Dr David McInerney
Grant-Funded Research Fellow
School of Civil Engineering and Construction
College of Engineering and Information Technology
My research interests involve the use of mathematical and statistical models to improve the understanding and management of physical systems. Areas which my research has focussed on include
- Quantifying uncertainty in hydrological predictions
- Developing statistical models for emulating complex climate models
- Robust decision making with respect to uncertain future climate change
- Hydrodynamic modelling of lakes and flood plains
- Numerical and statistical modelling of geological processes
Check out some of my recent research on the Intelligent Water Decisions Blog and my talk at the 2016 DEWNR NRM Science Conference
| Date | Position | Institution name |
|---|---|---|
| 2016 - 2016 | Principal Hydrologist | Government of South Australia, Adelaide |
| 2012 - ongoing | Senior Research Associate | University of Adelaide, Adelaide |
| 2007 - 2012 | Research Associate | University of Chicago, Chicago |
| 2005 - 2007 | Postdoctoral Research Scholar | Pennsylvania State University, University Park |
| Date | Institution name | Country | Title |
|---|---|---|---|
| University of Adelaide, Adelaide | Australia | PhD | |
| University of Adelaide, Adelaide | Australia | BSc, Mathematics and Computer Sciences (Honours) |
| Year | Citation |
|---|---|
| 2021 | Partington, D., Thyer, M., Shanafield, M., McInerney, D., Westra, S., Maier, H., . . . Kavetski, D. (2021). Modelling hydrological change due to wildfires. In Proceedings of the 24th International Congress on Modelling and Simulation (MODSIM2021) (pp. 582-587). Canberra, ACT, Australia: Modelling and Simulation Society of Australia and New Zealand. DOI |
| 2021 | Kavetski, D., McInerney, D., Hunter, J., & Thyer, M. (2021). Recent learnings towards achieving high quality probabilistic predictions in practical applications of hydrological models. In R. W. Vervoort, A. A. Voinov, J. P. Evans, & L. Marshall (Eds.), MODSIM2021, 24th International Congress on Modelling and Simulation. (pp. 526-532). Canberra, ACT, Australia: Modelling and Simulation Society of Australia and New Zealand. DOI |
| 2021 | McInerney, D., Thyer, M., Kavetski, D., Laugesen, R., Woldemsekel, F., Tuteja, N., & Kuczera, G. (2021). Improving sub-seasonal streamflow forecasts across flow regimes. In MODSIM2021, 24th International Congress on Modelling and Simulation. (pp. 616-622). Canberra, ACT, Australia: Modelling and Simulation Society of Australia and New Zealand. DOI Scopus1 |
| 2021 | Thyer, M., McInerney, D., Kavetski, D., Laugesen, R., Woldemeskel, F., Tuteja, N., & Kuczera, G. (2021). Advances in subseasonal streamflow forecasting: An overview. In R. W. Vervoort, A. A. Voinov, J. P. Evans, & L. Marshall (Eds.), MODSIM2021, 24th International Congress on Modelling and Simulation. (pp. 623-629). Canberra, ACT, Australia: Modelling and Simulation Society of Australia and New Zealand. DOI |
| 2021 | Lerat, J., Kavetski, D., McInerney, D., & Thyer, M. (2021). A method to calibrate daily rainfall-runoff models to monthly streamflow data. In MODSIM2021, 24th International Congress on Modelling and Simulation. (pp. 533-539). Canberra, ACT, Australia: Modelling and Simulation Society of Australia and New Zealand. DOI |
| 2021 | Thyer, M., McInerney, D., Kavetski, D., & Hunter, J. (2021). Practical approaches to produce high-quality probabilistic predictions and improve risk-based design making. In Proceedings of the Hydrology and Water Resources Symposium (HWRS 2021) (pp. 612-625). virtual online: Engineers Australia. |
| 2021 | McInerney, D., Thyer, M., Kavetski, D., Laugesen, R., Tuteja, N., & Kuczera, G. (2021). The MuTHRE Model for High Quality Sub-seasonal Streamflow Forecasts. In Proceedings of the Hydrology and Water Resources Symposium (HWRS 2021) (pp. 444-452). Online: Engineers Australia. |
| 2021 | Kavetski, D., McInerney, D., Thyer, M., Lerat, J., & Kuczera, G. (2021). Probabilistic streamflow prediction and uncertainty estimation in ephemeral catchments. In Proceedings of the Hydrology and Water Resources Symposium (HWRS 2021) (pp. 482-496). Adelaide, Australia: Engineers Australia. |
