Michael Samuel

Dr Michael Samuel

Research Professor of Matrix Biology

Centre for Cancer Biology

College of Health

Available For Media Comment.


I head the Tumour Microenvironment Laboratory at the Centre for Cancer Biology, formed by an alliance between SA Pathology and Adelaide University, and the Cancer Mechanotherapies Laboratory at the Basil Hetzel Institute for Translational Health Research, where I am the Australian Breast Cancer Research Fellow, funded by The Hospital Research Foundation Group. Our research focuses on understanding the tumour microenvironment, the support structure that cancers build around themselves. Current cancer therapies rely heavily on directly targeting aberrant tumour cell behaviour resulting from genetic mutations. Such approaches frequently elicit therapy resistance owing the ability of tumour cells to acquire further mutations enabling them to evade therapy. However, tumours are critically dependent upon their stromal cell component, which are populated by genetically normal cells. Targeting stromal cell behaviour can reduce the potential for therapy resistance, as stromal cells are typically genetically stable. Our research seeks to identify the mechanisms by which tumours remodel their microenvironments to promote tumour progression, with a view to uncovering new approaches to interfering with this process.
I completed my Bachelor’s degree with Honours in Biochemistry and Molecular Biology at the Australian National University, Canberra. I then moved to Melbourne to conduct Ph.D. research at the Ludwig Institute for Cancer Research, in the laboratory of Prof. Matthias Ernst. Here I studied the function of DNA methyltransferase dysregulation in intestinal cancers, showing that increased DNA methyltransferase activity has a causal role in tumour progression.
Moving to the Beatson Institute for Cancer Research, UK in 2006 to join the laboratory of Prof. Michael Olson as a postdoctoral scientist, I began working on the cytoskeletal signalling pathways that have absorbed my interest over the past 10 years, and laid the foundation for my current research programme. During this time, I established novel models of conditionally active cytoskeletal signalling to demonstrate that these pathways regulate tissue-level mechanical changes that promote tumour growth and progression.
In 2011, I won a Florey Fellowship to move back to Australia and in 2012 set up the Tumour Microenvironment Laboratory at the Centre for Cancer Biology with funding from a National Health and Medical Research Council New Investigator grant. I was awarded an ARC Future Fellowship in 2012.
 

The mechanism of tumour promotion by the Rho-ROCK signalling pathway

We have demonstrated that activating ROCK within the epidermis leads to hyper-proliferation of keratinocytes and promotes tumour formation in a murine squamous cell carcinoma model. This mechanism links ROCK activation and changes to cell tension and tissue stiffness to integrin signalling and the Wnt pathway (Cancer Cell 19(6):776-91). These results strongly support the hypothesis that signalling through ROCK plays a key role in tumour progression.

Recently, we have demonstrated that these mechanotransduction pathways are a relevant feature of human cutaneous SCC (Am. J. Pathol. 183(3):930-7) and that druggable negative regulators of mechanotransduction pathways exist (Dev. Cell 35(6): 759-774). We are currently working on identifying the mechanism by which the activation of Rho-ROCK signalling within tumour cells promotes tumour progression. We are now working on new approaches to enhance the negative regulation of mechanical signalling as novel anti-cancer therapies.

How does the Rho-ROCK pathway generate a permissive tumour microenvironment?

Our laboratory has recently shown that the Rho-ROCK pathway is progressively activated within fibroblasts, macrophages and several other cell types within the tumour microenvironment, during tumour progression. This change is accompanied by increased generation of ECM components, including collagen, fibronectin and periostin, in a ROCK-dependent manner. Taken together, these results strongly suggest that ROCK activation remodels the tissue microenvironment to promote tumour progression. This project seeks to identify the mechanisms by which activation of ROCK generates a tumour-permissive microenvironment, using our conditionally active ROCK mouse models.

How is the Rho-ROCK pathway regulated during wound healing?

We have shown that wound healing is much quicker when ROCK is activated in models within which we can control the activation of ROCK at will (Dev. Cell 35(6): 759-774). Interestingly, in patient wound samples ROCK is activated at wound margins in rapidly healing wounds and the converse is true of chronic wounds that heal slowly. We are working to identify the mechanism by which ROCK activation regulates the wound healing process with a view to identifying therapeutic targets to promote the healing of chronic wounds.

Date Position Institution name
2021 - ongoing Professor of Matrix Biology University of South Australia

Date Institution name Country Title
Beatson Institute United Kingdom Postdoctoral Training
University of Melbourne Australia Ph.D.
Australian National University Australia B.Sc.(Hons.)

