
Damien Teney
School of Computer and Mathematical Sciences
Faculty of Sciences, Engineering and Technology
Eligible to supervise Masters and PhD - email supervisor to discuss availability.
Damien Teney holds an Adjunct Lecturer position at University of Adelaide, while serving as a Research Scientist at the Idiap Research Institute in Martigny, Switzerland. His research is at the intersection of machine learning, computer vision, and natural language processing. He made notable contributions to the field of vision-and-language models, in particular for the tasks of captioning and visual question answering (VQA). His current work focuses on the scientific understanding of large machine learning models, and on their robustness properties e.g. in out-of-distribution conditions.
-
Journals
Year Citation 2024 Opazo, C. R., Abbasnejad, E., Teney, D., Marrese-Taylor, E., Damirchi, H., & Hengel, A. V. D. (2024). Synergy and Diversity in CLIP: Enhancing Performance Through Adaptive Backbone Ensembling.. CoRR, abs/2405.17139. 2023 Damirchi, H., Opazo, C. R., Abbasnejad, E., Teney, D., Shi, J. Q., Gould, S., & Hengel, A. V. D. (2023). Zero-shot Retrieval: Augmenting Pre-trained Models with Search Engines.. CoRR, abs/2311.17949. 2023 Liu, Z., Sun, W., Hong, Y., Teney, D., & Gould, S. (2023). Bi-directional Training for Composed Image Retrieval via Text Prompt Learning.. CoRR, abs/2303.16604. 2023 Teney, D., Wang, J., & Abbasnejad, E. (2023). Selective Mixup Helps with Distribution Shifts, But Not (Only) because of Mixup.. CoRR, abs/2305.16817. 2023 Meadows, J., Valentino, M., Teney, D., & Freitas, A. (2023). A Symbolic Framework for Systematic Evaluation of Mathematical Reasoning with Transformers.. CoRR, abs/2305.12563. 2023 Liu, Z., Sun, W., Teney, D., & Gould, S. (2023). Candidate Set Re-ranking for Composed Image Retrieval with Dual Multi-modal Encoder.. CoRR, abs/2305.16304. 2023 Nicolicioiu, A. M., Nicolicioiu, A. L., Alexe, B., & Teney, D. (2023). Learning Diverse Features in Vision Transformers for Improved Generalization.. CoRR, abs/2308.16274. 2023 Lu, W., Yu, H., Wang, J., Teney, D., Wang, H., Chen, Y., . . . Ji, X. (2023). ZooPFL: Exploring Black-box Foundation Models for Personalized Federated Learning.. CoRR, abs/2310.05143. 2022 Shevchenko, V., Abbasnejad, E., Dick, A. R., Hengel, A. V. D., & Teney, D. (2022). EBMs vs. CL: Exploring Self-Supervised Visual Pretraining for Visual Question Answering.. CoRR, abs/2206.14355. 2022 Teney, D., Lin, Y., Oh, S. J., & Abbasnejad, E. (2022). ID and OOD Performance Are Sometimes Inversely Correlated on Real-world
Datasets.2022 Shevchenko, V., Abbasnejad, E., Dick, A., Hengel, A. V. D., & Teney, D. (2022). EBMs vs. CL: Exploring Self-Supervised Visual Pretraining for Visual
Question Answering.2022 Dancette, C., Cadène, R., Teney, D., & Cord, M. (2022). Beyond Question-Based Biases: Assessing Multimodal Shortcut Learning in Visual Question Answering.. CoRR, abs/2104.03149, 1554-1563.
Scopus45 WoS132021 Shevchenko, V., Teney, D., Dick, A. R., & Hengel, A. V. D. (2021). Reasoning over Vision and Language: Exploring the Benefits of Supplemental Knowledge.. CoRR, abs/2101.06013. 2020 Teney, D., Kafle, K., Shrestha, R., Abbasnejad, E., Kanan, C., & van den Hengel, A. (2020). On the Value of Out-of-Distribution Testing: An Example of Goodhart's Law. ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 33, NEURIPS 2020, 33, 11 pages. 2020 Teney, D., Abbasnejad, E., & Hengel, A. V. D. (2020). Learning What Makes a Difference from Counterfactual Examples and Gradient Supervision.. CoRR, abs/2004.09034. 2020 Shevchenko, V., Teney, D., Dick, A. R., & Hengel, A. V. D. (2020). Visual Question Answering with Prior Class Semantics.. CoRR, abs/2005.01239. 2019 Teney, D., Wang, P., Cao, J., Liu, L., Shen, C., & Hengel, A. V. D. (2019). V-PROM: A Benchmark for Visual Reasoning Using Visual Progressive Matrices.. CoRR, abs/1907.12271, 12071-12078.
WoS42019 Teney, D., Abbasnejad, E., & Hengel, A. V. D. (2019). On Incorporating Semantic Prior Knowlegde in Deep Learning Through Embedding-Space Constraints.. CoRR, abs/1909.13471. 2017 Teney, D., & Hengel, A. V. D. (2017). Visual Question Answering as a Meta Learning Task.. CoRR, abs/1711.08105. 2017 Anderson, P., He, X., Buehler, C., Teney, D., Johnson, M., Gould, S., & Zhang, L. (2017). Bottom-Up and Top-Down Attention for Image Captioning and VQA.. CoRR, abs/1707.07998. 2017 Wu, Q., Teney, D., Wang, P., Shen, C., Dick, A. R., & Hengel, A. V. D. (2017). Visual question answering: A survey of methods and datasets.. Comput. Vis. Image Underst., 163, 21-40.
2017 Teney, D., Wu, Q., & Van Den Hengel, A. (2017). Visual Question Answering: a tutorial. IEEE Signal Processing Magazine, 34(6), 63-75.
Scopus33 WoS172017 Wu, Q., Teney, D., Wang, P., Shen, C., Dick, A., & van den Hengel, A. (2017). Visual question answering: a survey of methods and datasets. Computer Vision and Image Understanding, 163, 21-40.
Scopus284 WoS1562016 Teney, D., & Hengel, A. (2016). Zero-Shot Visual Question Answering.. CoRR, abs/1611.05546. 2014 Teney, D., & Piater, J. (2014). Multiview feature distributions for object detection and continuous pose estimation. Computer Vision and Image Understanding, 125, 265-282.
Scopus21 WoS16 -
Conference Papers
-
Preprint
Year Citation 2025 Teney, D., Jiang, L., Gogianu, F., & Abbasnejad, E. (2025). Do We Always Need the Simplicity Bias? Looking for Optimal Inductive
Biases in the Wild.2024 Jiang, L., & Teney, D. (2024). OOD-Chameleon: Is Algorithm Selection for OOD Generalization Learnable?. 2024 Teney, D., Nicolicioiu, A., Hartmann, V., & Abbasnejad, E. (2024). Neural Redshift: Random Networks are not Random Functions.
-
Past Higher Degree by Research Supervision (University of Adelaide)
Date Role Research Topic Program Degree Type Student Load Student Name 2018 - 2022 Co-Supervisor Developing a System for Free-Form Visual Question Answering Doctor of Philosophy Doctorate Full Time Miss Violetta Shevchenko
Connect With Me
External Profiles