Dr Rakesh David
Data Architect
School of Agriculture, Food and Wine
College of Sciences
Research interests:
- Plant Epigenetics
- Machine Learning to accelerate biological discovery
My research is focussed on non-coding RNA-mediated gene regulatory mechanisms and how this contributes towards physiological adaption. I use a wide variety of approaches that include in planta experiments, deep sequencing and bioinformatic tools to identify novel epigenetic components and their physiological context. See details below for epigenetic related projects that I lead or am involved in.
A parallel research focus of mine is the use of Machine Learning models to analyse complex biological data to reveal new hidden layers of information. A particular focus area is facilitating the ‘upskilling’ of biological data in accordance with the FAIR data principles, so it is analytics ready and can be used (and re-used) for answering multiple research questions.
Research projects:
- Epitranscriptome modifications (In association with A/Prof. Iain Searle, School of Biological Sciences, UA): Molecular functions of post-transcriptional RNA modifications, 5-methylcytosine (m5C) in regulating gene expression and responses to the environment.
- RNA transport and signalling: Investigate the role of cell-to-cell and systemic transport of RNA transcripts in response to developmental and environmental cues using grafting techniques in combination with high-throughput RNA sequencing. Identifying molecular signatures of mobile RNA transcripts in plants using bioinformatic approaches. GitHub repository: https://github.com/CharlotteSai/DiRT
- Machine Learning based Text Analytics: Natural Language Processing and Machine Learning models for automatic extraction of protein features from unstructured biomedical text. GitHub repository: https://github.com/RhysMenezes/find-a-protein
- Understanding the drivers of crop yield variability: Yields of major crops in Australia are often below their water-limited potential. Genotype x Environment x Management complexity results in crop growth with spatial and temporal variability. The GRDC funded project will use Machine Learning-based methods to discover underlying relationships between climate, crop and soil variables that cause variable crop growth and yields to inform paddock management decisions.
| Date | Position | Institution name |
|---|---|---|
| 2022 - ongoing | Data Architect | Australian Plant Phenomics Facility |
| 2016 - 2022 | Postdoctoral Research Fellow | University of Adelaide, Adelaide |
| 2013 - 2015 | Postdoctoral Research Fellow | University of Adelaide, Adelaide |
| 2012 - 2013 | Postdoctoral Research Fellow | The Australian National University |
| Date | Title | Institution | Country |
|---|---|---|---|
| PhD | The Australian National University | Australia | |
| Masters of Biotechnology | The University of Queensland | Australia |
| Year | Citation |
|---|---|
| 2021 | Li, J., Wu, X., Do, T., Nguyen, V., Zhao, J., Ng, P. Q., . . . Searle, I. (2021). Quantitative and Single-Nucleotide Resolution Profiling of RNA 5-Methylcytosine. In Methods in Molecular Biology (Vol. 2298, pp. 135-151). Springer US. DOI Scopus1 |