Year Citation
2024 Samuel, M. S., Lopez, J. I., McGhee, E. J., Croft, D. R., Strachan, D., Timpson, P., . . . Olson, M. F. (2024). Erratum: Actomyosin-Mediated Cellular Tension Drives Increased Tissue Stiffness and β-Catenin Activation to Induce Epidermal Hyperplasia and Tumor Growth (Cancer Cell (2011) 19(6) (776–791), (S1535610811001668), (10.1016/j.ccr.2011.05.008)). Cancer Cell, 42(2), 317.
DOI Scopus5 WoS6 Europe PMC4
2024 Johan, M. Z., Pyne, N. T., Kolesnikoff, N., Poltavets, V., Esmaeili, Z., Woodcock, J. M., . . . Samuel, M. S. (2024). Accelerated Closure of Diabetic Wounds by Efficient Recruitment of Fibroblasts upon Inhibiting a 14-3-3/ROCK Regulatory Axis. The Journal of Investigative Dermatology, 144(11), 2562-2573.e4.
DOI Scopus1 WoS1 Europe PMC1
2024 Pittar, A., Buckley, E. J., Boyle, S. T., Ibbetson, S. J., & Samuel, M. S. (2024). Enhanced RHO-ROCK signaling is associated with CRELD2 production and fibroblast recruitment in cutaneous squamous cell carcinoma. Cytoskeleton, 81(12), 864-871.
DOI Scopus3 WoS3 Europe PMC4
2024 Li, M., Bennett, M. K., Toubia, J., Pope, V. S., Tea, M. N., Tamang, S., . . . Pitson, S. M. (2024). An orthotopic syngeneic mouse model of bortezomib-resistant multiple myeloma. British Journal of Haematology, 204(2), 566-570.
DOI Scopus1 WoS1 Europe PMC1
2024 Pereira, B. A., Ritchie, S., Chambers, C. R., Gordon, K. A., Magenau, A., Murphy, K. J., . . . Timpson, P. (2024). Temporally resolved proteomics identifies nidogen-2 as a cotarget in pancreatic cancer that modulates fibrosis and therapy response. Science Advances, 10(27), eadl1197-1-eadl1197-25.
DOI Scopus14 WoS10 Europe PMC9
2023 Myo Min, K. K., Ffrench, C. B., McClure, B. J., Ortiz, M., Dorward, E. L., Samuel, M. S., . . . Bonder, C. S. (2023). Desmoglein-2 as a cancer modulator: friend or foe?. Frontiers in Oncology, 13(1327478), 1327478-1-1327478-15.
DOI Scopus11 WoS12 Europe PMC11
2023 Li, X., McLain, C., Samuel, M. S., Olson, M. F., & Radice, G. L. (2023). Actomyosin-mediated cellular tension promotes Yap nuclear translocation and myocardial proliferation through α5 integrin signaling. Development, 150(2), 1-14.
DOI Scopus10 WoS8 Europe PMC9
2023 Samuel, M., Van, L., & Trevorrow, P. (2023). An interview with Michael Samuel ‐ Tumour Microenvironment Laboratory, Centre for Cancer Biology, SA Pathology and University of South Australia. Cytoskeleton, 80(3-4), 58-59.
DOI WoS1
2023 Scheer, K. G., Ebert, L. M., Samuel, M. S., Bonder, C. S., & Gomez, G. A. (2023). Bevacizumab-Induced Hypertension in Glioblastoma Patients and Its Potential as a Modulator of Treatment Response. Hypertension, 80(8), 1590-1597.
DOI Scopus10 WoS9 Europe PMC9
2023 Orang, A., Dredge, B. K., Liu, C. Y., Bracken, J. M., Chen, C. -H., Sourdin, L., . . . Bracken, C. P. (2023). Basonuclin-2 regulates extracellular matrix production and degradation. Life Science Alliance, 6(10), e202301984-1-e202301984-17.
DOI Scopus4 WoS4 Europe PMC10
2022 Law, A. M. K., Chen, J., Colino-Sanguino, Y., Fuente, L. R. D. L., Fang, G., Grimes, S. M., . . . Gallego-Ortega, D. (2022). ALTEN: A High-Fidelity Primary Tissue-Engineering Platform to Assess Cellular Responses Ex Vivo. Advanced Science, 9(21), 2103332-1-2103332-19.
DOI Scopus6 WoS6 Europe PMC9
2022 Le Cerf, B. A., Pyne, N., Kular, J., Boyle, S. T., Beattie, D. A., Krasowska, M., & Samuel, M. S. (2022). Nano-mechanical analyses of native and cross-linked collagen I matrices reveal the mechanical complexity of homogenous samples. Frontiers in Physics, 10(835038), 1-11.
DOI Scopus2 WoS2
2022 Kochetkova, M., & Samuel, M. S. (2022). Differentiation of the tumor microenvironment: are CAFs the Organizer?. Trends in Cell Biology, 32(4), 285-294.
DOI Scopus48 WoS50 Europe PMC49
2022 Kolesnikoff, N., Chen, C. -H., & Samuel, M. S. (2022). Interrelationships between the extracellular matrix and the immune microenvironment that govern epithelial tumour progression. Clinical Science, 136(5), 361-377.
