of reaction networks.
DOI

Date Role Research Topic Program Degree Type Student Load Student Name
2025 Co-Supervisor Large Language Model Application in Biology and Health Doctor of Philosophy Doctorate Full Time Mr Yijia Song
2025 Co-Supervisor Large Language Model Application in Biology and Health Doctor of Philosophy Doctorate Full Time Mr Yijia Song

Connect With Me

External Profiles

Other Links