| Year | Citation |
|---|---|
| 2017 | Burgess, A., David, R., Sibbritt, T., Jones, A., Preiss, T., Searle, I. R., & David, R. (2017). RNA 5-methylcytosine is required for oxidative stress tolerance in Arabidopsis thaliana. Poster session presented at the meeting of COMBIO. |
| 2015 | David, R., Lim, H. M., & Searle, I. R. (2015). Identification of pla/ubp14, an Arabidopsis mutant that displays lengthened plastochron and larger organs. Poster session presented at the meeting of Annual Genetics Society of Australasia conference. |
| - | David, R. (n.d.). CropTiPS database information poster presented at ComBio2017 (Adelaide). Poster session presented at the meeting of Unknown Conference. DOI |
| Year | Citation |
|---|---|
| - | Adelaide, T. U. O., David, R., Tyerman, S., Gilliham, M., Hooper, C., & Castleden, I. (n.d.). Knowledgebase of Crop Transport information, Physiology and Signalling (CropTiPS) version 1.0. DOI |
| - | David, R., Schilling, R., & McDonald, G. (n.d.). Machine learning to extract maximum value from soil and crop variability, Paddocks pre-processed ML input datasets. DOI |
| - | David, R., Schilling, R., & McDonald, G. (n.d.). Machine learning to extract maximum value from soil and crop variability, Raw datasets. DOI |
| - | David, R., & Schilling, R. (n.d.). University of Adelaide National Sodic field trial reference dataset for GRDC Machine Learning Project- UOA2002-007RTX.. DOI |
| - | Berger, B. (n.d.). APPF TPA phenotyping dataset: UA (Berger) - Various (Student). DOI |
| - | Berger, B., & Wilkinson, M. (n.d.). APPF TPA phenotyping dataset: UA AFW (Konate, Wilkinson) - Barley. DOI |
| - | Berger, B. (n.d.). APPF TPA phenotyping dataset: UA TPA (Berger) - Quinoa (trial). DOI |
| - | Atieno, J., & Sutton, T. (n.d.). APPF TPA phenotyping dataset: UA (Atieno) - Chickpea. DOI |
| - | Berger, B. (n.d.). APPF TPA phenotyping dataset: Ecovortek (Berger) - Various. DOI |
| - | Berger, B. (n.d.). APPF TPA phenotyping dataset: EPPN (Berger) - Canola. DOI |
| - | Berger, B. (n.d.). APPF TPA phenotyping dataset: EPPN (Berger) - Maize (1). DOI |
| - | Berger, B. (n.d.). APPF TPA phenotyping dataset: EPPN (Berger) - Maize (2). DOI |
| - | Berger, B. (n.d.). APPF TPA phenotyping dataset: TU Muenchen (Kipp, Berger) - Wheat. DOI |
| - | Berger, B. (n.d.). APPF TPA phenotyping dataset: UA ACPFG (Berger) - Chickpea (Wheat). DOI |
| - | Berger, B. (n.d.). APPF TPA phenotyping dataset: UA AFW (Konate, Wilkinson) - Barley. DOI |
| - | Berger, B. (n.d.). APPF TPA phenotyping dataset: UA (Hansen) - Wheat. DOI |
| - | Berger, B. (n.d.). APPF TPA phenotyping dataset: UA TPA (Berger, Burton) - Barley. DOI |
| - | Berger, B. (n.d.). APPF TPA phenotyping dataset: UA TPA (Berger) - Fake (EPPN N). DOI |
| - | Berger, B. (n.d.). APPF TPA phenotyping dataset: UA TPA (Berger) - Fake (EPPN S). DOI |
| - | Berger, B. (n.d.). APPF TPA phenotyping dataset: UA TPA (Berger) - Maize (leaf rolling). DOI |
| - | Berger, B. (n.d.). APPF TPA phenotyping dataset: UA TPA (Berger) - Quinoa (trial 2). DOI |
