Dr Yuhang Liu
Research Fellow (B) (with PhD)
School of Computer Science and Information Technology
College of Engineering and Information Technology
Eligible to supervise Masters and PhD (as Co-Supervisor) - email supervisor to discuss availability.
My current major research topics are about:
-
building the bridge between causality and machine learning, e.g., causal representation learning, multi domain/modal Learning;
-
building the bridge between Bayesian learning and deep learning, e.g., Bayesian deep learning and deep Bayesian learning;
-
inverse problems in various applications, e.g., computer vision, signal processing.
| Year | Citation |
|---|---|
| 2025 | Liu, Y., Zhang, Z., Gong, D., Gong, M., Huang, B., van den Hengel, A., . . . Shi, J. Q. (2025). Latent Covariate Shift: Unlocking Partial Identifiability for Multi-Source Domain Adaptation. Transactions on Machine Learning Research, 2025-April. Scopus1 |
| 2025 | Shu, Y., Liu, Y., Cao, X., Chen, Q., Zhang, B., Zhou, Z., . . . Liu, L. (2025). Seeing Beyond Labels: Source-Free Domain Adaptation via Hypothesis Consolidation of Prediction Rationale. Transactions on Machine Learning Research, 2025-June. |
| 2024 | Cao, H., Zou, J., Liu, Y., Zhang, Z., Abbasnejad, E., Hengel, A. V. D., & Shi, J. Q. (2024). InvariantStock: Learning Invariant Features for Mastering the Shifting Market. Transactions on Machine Learning Research, 2024. |
| 2024 | Yan, Q., Wang, H., Ma, Y., Liu, Y., Dong, W., Woźniak, M., & Zhang, Y. (2024). Uncertainty estimation in HDR imaging with Bayesian neural networks. Pattern Recognition, 156, 110802. Scopus81 |
| 2020 | Wen, S., Deng, L., & Liu, Y. (2020). Distributed optimization via primal and dual decompositions for delay-constrained FANETs. Ad Hoc Networks, 109, 1-14. Scopus15 |
| 2018 | Liu, Y., Dong, W., & Zhou, M. (2018). Frame-Based Variational Bayesian Learning for Independent or Dependent Source Separation. IEEE Transactions on Neural Networks and Learning Systems, 29(10), 4983-4996. Scopus13 |
| 2016 | Dong, W. Y., Kang, L. L., Liu, Y. H., & Li, K. S. (2016). Opposition-based particle swarm optimization with adaptive elite mutation and nonlinear inertia weight. Tongxin Xuebao/Journal on Communications, 37(12), 1-10. Scopus19 |
| Year | Citation |
|---|---|
| 2025 | Tong, R., Liu, Y., Shi, J. Q., & Gong, D. (2025). Coreset Selection Via Reducible Loss in Continual Learning. In Proceedings of the 13th International Conference on Learning Representations (ICLR 2025) (pp. 57701-57736). Singapore: International Conference on Learning Representations (ICLR). Scopus5 |
| 2025 | Zhang, Z., Ng, I., Gong, D., Liu, Y., Gong, M., Huang, B., . . . Shi, J. Q. (2025). ANALYTIC DAG CONSTRAINTS FOR DIFFERENTIABLE DAG LEARNING. In 13th International Conference on Learning Representations Iclr 2025 (pp. 63845-63870). |
| 2024 | Liu, Y., Zhang, Z., Gong, D., Gong, M., Huang, B., van den Hengel, A., . . . Shi, J. Q. (2024). IDENTIFIABLE LATENT POLYNOMIAL CAUSAL MODELS THROUGH THE LENS OF CHANGE. In 12th International Conference on Learning Representations, ICLR 2024. Online: ICLR. Scopus9 |
| 2024 | Cai, Y., Liu, Y., Zhang, Z., & Shi, J. Q. (2024). CLAP: Isolating Content from Style Through Contrastive Learning with Augmented Prompts. In Lecture Notes in computer science Vol. 15079 (pp. 130-147). Milan, Italy: Springer Nature Switzerland. DOI Scopus5 |
| 2022 | Yan, Q., Zhang, S., Chen, W., Liu, Y., Zhang, Z., Zhang, Y., . . . Gong, D. (2022). A Lightweight Network for High Dynamic Range Imaging. In IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops Vol. 2022-June (pp. 823-831). Online: IEEE. DOI Scopus12 WoS9 |
| 2022 | Perez-Pellitero, E., Catley-Chandar, S., Shaw, R., Leonardis, A., Timofte, R., Zhang, Z., . . . Park, C. Y. (2022). NTIRE 2022 Challenge on High Dynamic Range Imaging: Methods and Results. In IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops Vol. 2022-June (pp. 1008-1022). Online: IEEE. DOI Scopus32 WoS15 |
| 2022 | Yan, Q., Gong, D., Liu, Y., Van Den Hengel, A., & Shi, J. Q. (2022). Learning Bayesian Sparse Networks with Full Experience Replay for Continual Learning. In Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition Vol. 2022-June (pp. 109-118). Online: IEEE. DOI Scopus54 WoS39 |
| 2022 | Zhang, Z., Ng, I., Gong, D., Liu, Y., Abbasnejad, E. M., Gong, M., . . . Shi, J. Q. (2022). Truncated Matrix Power Iteration for Differentiable DAG Learning. In Advances in Neural Information Processing Systems Vol. 35 (pp. 13 pages). Online: Neural information processing systems foundation. Scopus18 |
| 2020 | Yang, L., Liu, Y., & Fan, W. (2020). Axial Data Modeling with Collapsed Nonparametric Watson Mixture Models and Its Application to Depth Image Analysis. In Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) Vol. 12306 LNCS (pp. 17-28). Switzerland: Springer International Publishing. DOI Scopus2 |
| 2019 | Liu, Y., Dong, W., Song, W., & Zhang, L. (2019). Bayesian nonnegative matrix factorization with a truncated spike-and-slab prior. In Proceedings - IEEE International Conference on Multimedia and Expo Vol. 2019-July (pp. 1450-1455). online: IEEE. DOI Scopus2 WoS2 |
| 2019 | Liu, Y., Dong, W., Zhang, L., Gong, D., & Shi, Q. (2019). Variational bayesian dropout with a hierarchical prior. In Proceedings: 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition Vol. 2019-June (pp. 7117-7126). online: IEEE. DOI Scopus22 WoS19 |
| 2018 | Liu, Y., Dong, W., Gong, D., Zhang, L., & Shi, Q. (2018). Deblurring natural image using super-gaussian fields. In Proceedings of the 15th European Conference on Computer Vision as published in Lecture Notes in Computer Science Vol. 11205 LNCS (pp. 467-484). Switzerland: Springer Nature. DOI Scopus9 WoS19 |
| Date | Role | Research Topic | Program | Degree Type | Student Load | Student Name |
|---|---|---|---|---|---|---|
| 2024 | Co-Supervisor | Unraveling Opinion Polarization Dynamics in Social Network Echo Chambers: An Graph Modeling Approach with Causality | Doctor of Philosophy | Doctorate | Full Time | Mr Wenkang Jiang |
| 2024 | Co-Supervisor | Unraveling Opinion Polarization Dynamics in Social Network Echo Chambers: An Graph Modeling Approach with Causality | Doctor of Philosophy | Doctorate | Full Time | Mr Wenkang Jiang |