DOI Scopus38 WoS36 Europe PMC36
2021 Zadeh Shirazi, A., McDonnell, M. D., Fornaciari, E., Bagherian, N. S., Scheer, K. G., Samuel, M. S., . . . Gomez, G. A. (2021). A deep convolutional neural network for segmentation of whole-slide pathology images identifies novel tumour cell-perivascular niche interactions that are associated with poor survival in glioblastoma. British Journal of Cancer, 125(3), 337-350.
DOI Scopus33 WoS24 Europe PMC29
2021 Floerchinger, A., Murphy, K. J., Latham, S. L., Warren, S. C., McCulloch, A. T., Lee, Y. -K., . . . Nobis, M. (2021). Optimizing metastatic-cascade-dependent Rac1 targeting in breast cancer: guidance using optical window intravital FRET imaging. Cell Reports, 36(11), 109689-1-109689-e6.
DOI Scopus15 WoS17 Europe PMC17
2021 Murphy, K. J., Reed, D. A., Vennin, C., Conway, J. R. W., Nobis, M., Yin, J. X., . . . Timpson, P. (2021). Intravital imaging technology guides FAK-mediated priming in pancreatic cancer precision medicine according to Merlin status. Science Advances, 7(40), eabh0363-1-eabh0363-27.
DOI Scopus37 WoS36 Europe PMC33
2021 Poltavets, V., Esmaeili, Z., Boyle, S., Ramshaw, H., Lopez, A., Kochetkova, M., & Samuel, M. (2021). 14-3-3ζ-depletion impairs mammary gland development in the mouse.
DOI
2020 Boyle, S. T., Johan, M. Z., & Samuel, M. S. (2020). Tumour-directed microenvironment remodelling at a glance. Journal of Cell Science, 133(24), jcs247783-1-jcs247783-9.
DOI Scopus14 WoS13 Europe PMC8
2020 Strudwick, X. L., Adams, D. H., Pyne, N. T., Samuel, M. S., Murray, R. Z., & Cowin, A. J. (2020). Systemic delivery of anti-integrin α L antibodies reduces early macrophage recruitment, inflammation, and scar formation in murine burn wounds. Advances in Wound Care, 9(12), 637-648.
DOI Scopus20 WoS19 Europe PMC13
2020 Boyle, S. T., Poltavets, V., Kular, J., Pyne, N. T., Sandow, J. J., Lewis, A. C., . . . Samuel, M. S. (2020). ROCK-mediated selective activation of PERK signalling causes fibroblast reprogramming and tumour progression through a CRELD2-dependent mechanism. Nature Cell Biology, 22(7), 882-895.
DOI Scopus60 WoS60 Europe PMC57
2020 Boyle, S. T., Poltavets, V., Kular, J., Pyne, N. T., Sandow, J. J., Lewis, A. C., . . . Samuel, M. S. (2020). Publisher Correction: ROCK-mediated selective activation of PERK signalling causes fibroblast reprogramming and tumour progression through a CRELD2-dependent mechanism.. Nat Cell Biol, 22(7), 908.
DOI Scopus5 WoS4 Europe PMC6
2020 Boyle, S. T., Mittal, P., Kaur, G., Hoffmann, P., Samuel, M. S., & Klingler-Hoffmann, M. (2020). Uncovering tumor−stroma inter-relationships using MALDI Mass spectrometry imaging. Journal of Proteome Research, 19(10), 4093-4103.
DOI Scopus16 WoS15 Europe PMC13
2019 Neubauer, H. A., Tea, M. N., Zebol, J. R., Gliddon, B. L., Stefanidis, C., Moretti, P. A. B., . . . Pitson, S. M. (2019). Cytoplasmic dynein regulates the subcellular localization of sphingosine kinase 2 to elicit tumor-suppressive functions in glioblastoma. Oncogene, 38(8), 1151-1165.
DOI Scopus26 WoS25 Europe PMC19
2019 Johan, M. Z., & Samuel, M. S. (2019). Rho–ROCK signaling regulates tumor-microenvironment interactions. Biochemical Society Transactions, 47(1), 101-108.
DOI Scopus50 WoS46 Europe PMC36
2019 Perrin, S. L., Samuel, M. S., Koszyca, B., Brown, M. P., Ebert, L. M., Oksdath, M., & Gomez, G. A. (2019). Glioblastoma heterogeneity and the tumour microenvironment: implications for preclinical research and development of new treatments. Biochemical Society Transactions, 47(2), 625-638.
DOI Scopus131 WoS123 Europe PMC111
2018 Poltavets, V., Kochetkova, M., Pitson, S. M., & Samuel, M. S. (2018). The role of the extracellular matrix and its molecular and cellular regulators in cancer cell plasticity. Frontiers in Oncology, 8(431), 431-1-431-19.
DOI Scopus315 WoS306 Europe PMC267