| - | Berger, B. (n.d.). APPF TPA phenotyping dataset: UA TPA (Berger) - Rice. DOI |
| - | Berger, B. (n.d.). APPF TPA phenotyping dataset: UA TPA (Berger) - Rice. DOI |
| - | Berger, B. (n.d.). APPF TPA phenotyping dataset: UA TPA (Berger) - Tomato. DOI |
| - | Berger, B. (n.d.). APPF TPA phenotyping dataset: UA TPA (Berger, UGradPrj) - Tomato. DOI |
| - | Berger, B. (n.d.). APPF TPA phenotyping dataset: UA TPA (Berger, VanDenHengel) - Wheat (3D). DOI |
| - | Berger, B. (n.d.). APPF TPA phenotyping dataset: UA TPA (Berger) - Various (camera calibration). DOI |
| - | Berger, B. (n.d.). APPF TPA phenotyping dataset: UA TPA (Berger) - Various (evap 2014). DOI |
| - | Berger, B. (n.d.). APPF TPA phenotyping dataset: UA TPA (Berger) - Various (leaf tracking). DOI |
| - | Berger, B. (n.d.). APPF TPA phenotyping dataset: UA TPA (Berger) - Various (shadow 2014). DOI |
| - | Berger, B. (n.d.). APPF TPA phenotyping dataset: UA TPA (Berger) - Wheat. DOI |
| - | Berger, B. (n.d.). APPF TPA phenotyping dataset: UA TPA (Berger) - Wheat (2010 salt). DOI |
| - | Berger, B. (n.d.). APPF TPA phenotyping dataset: UA TPA (Berger) - Wheat (root 2013). DOI |
| - | Berger, B. (n.d.). APPF TPA phenotyping dataset: UA TPA (Berger) - Wheat (UniformityTrial). DOI |
| - | Berger, B. (n.d.). APPF TPA phenotyping dataset: UA TPA (Bruning) - Wheat. DOI |
| - | Berger, B. (n.d.). APPF TPA phenotyping dataset: UA TPA (MacAlpine, Berger) - Lantana. DOI |
| - | Berger, B. (n.d.). APPF TPA phenotyping dataset: UA TPA (MacAlpine, Berger) - Various. DOI |
| - | Berger, B. (n.d.). APPF TPA phenotyping dataset: UA TPA (Mischis, Berger) - Various. DOI |
| - | Berger, B. (n.d.). APPF TPA phenotyping dataset: UA TPA (Mischis, Berger) - Various (N July). DOI |
| - | Berger, B. (n.d.). APPF TPA phenotyping dataset: UA TPA (Mischis, Berger) - Various (N June). DOI |
| - | Berger, B. (n.d.). APPF TPA phenotyping dataset: UA TPA (Mischis, Berger) - Various (S July). DOI |
| - | Berger, B. (n.d.). APPF TPA phenotyping dataset: UA TPA (Mischis, Berger) - Various (S June). DOI |
| - | Berger, B. (n.d.). APPF TPA phenotyping dataset: UA TPA (Mischis, KAUST) - Quinoa (pilot). DOI |
| - | Berger, B. (n.d.). APPF TPA phenotyping dataset: UA TPA (Tanner) - Chickpea. DOI |
| - | Berger, B. (n.d.). APPF TPA phenotyping dataset: UA TPA (Tanner) - Chickpea. DOI |
| - | Berger, B. (n.d.). APPF TPA phenotyping dataset: UA TPA (Tester, Berger) - Wheat. DOI |
| - | Berger, B. (n.d.). APPF TPA phenotyping dataset: UCopenhagen (Jall) - Maize. DOI |
| - | Berger, B. (n.d.). APPF TPA phenotyping dataset: Uni Sask (Beattie, Murrell) - Barley. DOI |
| - | Berger, B. (n.d.). APPF TPA phenotyping dataset: Uni Sask (Taran) - Chickpea. DOI |
| - | Berger, B. (n.d.). APPF TPA phenotyping dataset: UniSA (Seiffert, Berger) - Various. DOI |
| - | Cai, J. (n.d.). APPF TPA phenotyping dataset: UniSA (Cai) - Wheat. DOI |
| - | Cavagnaro, T., & Watts-Williams, S. (n.d.). APPF TPA phenotyping dataset: UA (Cavagnaro, Cousins) - Wheat. DOI |
| - | Cavagnaro, T., & Watts-Williams, S. (n.d.). APPF TPA phenotyping dataset: UA (Cavagnaro, Hue) - Tomato. DOI |