| 2021 | Hunter, J., Thyer, M., McInerney, D., & Kavetski, D. (2021). High-quality probabilistic predictions for existing hydrological models with common objective functions. In Proceedings of the Hydrology and Water Resources Symposium (HWRS 2021) (pp. 626-639). Adelaide, Australia: Engineers Australia. DOI |
| 2021 | Kavetski, D., Lerat, J., McInerney, D., & Thyer, M. (2021). Can a daily rainfall-runoff model be successfully calibrated to monthly streamflow data?. In Proceedings of the Hydrology and Water Resources Symposium (HWRS 2021) (pp. 806-817). virtual online: Engineers Australia. |
| 2014 | McInerney, D., Thyer, M., Kavetski, D., & Kuczera, G. (2014). Evaluating different approaches for using the Box-Cox transformation to model heteroscedasticity in residual errors of hydrological models. In Hydrology and Water Resources Symposium 2014, HWRS 2014 - Conference Proceedings (pp. 937-944). online: Engineers Australia. |
| 2006 | Weldon, V., McInerney, D., Phelan, R., Lynch, M., & Donegan, J. (2006). Characteristics of several NIR tuneable diode lasers for spectroscopic based gas sensing: A comparison. In SPECTROCHIMICA ACTA PART A-MOLECULAR AND BIOMOLECULAR SPECTROSCOPY Vol. 63 (pp. 1013-1020). ITALY, Florence: PERGAMON-ELSEVIER SCIENCE LTD. DOI WoS22 |
| 1988 | MILLER, F. R., MCINERNEY, D., & MILLER, B. E. (1988). GROWTH INTERACTIONS BETWEEN CELLS FROM SEQUENTIAL STAGES OF MOUSE MAMMARY-GLAND FROM NORMAL THROUGH PRENEOPLASIA TO HETEROGENEOUS TUMOR. In PROCEEDINGS OF THE AMERICAN ASSOCIATION FOR CANCER RESEARCH Vol. 29 (pp. 59). AMER ASSOC CANCER RESEARCH. |
| 1986 | MILLER, F. R., MCINERNEY, D., & MILLER, B. E. (1986). DIFFERENTIAL ABILITY OF QUABAIN TO UNCOUPLE NORMAL, PRENEOPLASTIC, AND NEOPLASTIC MOUSE MAMMARY CELLS. In PROCEEDINGS OF THE AMERICAN ASSOCIATION FOR CANCER RESEARCH Vol. 27 (pp. 149). AMER ASSOC CANCER RESEARCH. |
| Year | Citation |
|---|---|
| 2023 | McInerney, D., Wu, T. T., Weinhouse, G., Wallace, B., & Devlin, J. (2023). NEXT-NIGHT DISRUPTED SLEEP PREDICTION FROM CLINICIAN NOTES USING WEAKLY SUPERVISED LEARNING MODELS. Poster session presented at the meeting of CRITICAL CARE MEDICINE. CA, San Francisco: LIPPINCOTT WILLIAMS & WILKINS. |
| 2023 | Wu, T. T., McInerney, D., Weinhouse, G., Wallace, B., & Devlin, J. (2023). PREDICTORS OF ICU CLINICIAN DOCUMENTATION OF DISRUPTED SLEEP IN CRITICALLY ILL MEDICAL ADULTS. Poster session presented at the meeting of CRITICAL CARE MEDICINE. CA, San Francisco: LIPPINCOTT WILLIAMS & WILKINS. |
| 2022 | Thyer, M., Hunter, J., McInerney, D., & Kavetski, D. (2022). High-quality probabilistic predictions for existing hydrological models with common objective functions. Poster session presented at the meeting of Abstracts of the EGU General Assembly 2022. Vienna, Austria & Online: Copernicus GmbH. DOI |
| 2021 | Leigh, R., Knowling, M., Westra, S., Bennett, B., Zecchin, A., Maier, H., . . . Devanand, A. (2021). A multi-modelling framework to stress-test water resource systems under change. Poster session presented at the meeting of 24th International Congress on Modelling and Simulation (MODSIM2021) Book of Abstracts. Sydney, Australia: Modelling and Simulation Society of Australia and New Zealand Inc.. |
| - | Thyer, M., Gupta, H., Westra, S., McInerney, D., Maier, H., Kavetski, D., . . . Tague, C. (n.d.). Virtual Hydrological Laboratories: Developing the next generation of conceptual models to support decision-making under change. Poster session presented at the meeting of Unknown Conference. DOI |
| Year | Citation |
|---|---|
| 2022 | Westra, S., Leigh, R., Knowling, M., Beh, E., Devanand, A., Thyer, M., . . . McInerney, D. (2022). Assessment of current and future water security in the Barossa and Eden Valleys. |
| 2021 | McInerney, D., Thyer, M., Kavetski, D., & Kuczera, G. (2021). Technical note on producing spatially correlated daily streamflow forecasts at semi-gauged sites. |
| 2020 | McInerney, D. J., Thyer, M., Kavetski, D., & Kuczera, G. (2020). Technical note on producing spatially correlated streamflow forecasts at multiple gauged sites. |
| 2019 | McInerney, D. J., Thyer, M. A., & Kavetski, D. (2019). Technical Note on Improving Seamless Streamflow Forecasting using Multi-time scale Hydrological Residual Error Modelling. Australian Bureau of Meteorology. |