2018 Cazet, A., Hui, M., Elsworth, B., Wu, S., Roden, D., Chan, C., . . . Swarbrick, A. (2018). Targeting stromal remodeling and cancer stem cell plasticity overcomes chemoresistance in triple negative breast cancer. Nature Communications, 9(1), 2897N-1-2897N-18.
DOI Scopus358 WoS343 Europe PMC326
2018 Hercus, T., Kan, W., Broughton, S., Tvorogov, D., Ramshaw, H., Sandow, J., . . . Lopez, A. (2018). Role of the β common (βc) family of cytokines in health and disease. Cold Spring Harbor Perspectives in Biology, 10(6), a028514.
DOI Scopus42 WoS33 Europe PMC32
2018 Boyle, S. T., Kular, J., Nobis, M., Ruszkiewicz, A., Timpson, P., & Samuel, M. S. (2018). Acute compressive stress activates RHO/ROCK-mediated cellular processes. Small GTPases, 11(5), 1-17.
DOI Scopus46 Europe PMC43
2017 Nobis, M., Herrmann, D., Warren, S., Kadir, S., Leung, W., Killen, M., . . . Timpson, P. (2017). A RhoA-FRET biosensor mouse for intravital imaging in normal tissue homeostasis and disease contexts. Cell Reports, 21(1), 274-288.
DOI Scopus77 WoS70 Europe PMC73
2017 Vennin, C., Chin, V., Warren, S., Lucas, M., Herrmann, D., Magenau, A., . . . Timpson, P. (2017). Transient tissue priming via ROCK inhibition uncouples pancreatic cancer progression, sensitivity to chemotherapy, and metastasis. Science Translational Medicine, 9(384), eaai8504-1-eaai8504-17.
DOI Scopus227 WoS218 Europe PMC212
2017 Akladios, B., Mendoza-Reinoso, V., Samuel, M. S., Hardeman, E. C., Khosrotehrani, K., Key, B., & Beverdam, A. (2017). Epidermal YAP2-5SA-ΔC drives β-catenin activation to promote keratinocyte proliferation in mouse skin in vivo. Journal of Investigative Dermatology, 137(3), 716-726.
DOI Scopus22 WoS21 Europe PMC21
2017 Rath, N., Morton, J. P., Julian, L., Helbig, L., Kadir, S., McGhee, E. J., . . . Olson, M. F. (2017). ROCK signaling promotes collagen remodeling to facilitate invasive pancreatic ductal adenocarcinoma tumor cell growth. EMBO Molecular Medicine, 9(2), 198-218.
DOI Scopus110 WoS105 Europe PMC101
2016 Grimbaldeston, M. A., Dixit, V. M., & Samuel, M. S. (2016). The 7th Barossa Meeting-Cell Signalling in Cancer Biology and Therapy in Barossa Valley, Australia. Cell Death & Disease, 7(e2129), 1-3.
DOI
2016 Boyle, S. T., & Samuel, M. S. (2016). Mechano-reciprocity is maintained between physiological boundaries by tuning signal flux through the Rho-associated protein kinase. Small GTPases, 7(3), 139-146.
DOI Scopus27 Europe PMC23
2016 Neubauer, H. A., Pham, D. H., Zebol, J. R., Moretti, P. A. B., Peterson, A. L., Leclercq, T. M., . . . Pitson, S. M. (2016). An oncogenic role for sphingosine kinase 2. Oncotarget, 7(40), 64886-64899.
DOI Scopus54 WoS50 Europe PMC52
2016 Samuel, M., Rath, N., Masre, S., Boyle, S., Greenhalgh, D., Kochetkova, M., . . . Olson, M. (2016). Tissue-selective expression of a conditionally-active ROCK2-estrogen receptor fusion protein. Genesis, 54(12), 636-646.
DOI Scopus10 WoS9 Europe PMC9
2015 Kopecki, Z., Yang, G., Jackson, J., Melville, E., Caley, M., Murrell, D., . . . Cowin, A. (2015). Cytoskeletal protein flightless I inhibits apoptosis, enhances tumor cell invasion and promotes cutaneous squamous cell carcinoma progression. Oncotarget, 6(34), 36426-36440.
DOI Scopus24 WoS23 Europe PMC22
2015 Kular, J., Scheer, K., Pyne, N., Allam, A., Pollard, A., Magenau, A., . . . Samuel, M. (2015). A negative regulatory mechanism involving 14-3-3ζ limits signaling downstream of ROCK to regulate tissue stiffness in epidermal homeostasis. Developmental Cell, 35(6), 759-774.
DOI Scopus31 WoS25 Europe PMC30
2015 Woodcock, J., Coolen, C., Goodwin, K., Baek, D., Bittman, R., Samuel, M., . . . Lopez, A. (2015). Destabilisation of dimeric 14-3-3 proteins as a novel approach to anti-cancer therapeutics. Oncotarget, 6(16), 14522-14536.
DOI Scopus34 WoS31 Europe PMC27
2014 Sadras, T., Perugini, M., Kok, C., Iarossi, D., Heatley, S., Brumatti, G., . . . D'Andrea, R. (2014). Interleukin-3-mediated regulation of β-catenin in myeloid transformation and acute myeloid leukemia. Journal of Leukocyte Biology, 96(1), 83-91.