| - | Cavagnaro, T., & Watts-Williams, S. (n.d.). APPF TPA phenotyping dataset: UA (Cavagnaro) - Tomato. DOI |
| - | Cavagnaro, T., & Watts-Williams, S. (n.d.). APPF TPA phenotyping dataset: UA (Cavagnaro, Watts-Williams) - Medic. DOI |
| - | Cavagnaro, T., & Watts-Williams, S. (n.d.). APPF TPA phenotyping dataset: UA (Cavagnaro, Watts-Williams) - Medic (calibration). DOI |
| - | Cavagnaro, T., & Watts-Williams, S. (n.d.). APPF TPA phenotyping dataset: UA (Solomon) - Maize. DOI |
| - | Collins, N. (n.d.). APPF TPA phenotyping dataset: UA ACPFG (Collins) - Wheat. DOI |
| - | Collins, N. (n.d.). APPF TPA phenotyping dataset: UA ACPFG (Collins) - Wheat. DOI |
| - | Collins, N. (n.d.). APPF TPA phenotyping dataset: UA ACPFG (Collins) - Wheat. DOI |
| - | Collins, N. (n.d.). APPF TPA phenotyping dataset: UA ACPFG (Collins) - Wheat. DOI |
| - | Collins, N. (n.d.). APPF TPA phenotyping dataset: UA ACPFG (Collins) - Wheat. DOI |
| - | Collins, N. (n.d.). APPF TPA phenotyping dataset: UA ACPFG (Collins) - Wheat. DOI |
| - | Denton, M., & Humphries, A. (n.d.). APPF TPA phenotyping dataset: UA (Denton, Innes) - Medics. DOI |
| - | Harbard, J. (n.d.). APPF TPA phenotyping dataset: UTAS (Griffin) - Acacia. DOI |
| - | Harbard, J. (n.d.). APPF TPA phenotyping dataset: UTAS (Griffin) - Acacia. DOI |
| - | Liu, H. (n.d.). APPF TPA phenotyping dataset: UA TPA (Liu) - Wheat. DOI |
| - | James, R. (n.d.). APPF TPA phenotyping dataset: CSIRO (James) - Wheat. DOI |
| - | Matros, A. (n.d.). APPF TPA phenotyping dataset: UA (Matros) - Barley. DOI |
| - | Matros, A. (n.d.). APPF TPA phenotyping dataset: UA PEB (Matros) - Barley (PIEPS). DOI |
| - | Okamoto, M. (n.d.). APPF TPA phenotyping dataset: UA ACPFG (Okamoto) - Wheat. DOI |
| - | Okamoto, M. (n.d.). APPF TPA phenotyping dataset: UA ACPFG (Okamoto) - Wheat. DOI |
| - | Parent, B. (n.d.). APPF TPA phenotyping dataset: UA ACPFG (Langridge, Parent) - Barley. DOI |
| - | Parent, B. (n.d.). APPF TPA phenotyping dataset: UA ACPFG (Langridge, Parent) - Barley (calibration). DOI |
| - | Parent, B. (n.d.). APPF TPA phenotyping dataset: UA ACPFG (Langridge, Parent) - Durum. DOI |
| - | Parent, B. (n.d.). APPF TPA phenotyping dataset: UA ACPFG (Langridge, Parent) - Wheat. DOI |
| - | Parent, B. (n.d.). APPF TPA phenotyping dataset: UA ACPFG (Langridge, Parent) - Wheat. DOI |
| - | Parent, B. (n.d.). APPF TPA phenotyping dataset: UA ACPFG (Langridge, Parent) - Wheat. DOI |
| - | Parent, B. (n.d.). APPF TPA phenotyping dataset: UA ACPFG (Langridge, Parent) - Wheat. DOI |
| - | Parent, B. (n.d.). APPF TPA phenotyping dataset: UA ACPFG (Langridge, Parent) - Wheat (1). DOI |
| - | Parent, B. (n.d.). APPF TPA phenotyping dataset: UA ACPFG (Langridge, Parent) - Wheat (2). DOI |
| - | Parent, B. (n.d.). APPF TPA phenotyping dataset: UA TPA (Parent, Berger) - Various. DOI |
| - | Pegler, J. (n.d.). APPF TPA phenotyping dataset: UON (Pegler) - Setaria. DOI |
| - | Plett, D., & Roy, S. (n.d.). APPF TPA phenotyping dataset: UA (Plett) - Rice. DOI |
| - | Plett, D., & Roy, S. (n.d.). APPF TPA phenotyping dataset: UA (Plett) - Wheat. DOI |