| 2018 | McInerney, D., Thyer, M. A., & Kavetski, D. (2018). Assessment of DEW Surface Water Team Modelling Approaches. South Australian Department of Environment and Water (DEW). |
| Year | Citation |
|---|---|
| - | Thyer, M., McInerney, D., Kavetski, D., Kuczera, G., Lerat, J., Tuteja, N., . . . Shin, D. (n.d.). Seasonal Streamflow Forecasting for Water Management: Advances and Opportunities. DOI |
| Year | Citation |
|---|---|
| - | Laugesen, R., Thyer, M., McInerney, D., & Kavetski, D. (n.d.). Supporting data for "Software library to quantify the value of forecasts for decision-making: Case study on sensitivity to damages" by Laugesen et al. (2025). DOI |
| - | McInerney, D., Thyer, M., Kavetski, D., Githui, F., Thayalakumaran, T., Liu, M., & Kuczera, G. (n.d.). The importance of Spatiotemporal Variability in irrigation inputs for hydrological modelling of irrigated catchments - Datasets. DOI |
| - | McInerney, D., Thyer, M., & Kavetski, D. (n.d.). Supporting data for "Improving the reliability of sub-seasonal forecasts of high and low flows by using a flow-dependent non-parametric model" by McInerney et al. (2021). DOI |
| - | Laugesen, R., Thyer, M., McInerney, D., & Kavetski, D. (n.d.). Supporting data for "Flexible forecast value metric suitable for a wide range of decisions: application using probabilistic subseasonal streamflow forecasts" by Laugesen et.al. (2023). DOI |
| Year | Citation |
|---|---|
| 2017 | McInerney, D., Bennett, B. S., Thyer, M., & Kavetski, D. (2017). Interactive Probabilistic Predictions [Computer Software]. http://www.probabilisticpredictions.org/. DOI |
| - | McInerney, D., Westra, S., Leonard, M., Kavetski, D., Thyer, M., & Maier, H. (n.d.). Code and data for 'Tailored Calibration of Stochastic Weather Generators for Enhanced Hydrological System Evaluation' by McInerney et al [Computer Software]. DOI |
| Year | Citation |
|---|---|
| - | McInerney, D., Thyer, M., & Kavetski, D. (n.d.). Supporting data for "Benefits of explicit treatment of zero flows in probabilistic hydrological modelling of ephemeral catchments" by McInerney et al. (2019). DOI |
| Year | Citation |
|---|---|
| - | Thyer, M., Kavetski, D., & McInerney, D. (n.d.). Introduction to Evaluating Probabilistic Predictions. DOI |
| - | Thyer, M., Kavetski, D., McInerney, D., & Renard, B. (n.d.). Introduction to Residual Diagnostics. DOI |
| - | Thyer, M., Kavetski, D., McInerney, D., & Hunter, J. (n.d.). Guidance on Enhancing Probabilistic Predictions. DOI |
| - | Thyer, M., McInerney, D., Kavetski, D., Laugesen, R., & Tuteja, N. (n.d.). Do you want high quality subseasonal streamflow forecasts? Ask MuTHRE! vEGU 2021 Conference Presentation. DOI |
| - | Thyer, M., Hunter, J., McInerney, D., & Kavetski, D. (n.d.). High-quality probabilistic predictions for existing hydrological models with common objective functions: EGU2022 Conference Presentation. DOI |
| - | Thyer, M., McInerney, D., Kavetski, D., Westra, S., Maier, H., Shanafield, M., . . . Leonard, M. (n.d.). Neglecting hydrological errors can severely impact predictions of water resource system performance. DOI |
| Year | Citation |
|---|---|
| - | Mcinerney, D., Thyer, M., Kavetski, D., & Kuzera, G. (n.d.). Practical guidance on representing uncertainty in hydrological predictions. DOI |
| - | McInerney, D. (n.d.). Improving Probabilistic Streamflow Predictions. DOI |
| - | Thyer, M., McInerney, D., Kavetski, D., Kuczera, G., & Lerat, J. (n.d.). Improving probabilistic prediction of daily streamflow. DOI |
| - | McInerney, D. (n.d.). Post-processing hydrological predictions: Quantifying impacts and enhancing subseasonal forecasts. DOI |
Lecturing
- Engineering Hydrology III (2015-2017)
- Engineering Modelling and Analysis II (2015-2017)
| Date | Role | Research Topic | Program | Degree Type | Student Load | Student Name |
|---|---|---|---|---|---|---|
| 2019 | Co-Supervisor | Improving the value of subseasonal streamflow forecasts for water resource management decisions | Doctor of Philosophy | Doctorate | Part Time | Mr Richard Mark Laugesen |
| 2019 | Co-Supervisor | Improving the value of subseasonal streamflow forecasts for water resource management decisions | Doctor of Philosophy | Doctorate | Full Time | Mr Richard Mark Laugesen |