DOI Scopus18 WoS17 Europe PMC13
2014 Yip, K., Kolesnikoff, N., Yu, C., Hauschild, N., Taing, H., Biggs, L., . . . Grimbaldeston, M. (2014). Mechanisms of vitamin D₃ metabolite repression of IgE-dependent mast cell activation. Journal of Allergy and Clinical Immunology, 133(5), 1356-1379.
DOI Scopus103 WoS89 Europe PMC78
2013 Ibbetson, S., Pyne, N., Pollard, A., Olson, M., & Samuel, M. (2013). Mechanotransduction pathways promoting tumor progression are activated in invasive human squamous cell carcinoma. American Journal of Pathology, 183(3), 930-937.
DOI Scopus40 WoS35 Europe PMC37
2013 Lees, J., Ching, Y., Adams, D., Bach, C., Samuel, M., Kee, A., . . . O'Neill, G. (2013). Tropomyosin regulates cell migration during skin wound healing. Journal of Investigative Dermatology, 133(5), 1330-1339.
DOI Scopus40 WoS40 Europe PMC38
2012 Jamieson, T., Clarke, M., Steele, C., Samuel, M., Neumann, J., Jung, A., . . . Sansom, O. (2012). Inhibition of CXCR2 profoundly suppresses inflammation-driven and spontaneous tumorigenesis. Journal of Clinical Investigation, 122(9), 3127-3144.
DOI Scopus345 WoS328 Europe PMC322
2011 Samuel, M. S., & Olson, M. F. (2011). Actomyosin contractililty: force power drives tumor growth. Cell Cycle, 10(20), 3409-3410.
DOI Scopus8 WoS6 Europe PMC7
2011 Samuel, M., Lopez, J., McGhee, E., Croft, D., Strachan, D., Timpson, P., . . . Olson, M. (2011). Actomyosin-mediated cellular tension drives increased tissue stiffness and B-catenin activation to induce interfollicular epidermal hyperplasia and tumor growth. Cancer Cell, 19(6), 776-791.
DOI Scopus467 WoS450 Europe PMC434
2011 Croft, D., Crighton, D., Samuel, M., Lourenco, F., Munro, J., Wood, J., . . . Olson, M. (2011). p53-mediated transcriptional regulation and activation of the actin cytoskeleton regulatory RhoC to LIMK2 signaling pathway promotes cell survival. Cell Research, 21(4), 666-682.
DOI Scopus69 WoS68 Europe PMC61
2011 Samuel, M., Lourenco, F., & Olson, M. (2011). K-Ras Mediated murine epidermal tumorigenesis is dependent upon and associated with elevated Rac1 activity. PLoS One, 6(2), e17143-1-e17143-7.
DOI Scopus31 WoS29 Europe PMC30
2010 Buchert, M., Athineos, D., Abud, H., Burke, Z., Faux, M., Samuel, M., . . . Ernst, M. (2010). Genetic dissection of differential signaling threshold requirements for the Wnt/β-Catenin pathway in vivo. PLoS Genetics, 6(1), e1000816 (13 pages).
DOI Scopus83 WoS74 Europe PMC77
2010 Samuel, M., & Olson, M. (2010). Dying alone: A tale of Rho. Cell Stem Cell, 7(2), 135-136.
DOI Scopus9 WoS8 Europe PMC7
2009 Samuel, M., Munro, J., Bryson, S., Forrow, S., Stevenson, D., & Olson, M. (2009). Tissue selective expression of conditionally-regulated ROCK by gene targeting to a defined locus. Genesis, 47(7), 440-446.
DOI Scopus20 WoS19 Europe PMC18
2009 Samuel, M., Suzuki, H., Buchert, M., Putoczki, T., Tebbutt, N., Lundgren-May, T., . . . Ernst, M. (2009). Elevated Dnmt3a Activity Promotes Polyposis in Apc(Min) Mice by Relaxing Extracellular Restraints on Wnt Signaling. Gastroenterology, 137(3), 902-913.
DOI Scopus34 WoS32 Europe PMC32
2007 Samuel, M. S., Lundgren-May, T., & Ernst, M. (2007). Identification of putative targets of DNA (cytosine-5) methylationmediated transcriptional silencing using a novel conditionally active form of DNA methyltransferase 3a. Growth Factors, 25(6), 426-436.
DOI Scopus5 WoS4 Europe PMC4
2007 Boireau, S., Samuel, M. S., Pannequin, J., Ryan, J. L., Choquet, A., Chapuis, H., . . . Hollande, F. (2007). DNA-methylation-dependent alterations of claudin-4 expression in human bladder carcinoma. Carcinogenesis, 28(2), 246-258.
DOI Scopus75 WoS71 Europe PMC59