| - | Plett, D., & Roy, S. (n.d.). APPF TPA phenotyping dataset: UA (Plett) - Wheat (salt). DOI |
| - | Plett, D., & Phillips, A. (n.d.). APPF TPA phenotyping dataset: Uni Melb (Plett) - Rice. DOI |
| - | Roy, S. (n.d.). APPF TPA phenotyping dataset: UA ACPFG (Roy, Asif) - Wheat. DOI |
| - | Roy, S. (n.d.). APPF TPA phenotyping dataset: UA ACPFG (Roy) - Barley (MxK Rerun). DOI |
| - | Roy, S. (n.d.). APPF TPA phenotyping dataset: UA ACPFG (Roy, Hairmansis) - Rice. DOI |
| - | Roy, S. (n.d.). APPF TPA phenotyping dataset: UA ACPFG (Roy, Hairmansis) - Rice. DOI |
| - | Roy, S. (n.d.). APPF TPA phenotyping dataset: UA ACPFG (Roy, Hairmansis) - Rice (1). DOI |
| - | Roy, S. (n.d.). APPF TPA phenotyping dataset: UA ACPFG (Roy, Hairmansis) - Rice (2). DOI |
| - | Roy, S. (n.d.). APPF TPA phenotyping dataset: UA ACPFG (Roy, Schilling) - Barley. DOI |
| - | Roy, S. (n.d.). APPF TPA phenotyping dataset: UA ACPFG (Roy, Schilling) - Barley. DOI |
| - | Roy, S. (n.d.). APPF TPA phenotyping dataset: UA ACPFG (Roy, Schilling) - Barley. DOI |
| - | Roy, S. (n.d.). APPF TPA phenotyping dataset: UA ACPFG (Roy, Schilling) - Barley (Wheat). DOI |
| - | Roy, S. (n.d.). APPF TPA phenotyping dataset: UA ACPFG (Roy, Schilling) - Wheat. DOI |
| - | Roy, S. (n.d.). APPF TPA phenotyping dataset: UA ACPFG (Roy, Schilling) - Wheat. DOI |
| - | David, R., Brewer, P., Tran, N. N., & Hessel, V. (n.d.). Images of Arabidopsis and lettuce seedings grown in mircogravity conditions using the RPM Mini-phytotron experimental setup.. DOI |
| - | Hobern, D., David, R., Aneja, A., Le, H. S., & Hernandez, L. A. (n.d.). MCCN Case Study 1 - Evaluate impact from environmental events/pressures. DOI |
| - | Hobern, D., Aneja, A., Le, H. S., Hernandez, L. A., & David, R. (n.d.). MCCN Case Study 2 - Spatial projection via modelled data. DOI |
| - | Hobern, D., Aneja, A., Le, H. S., David, R., & Hernandez, L. A. (n.d.). MCCN Case Study 3 - Select optimal survey locality. DOI |
| - | Hobern, D., Aneja, A., Le, H. S., Hernandez, L. A., & David, R. (n.d.). MCCN Case Study 4 - Validating gridded data products. DOI |
| - | Hobern, D., Le, H. S., Aneja, A., David, R., & Hernandez, L. A. (n.d.). MCCN Case Study 5 - Produce farm zone map. DOI |
| - | Hobern, D., Le, H. S., Aneja, A., Hernandez, L. A., & David, R. (n.d.). MCCN Case Study 6 - Environmental Correlates for Productivity. DOI |
| Year | Citation |
|---|---|
| - | Sai, N., Rodriguez Lopez, C. M., Bogias, K., Pederson, S., Burgess, A., Breen, J., . . . David, R. (n.d.). DiRT: Dicistronic RNA Transcripts - A bioinformatic pipeline to detect di-cistronic tRNA-mRNA transcripts from short-read RNA-sequencing data [Computer Software]. |
| - | David, R., Hooper, C. M., Castleden, I. R., Gilliham, M., & Tyerman, S. (n.d.). CropTiPS database (Crop Transport information, Physiology and Signalling) - www.croptips.org [Computer Software]. |
2018 Co-investigator on Interdisciplinary Research Fund, University of Adelaide, Accelerating biological discovery through Artificial Intelligence, Prof Mathew Gilliham and Dr Rakesh David. $90k