2006 Stuhlmann-Laeisz, C., Lang, S., Chalaris, A., Paliga, K., Sudarman, E., Eichler, J., . . . Scheller, J. (2006). Forced dimerization of gp130 leads to constitutive STAT3 activation, cytokine-independent growth, and blockade of differentiation of embryonic stem cells. Molecular Biology of the Cell, 17(7), 2986-2995.
DOI Scopus64 WoS64 Europe PMC61
2005 Dauvillée, D., Kinderf, I. S., Li, Z., Kosar-Hashemi, B., Samuel, M. S., Rampling, L., . . . Morell, M. K. (2005). Role of the Escherichia coli glgX gene in glycogen metabolism. Journal of Bacteriology, 187(4), 1465-1473.
DOI Scopus109 WoS97 Europe PMC81
2003 Morell, M. K., Kosar-Hashemi, B., Cmiel, M., Samuel, M. S., Chandler, P., Rahman, S., . . . Li, Z. Y. (2003). Barley <i>sex6</i> mutants lack starch synthase IIa activity and contain a starch with novel properties. PLANT JOURNAL, 34(2), 172-184.
DOI WoS244
2003 Morell, M. K., Kosar-Hashemi, B., Cmiel, M., Samuel, M. S., Chandler, P., Rahman, S., . . . Li, Z. (2003). Barley sex6 mutants lack starch synthase lla activity and contain a starch with novel properties. Plant Journal, 34(2), 173-185.
DOI Scopus286 Europe PMC180
1999 Dauvillée, D., Colleoni, C., Shaw, E., Mouille, G., D'Hulst, C., Morell, M., . . . Ball, S. (1999). Novel, starch-like polysaccharides are synthesized by an unbound form of granule-bound starch synthase in glycogen-accumulating mutants of Chlamydomonas reinhardtii. Plant Physiology, 119(1), 321-329.
DOI Scopus33 WoS27 Europe PMC24
1999 Colleoni, C., Dauvillée, D., Mouille, G., Morell, M., Samuel, M., Slomiany, M. C., . . . Ball, S. (1999). Biochemical characterization of the Chlamydomonas reinhardtii α-1,4 glucanotransferase supports a direct function in amylopectin biosynthesis. Plant Physiology, 120(4), 1005-1014.
DOI Scopus70 WoS59 Europe PMC44
1999 Colleoni, C., Dauvillée, D., Mouille, G., Buléon, A., Gallant, D., Bouchet, B., . . . Ball, S. (1999). Genetic and biochemical evidence for the involvement of α-1,4 glucanotransferases in amylopectin synthesis. Plant Physiology, 120(4), 993-1003.
DOI Scopus85 WoS72 Europe PMC55
1998 Morell, M. K., Samuel, M. S., & O'Shea, M. G. (1998). Analysis of starch structure using fluorophore-assisted carbohydrate electrophoresis. Electrophoresis, 19(15), 2603-2611.
DOI Scopus131 WoS122 Europe PMC91
1998 Rahman, S., Abrahams, S., Abbott, D., Mukai, Y., Samuel, M., Morell, M., & Appels, R. (1998). Erratum: A complex arrangement of genes at a starch branching enzyme I locus in the D-genome donor of wheat (Genome (1997) 40 (465-474)). Genome, 41(1), 139.
DOI
1998 O'Shea, M. G., Samuel, M. S., Konik, C. M., & Morell, M. K. (1998). Fluorophore-assisted carbohydrate electrophoresis (FACE) of oligosaccharides: Efficiency of labelling and high-resolution separation. Carbohydrate Research, 307(1-2), 1-12.
DOI Scopus253 WoS239
1998 Rahman, S., Abrahams, S., Abbott, D., Mukai, Y., Samuel, M., Morell, M., & Appels, R. (1998). A complex arrangement of genes at a starch branching enzyme I locus in the D-genome donor of wheat (vol 40, pg 465, 1997). GENOME, 41(1), 139.
WoS1
1998 Rahman, S., Abrahams, S., Abbott, D., Mukai, Y., Samuel, M., Morell, M., & Appels, R. (1998). Erratum: A complex arrangement of genes at a starch branching enzyme I locus in the D-genome donor of wheat. Genome, 41(1), 139.
DOI
1997 Morell, M. K., Blennow, A., Kosar-Hashemi, B., & Samuel, M. S. (1997). Differential expression and properties of starch branching enzyme isoforms in developing wheat endosperm. Plant Physiology, 113(1), 201-208.
DOI Scopus135 WoS113 Europe PMC82
1997 Rahman, S., Abrahams, S., Abbott, D., Mukai, Y., Samuel, M., Morell, M., & Appels, R. (1997). A complex arrangement of genes at a starch branching enzyme I locus in the D-genome donor of wheat. Genome, 40(4), 465-474.
DOI Scopus51 WoS50 Europe PMC35
1995 Rahman, S., Kosar-Hashemi, B., Samuel, M. S., Hill, A., Abbott, D. C., Skerritt, J. H., . . . Morell, M. K. (1995). The major proteins of wheat endosperm starch granules. Australian Journal of Plant Physiology, 22(5), 793-803.
DOI Scopus139 WoS126

Year Citation
2024 Ffrench, C. B., Min, K. K. M., DeNichilo, M., Cockshell, M. P., Dorward, E. L., Thompson, E. J., . . . Bonder, C. S. (2024). Desmoglein-2 is a regulator of pancreatic ductal adenocarcinoma progression. In CANCER RESEARCH Vol. 84 (pp. 3 pages). MA, Boston: AMER ASSOC CANCER RESEARCH.
DOI
2021 Shirazi, A. Z., McDonnell, M. D., Fornaciari, E., Bagherian, N. S., Scheer, K. G., Samuel, M. S., . . . Gomez, G. A. (2021). A deep convolutional neural network for segmentation of whole-slide pathology images in glioblastoma. In CLINICAL CANCER RESEARCH Vol. 27 (pp. 2 pages). ELECTR NETWORK: AMER ASSOC CANCER RESEARCH.
DOI
2019 Strudwick, X. L., Adams, D. H., Pyne, N. T., Samuel, M. S., Murray, R. Z., & Cowin, A. J. (2019). SYSTEMIC DELIVERY OF ANTI-INTEGRIN αL ANTIBODIES REDUCE EARLY MACROPHAGE RECRUITMENT, INFLAMMATION AND SCAR FORMATION IN MURINE BURN WOUNDS. In WOUND REPAIR AND REGENERATION Vol. 27 (pp. A4). WILEY.
2018 Strudwick, X. L., Adams, D. H., Pyne, N. T., Samuel, M. S., Murray, R. Z., & Cowin, A. J. (2018). SYSTEMIC DELIVERY OF ANTI-INTEGRIN AL ANTIBODIES REDUCES EARLY MACROPHAGE RECRUITMENT, INFLAMMATION, AND SCAR FORMATION IN MURINE BURN WOUNDS. In WOUND REPAIR AND REGENERATION Vol. 26 (pp. A31). WILEY.
2016 Rath, N., Kadir, S., Morton, J. P., Pinho, A. V., Helbig, L., Julian, L., . . . Olson, M. F. (2016). ROCK kinases drive invasive pancreatic tumor growth. In CANCER RESEARCH Vol. 76 (pp. 4 pages). San Diego, CA: AMER ASSOC CANCER RESEARCH.
DOI
2012 Clarke, M., Jamieson, T., Steele, C., Olson, M., Samuel, M., Das, S., . . . Nibbs, R. (2012). Inhibition of neutrophil chemokine receptor CXCR2 profoundly suppresses inflammation-driven and spontaneous tumorigenesis. In IMMUNOLOGY Vol. 137 (pp. 190). Glasgow, SCOTLAND: WILEY-BLACKWELL.
WoS2