2019 Co-investigator on NCRIS funded Agriculture data sharing platform, Agriculture data sharing platform (18NCRIS RDP-62), Prof Mathew Gilliham, A/Prof Bettina Berger, Dr Rakesh David, $155k
2021 Co-investigator on Agrifood and Wine FAME grant, Optimising plant growth in simulated microgravity, led by Dr Philip Brewer and Prof Volker Hessel, $20k
- 2018-2019: Invited Guest Lecture for 'Research Skills for Applied Biology II' (APP BIOL 2500WT), Lecture title: Plants as Vaccine Biofactories, Undergraduate, Year 2, University of Adelaide
- 2015: Design and implementation of practical component for GENETICS3211 – Plant Transgene Expression and RNA Modifications, Undergraduate, Year 3, University of Adelaide.
- 2004-2005: Practical demonstrating experience: BOTN3006 - Plant Molecular Biology and Biotechnology. Undergraduate, Year 3, University of Queensland. BIOT7011 - DNA and Protein Technology, Postgraduate, University of Queensland. BIOC7009 – Emerging Biotechnologies II, Postgraduate, University of Queensland.
| Date | Role | Research Topic | Program | Degree Type | Student Load | Student Name |
|---|---|---|---|---|---|---|
| 2022 | Principal Supervisor | The role of dicistronic tRNA-mRNA transcripts in plant systemic signalling and its application as a mobile genome-editing system for grapevine functional genomics | Doctor of Philosophy | Doctorate | Full Time | Mr Fei Zheng |
| 2022 | Principal Supervisor | The role of dicistronic tRNA-mRNA transcripts in plant systemic signalling and its application as a mobile genome-editing system for grapevine functional genomics | Doctor of Philosophy | Doctorate | Full Time | Mr Fei Zheng |
| Date | Role | Research Topic | Program | Degree Type | Student Load | Student Name |
|---|---|---|---|---|---|---|
| 2018 - 2020 | Co-Supervisor | A Multiple 'Omics' Approach to Study the Interaction between the Vitis Vinifera Transcriptome and Epigenome and the Barossa Valley Terroir | Doctor of Philosophy | Doctorate | Full Time | Mr Pastor Jullian Fabres |
| 2015 - 2018 | Co-Supervisor | Identification and Functional Characterization of Long Noncoding RNAs Involved in Endosperm Development of Arabidopsis thaliana | Doctor of Philosophy | Doctorate | Full Time | Mr Quang Trung Do |
| 2014 - 2016 | Co-Supervisor | Conservation and Function of RNA 5-methylcytosine in Plants | Doctor of Philosophy | Doctorate | Full Time | Miss Alice Louise Burgess |
| Date | Role | Research Topic | Location | Program | Supervision Type | Student Load | Student Name |
|---|---|---|---|---|---|---|---|
| 2018 - 2018 | Principal Supervisor | tRNA:mRNA dicistronic transcripts are a conserved feature in flowering plants transcriptomes | The University of Adelaide, School of Agriculture, Food & Wine | Master of Biotechnology (Plant Biotechnology) | Master | Full Time | Fei Zheng |
| Date | Role | Membership | Country |
|---|---|---|---|
| 2019 - ongoing | Member | RNA society | United States |
| 2015 - ongoing | Member | Epigenetics Consortium of South Australia | Australia |
| 2010 - ongoing | Member | Australian Society of Plant Scientists | Australia |