Year Citation
2016 Woodcock, J., Lopez, A., Pitson, S., Samuel, M., & Coolen, C. (2016). WO2016054680, Modulators of 14-3-3 functionality and uses thereof.

Year Citation
2017 Cazet, A., Hui, M., Elsworth, B., Wu, S., Roden, D., Chan, C. -L., . . . Swarbrick, A. (2017). Targeting stromal remodeling and cancer stem cell plasticity to overcome chemoresistance in triple negative breast cancer.
DOI
  • Targeting lethal&#xA;metastases: finding new targets in the tumour/microenvironment interface , NHMRC - Synergy Grants, 01/01/2024 - 31/12/2028

  • Defining the casual relationships between the tumour ECM and cancer outcomes, NHMRC - Ideas Grants, 01/01/2025 - 31/12/2028

  • Informing the development of next-generation mechanotherapies against breast cancer metastasis, The Hospital Research Foundation, 01/09/2023 - 31/08/2028

  • Insights&#xA;from the functional tumour secretome: new opportunities to monitor and halt&#xA;colorectal cancer progression  , Cancer Australia, 01/06/2024 - 30/06/2027

  • Investigating novel approaches to prevent breast cancer progression by targeting cancer-associated fibroblasts, Tour de Cure Ltd, 01/03/2025 - 01/03/2026

  • How can we harness cancer mechanobiology to prevent tumour progression?, Worldwide Cancer Research (formerly - Association for International Cancer Research), 01/01/2022 - 31/12/2024

  • Targeting the microenvironment to maximise colorectal cancer therapy, AusHealth, 21/01/2023 - 31/12/2024

  • How can we predict bowel cancer recurrence?, Cancer Council SA - Beat Cancer, 01/01/2023 - 31/12/2023

  • Repurposing the Field Effect to understand epigenetic control of the microenvironment, NHMRC - Ideas Grants, 01/01/2020 - 31/12/2022

  • Targeting ROCK-mediated microenvironment changes as a novel colorectal cancer therapy, The Hospital Research Foundation, 01/04/2018 - 17/09/2021

  • How does ROCK `education' of fibroblasts drive neoplastic progression in the breast?, NHMRC - Project Grant, 01/01/2018 - 31/12/2020

  • Defining the function of ROCK in establishing a tumour-promoting microenvironment, NHMRC - Project Grant, 01/01/2016 - 31/12/2019

  • Using miR-200 to find new therapeutic targets for neuroblastoma, NHMRC - Project Grant, 01/01/2017 - 31/12/2019

  • Defining the mechanisms regulating tissue mechano-reciprocity in wound healing, NHMRC - Project Grant, 01/01/2016 - 31/12/2018

  • Mast cells are key negative regulators of skin tumourigenesis, NHMRC - Project Grant, 01/01/2014 - 31/12/2017

Date Role Research Topic Program Degree Type Student Load Student Name
2023 Co-Supervisor Understanding chemoresistance mechanisms in triple negative breast cancer Doctor of Philosophy Doctorate Full Time Vishnu Sunil Jaikumar
2022 Principal Supervisor Understanding how the epigenetic field effect exerted by cancers upon their microenvironment promotes tumour progression Doctor of Philosophy Doctorate Full Time Mr Edward Jack Buckley
2022 Co-Supervisor Transforming Growth Factor- (TGF-) responsive regulators of Epithelial-mesenchymal transition Doctor of Philosophy Doctorate Full Time Mr Chi Yau Liu
2022 Co-Supervisor Advancing a novel biomarker for pancreatic cancer Doctor of Philosophy Doctorate Full Time Miss Charlie Ffrench
2021 Principal Supervisor Understanding how the Epigenetic Field Effect Exerted by Cancers upon their Microenvironment Promotes Tumour Progression Doctor of Philosophy Doctorate Full Time Moganalaxmi Reckdharajkumar
2021 Co-Supervisor Tumour protein D54 as a regulator of melanoma progression Doctor of Philosophy Doctorate Full Time Mr Michael Ortiz
2021 Principal Supervisor Understanding how the epigenetic field effect exerted by cancers upon their microenvironment promotes tumour progression Doctor of Philosophy Doctorate Full Time Mrs Zahra Esmaeili
2019 Co-Supervisor Characterisation of extracellular matrix composition across the human brain and applications in brain organoid vascularisation Doctor of Philosophy Doctorate Part Time Ms Kaitlin Grace Scheer
2019 Co-Supervisor Revealing the role of ICAM1 in breast cancer progression Doctor of Philosophy Doctorate Part Time Ms Anahita Fouladzadeh
  • Position: Research Professor of Matrix Biology
  • Email: michael.samuel@adelaide.edu.au
  • Alternative Contact: Office:Basil Hetzel Institute for Translational Health Research, 37a Woodville Road, Woodville South, SA 5011